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Abstract

The paper presents two finite-state meth-
ods which can be used for aligning pairs
of cognate words or sets of different al-
lomorphs of stems. Both methods use
weighted finite-state machines for choos-
ing the best alternative. Individual let-
ter or phoneme correspondences can be
weighted according to various principles,
e.g. using distinctive features. The com-
parison of just two forms at a time is sim-
ple, so that method is easier to refine to
include context conditions. Both meth-
ods are language independent and could
be tuned for and applied to several types
of languages for producing gold standard
data.

The algorithms were implemented using
the HFST finite-state library from short
Python programs. The paper demonstrates
that the solving of some non-trivial prob-
lems has become easier and accessible for
a wider range of scholars.

1 Background

In this paper, finite-state automata (FSA) and
finite-state transducers (FST) are used as the basic
tools. In particular, the utility of weighted finite-
state transducers (WFST) and automata (WFSA)
is demonstrated.

Finite-state toolboxes have been freely avail-
able for some time, e.g. OpenFST (Mohri et
al., 2002), Xerox XFST (Beesley and Karttunen,
2003), HFST — Helsinki Finite-State Transducer
Technology (Lindén et al., 2011), SFST (Schmid,
2005) and Foma (Hulden, 2009). These imple-
mentations have been accessible as libraries for
C or C++ programmers, some also as command
line programs which can be pipelined (HFST), and
some as scripting languages (XFST, SFST, Foma,
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HFST). Combining independent programs using
shell commands is easy and suitable for many
kinds of tasks, but certain combinations of oper-
ations are difficult or impossible to achieve this
way. Even the XFST and SFST scripting lan-
guages have their restrictions, especially for loop-
ing, testing and input/output. It seems that none of
the tasks discussed in this paper could be conve-
niently solved using the XFST or SFST scripting
language.

More recently, most finite-state packages have
been also available through Python in one way
or the other. The HFST Python embedding was
used here for a few reasons: it is implemented for
Python 3 which uses Unicode as its native code,
one could use weighted transducers, and HFST
contained the kinds of functions that were needed.

2 Previous work on alignment

Automatic alignment of letters or phonemes is rel-
evant in several areas, e.g. finding the pronun-
ciation of unknown words or names in speech
synthesis, see e.g. (Jiampojamarn et al., 2007),
phonetically based spelling correction, see e.g.
(Toutanova and Moore, 2002), in comparing cog-
nate words in historical linguistics, see e.g. (Cov-
ington, 1998; Kondrak, 2000) , reconstructing
proto-languages, e.g. (Bouchard-Cé6té et al., 2009)
and in many other areas of linguistics. Character
by character alignment can be approached as a ma-
chine learning problem, as in (Ciobanu and Dinu,
2014) or as a linguistic task as is done in this paper.
The methods presented here make use of general
properties of phonology. Still, more specific rules
can be included where needed.

Covington (1998) used a special six step mea-
sure for phoneme distances and (Nerbonne and
Heeringa, 1997) used phonetic features and the
plain Levenshtein distance between sequences of
features in order to estimate differences between
Dutch dialects. (Somers, 1999) used distinctive
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features in the comparison and his algorithm used
the (manually marked) stressed vowels as the start-
ing point whereas other approaches progressed
from left to right. All these approaches were lo-
cal in the sense that they measure each pair of
phonemes separately and the sum of the mea-
sures was the measure of the whole alignment.
Their methods appear to depend on this assump-
tion and therefore exclude the inclusion of context
dependent phenomena e.g. assimilation, metathe-
sis, constraints of syllable structure etc.

The work presented here separates the defini-
tion of the measure from the algorithm for finding
the best alignment. Measures are represented as
WESTs and they are built by producing weighted
regular expressions using simple Python scripts.
The algorithms used here utilize the efficient algo-
rithms already available in the finite-state calculus
for finding the best paths from weighted acyclic
automata (Mohri, 2009).

3 Weighting the correspondences of
phonemes

Simple phoneme by phoneme (or letter by letter)
alignment is needed when relating cognate words
of related languages or e.g. relating the written
words in old texts with their present day forms.
The process of alignment consists here of making
phonetically similar phonemes correspond to each
other and adding zeroes @ where necessary (due
to epenthesis or elision). E.g. Estonian leem and
Finnish liemi would be aligned by adding one zero
at the end of the Estonian form:

leem@
liemi

In general, consonants may not correspond to
vowels or vice versa, except for glides, approx-
imants or semivowels which may correspond to
certain vowels and certain consonants. In this
paper, many-to-one, and one-to-many correspon-
dences are simply expressed by using combina-
tions of phoneme to phoneme correspondences,
phoneme to zero and zero to phoneme correspon-
dences.

Vowels can be described by using distinctive
features such as the height of the tongue, front-
ness/backness and rounding/unrounding, see Fig-
ure 1. Using such features, one may compute dis-
tances between different vowels. Similarly, conso-
nants can be characterized by their place of articu-
lation, voicing and the manner of articulation, see
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Figure 2. The measure used here is not intended
to be an absolute or universal measure, it is just
an ad hoc approximation suitable for Estonian and
Finnish.

vowels = {
’i’:(’Close’,’Front’,’Unrounded’),
’y?:(°Close’, ’Front’, ’Rounded’) ,
’i’:(’Close’,’Front’,’Rounded’),
’u’:(’Close’,’Back’,’Rounded’),
’e’:(’Mid’,’Front’,’Unrounded’),
’%?:(°Mid’,’Front’, ’Rounded’),
’3?:(’Mid’,’Back’,’Unrounded’),
’0?:(’°Mid’,’Back’,’Rounded’),
’87:(’0Open’, ’Front’, ’Unrounded’),
’a’:(’0Open’,’Back’, ’Unrounded’)}

Figure 1: Description of some Finnish and Es-
tonian orthographic vowels using distinctive fea-
tures. IPA symbol for letters for which they are
not the letter itself: i=y,0=¢,0=Y,4d=®,a=a

The work described here permits different kinds
of definitions for measuring the distances, includ-
ing those used in (Covington, 1998; Kondrak,
2000; Nerbonne and Heeringa, 1997; Somers,
1999). Any measure which can reasonably be ex-
pressed as a WFST can be used by the algorithm
presented in Section 4.

From the phoneme descriptions shown in Fig-
ure 1, one can compute simple distances between
any two vowels or any two consonants. The for-
mula chosen in this study was heuristic. Tongue
height had three steps corresponding to values 1,
2, 3 and the distance was taken to be the differ-
ence of those values. The distance between front
and back was taken to be 1 as was the distance be-
tween rounding and unrounding. The distance be-
tween any two vowels was defined to be the sum
of these three numbers. !

A similar formula was used for consonants
where the positions of articulation was numbered
from 1 to 5 and their difference was the distance,
see Figure 2. Different voicing counted as 1, and
so did the manner of articulation. Again, the total
distance was the sum of these three numbers.

A double loop through vowels and another
through consonants produced a list of feasible
combinations of phonemes and the computed
measure for their difference. These triplets were
then formatted as strings and glued together into
a long regular expression, see some samples of it

I'This is sometimes called Manhattan distance as opposed
to the Euclidean distance which would be the square root of
the sum of squares.



consonants = {
’m’:(’Bilab’,’Voiced’,’Nasal’),
’p’: (’Bilab’,’Unvoiced’,’Stop’),
’b’:(’Bilab’,’Voiced’, ’Stop’),
’v’:(’Labdent’,’Voiced’, ’Fricative’),
’f’:(’Labdent’,’Unvoiced’,’Fricative’),
’n’:(’Alveolar’,’Voiced’,’Nasal’),
’t’:(’Alveolar’,’Unvoiced’,’Stop’),
’d’: (’Alveolar’,’Voiced’,’Stop’),
’s?:(’Alveolar’,’Unvoiced’,’Sibilant’),
’1’:(’Alveolar’,’Voiced’,’Lateral’),
’r’:(’Alveolar’,’Voiced’,’Tremulant’),
’j?:(’Velar’,’Voiced’,’Approximant’),
’k’:(’Velar’,’Unvoiced’,’Stop’),
’g?:(’Velar’,’Voiced’,’Stop’),
’h?:(’Glottal’,’Unvoiced’, ’Fricative’)}

Figure 2: Description of some Finnish an Estonian
consonants

below:
:0 |
k:h::
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k:j::

4 |
tki:
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| u:u: u:
1| 0 ...

y: u:
:: | 2

R u: a::
| k:g 2 | k

Note that the weight is after a double colon ac-
cording to the extended notation for weighted reg-
ular expressions used in HFST. Thus, in the above
formula, # may correspond to u at null cost, and k&
may correspond to g at a cost of 1.

Any phoneme could be deleted or inserted at a
cost. A simple loop produced the additional corre-
spondences and their weights:

.. | 0:@::3 | p:@::3 | r:0::3 |

| P:o::3 | DQ:p::3 | Bir::3 |

In Finnish and in Estonian, long vowels are
represented as two successive vowels. The de-
fault correspondences and weights clearly allow
shortening of long vowels (or double consonants),
but there would be two ways to express it with
equal weights: one where the first of the two cor-
responds to zero, and the other where the sec-
ond component corresponds to zero. In order to
avoid this ambiguity, there was yet another loop
which produced the necessary pieces of expres-
sions which had a slightly smaller weight than the
deletion alone. Note that e.g. p:@ p will remain
acceptable, but the expression below gives a lower
weight for the combination where the latter com-
ponent corresponds to zero.

oo | oBio::2 | p@ip::2 | r Bir::2 ...

| 0 0:0::2 | pp:0::2 | rr:@0::2 ...

One can use the same technique for handling or-
thographic conventions. One language might use
kk and the other ck for a geminate k, similarly ks
instead of x and fs instead of z. One can make such
correspondences to have a zero distance by listing
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them with an explicit zero weight, e.g.:
k:c::0 k::0 | k:x s:0::0 | t:z s:0::0

One could use the same mechanism for giv-
ing some phoneme relations a lower weight. One
could e.g. prefer assimilations over arbitrary com-
binations by imposing a lower weight for a variant
if preceded or followed by phoneme which artic-
ulated in the same place. Local metathesis affect-
ing two consecutive phonemes could also be ex-
pressed fairly neatly.

When all expressions are glued together, en-
closed in brackets and followed by a Kleene star,
the regular expression is ready to be compiled
into a WFST. After compilation, the WFST which
holds the distances as weights, can be stored as a
file to be used later by the aligning algorithm.

4 Aligning pairs of words

Now, we are ready to write a small but general
Python script which reads in the similarity WEST
described in Section 3 and (1) reads in a pair of
cognate words from the standard input and (2)
converts them into FSTs W1 and W2, (3) adds ex-
plicit zero symbols freely to each, (4) compares
the zero-filled expressions using the weighed dis-
tance transducer ALIGN and produces in this way
all possible alignments and their total weights as a
weighted transducer RES. Of these many possible
alignments accepted by RES, (5) the best one is
chosen and (6) printed, see Figure 3.

import sys, hfst

algfile = hfst.HfstInputStream("d.fst")
ALIGN = algfile.read()

for line in sys.stdin: # (1)
F1,F2 = line.strip().split(sep=":") # (1)
Wi = hfst.fst(F1) # (2)
Wi.insert_freely(("@","0")) # (3)
W2 = hfst.fst(F2) # (2)
W2.insert_freely (("0","0")) # (3)
W1.compose (ALIGN) # (4
W1.compose (W2) # (4)
RES = Wil.n_best(1).minimize() # (5)
paths = # (6)

res.extract_paths(output=’text’) # (6)
print(paths.strip()) # (6)

Figure 3: Python program for aligning pairs of
cognate words

The algorithm in Figure 3 considers all possible
ways to add zero symbols to the cognates. It even
adds an indefinite number of zeros to each cog-
nate word. For Estonian leem and Finnish liemi
the adding of the zeros would result in strings cov-
ered by the following expressions.



Wi:
W2:

Px 1 Px e P*x e @P* m P
Px 1 Px i P*x e P*x m P*x i Px*
The key idea is in the composition of these

two FSAs so that the distance metric transducer
ALIGN is in the middle:

Wi

Transducers W1, W2 and the ALIGN are all
epsilon-free, so the composition accepts only
same length string pairs. Note that the distance
metric ALIGN does not allow a zero to correspond
to another zero, so the zero filled strings may only
be at most twice so long as the longer cognate was.
There would still be quite a few comparisons to do,
if one would compare and evaluate them one pair
at a time.

The HFST function n_best(1) finds the pair of
strings which would have the least weight. This
is one of the operations that are efficient for WF-
STs. The operation produces a FST which accepts
exactly the best string pair. Another function is
needed for extracting the transition labels which
constitute the strings themselves.

The aligner was used among other things, for re-
lating word forms of Modern Finnish and Finnish
of a Bible translation of year 1642. With slight
tuning of the WEST, the aligner worked as the pri-
mary tool for aligning further pairs of old and new
words which were used for writing and testing the
rules which related the two forms of Finnish. The
old orthography was less phonemic than the mod-
ern one and there was more orthographic variation
in the old texts. After the initial adjusting to the or-
thography of the old texts, only a little tuning was
needed to modify the computation of the similari-
ties until the formula appeared to be stable.

As an informal check, the manually edited and
checked set of 203 pairs of old and new word
forms was cleaned from the added zeros and re-
aligned using the aligner. Only one difference was
observed in the result as compared with the origi-
nal.?

.o. ALIGN .o. W2

5 Other uses for the distance WFSTs

The aligner was developed for aligning pairs of
cognate words given to it. In this task, the aligner
can and perhaps must be quite general. When we

2The manually aligned lepi@siviit:lewdisi@@t was prob-
lematic because Old Finnish had a different morpheme for
the third person past tense -it whereas the Modern Finnish
has -ivét. Thus, no ‘correct’ alignment actually exists. The
pair to be aligned ought to be lepdisit:lewdiisit.
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are studying the relation between two languages,
we ought not commit ourselves to certain sound
changes (or sound laws) when we start by prepar-
ing the source data for analyzing the relation itself.

One might speculate that the aligner could also
be used as a predictor of the likely shapes of the
missing half of a cognate pair. The WFST alone is,
however, not useful for such because it generates
too many candidates, not only those which would
follow from the sound changes which govern the
relation of the languages. The correct candidate
would be buried under a heap of incorrect ones.

Instead of proposing the missing halves of cog-
nate pairs from scratch, one can get useful results
if one has a word list of the other language. Prepar-
ing for the processing, one first converts the word
list into a FSA, say words-et.fst.

Then, one types in a known word from the first
language. The script (1) converts it into a FSA, (2)
shuffles it freely with zeros, (3) composes it with
the distance WFST, (4) deletes all zeros from the
result and then (5) composes it with a FSA con-
taining the word list. From the result of this chain,
(6) the best word pairs are retrieved and printed
for the user. Using HFST command line tools, the
chain of programs looks like:
$ hfst-strings2fst |

hfst-shuffle -2 zeros.fst |
hfst-compose -2 chardist.fst |
hfst-compose -2 del-zeros.fst |

hfst-compose -2 words-et.fst |
hfst-fst2strings -N 5 -w

This is a pipeline of programs which expects the
user to feed words of the first language. For each
word typed in, the programs do the operations, and
from the resulting WFST, the last program prints
five best matches, e.g. for the Finnish word ajo
(’driving’, ’trip’) it produces:
> ajo
ajo:aju
ajo:aje
ajo:aie
ajo:diu
ajo:agu

W wwN =

The pipeline computes five best guesses as pairs
of the Finnish and the Estonian words, and shows
their weights. In this case, the first guess Estonian
aju happens to be the correct one. In other cases,
the correct one may not the best scored candidate,
as for vierastus, the correct candidate védrastus is
the third in the list. Some short words may have
many similar words in the word list. For them, the
desired candidate is often too far down in the list



of best ranking candidates and will not be found
this way.

Using the aligner is of course less precise than
building a realistic model of sound changes as was
done in (Koskenniemi, 2013a) where two-level
rules were used for this purpose.

6 Aligning a set of stems or other morphs

Comparing several words is needed when relating
more than two historically connected languages
but also when relating e.g. different stems of a
word in order to build lexical entries which can be
used in morphological analysis. The reason for re-
lating stems is usually to construct one common
morphophonemic representation for all stems of a
word.

In a simplified version of the two-level morpho-
logical analysis, one does not postulate underly-
ing forms which are plain sequences of phonemes.
Instead, one uses alternations of phonemes (mor-
phophonemes) when different phonemes alternate
with each other, cf. (Koskenniemi, 2013b). The
problem of aligning three or more different words
is similar to the one discussed above but somewhat
different methods are needed.

Let us look at the Estonian word pagu (’an es-
cape’) which inflects in forms like pagu, paos,
pakku. Traditional generative phonology would
prefer an underlying stem like paku and derive the
other forms from that using a sequence of rewrit-
ing rules. In contrast to this, the linguist following
the methods of the simplified two-level morphol-
ogy, would first locate the boundaries between the
stem morphs and the suffix morphs, i.e. pagu+,
pao+s and pakku+, then take the stems pagu, pao,
and pakku, then insert a few zeros in order to
make the stem morphs same length, i.e. pag@u,
pa@Qo, pakku. Thus, the linguist would arrive
at the morphophonemic representation p a {g@k}
{00k} {uou} by merging the corresponding let-
ters of each stem morph.

Let us see, how an algorithm could simulate the
linguist when it starts from the point where the
boundaries have already been located. The task of
the algorithm is (1) to produce all alignments, in-
cluding lots of nonsense alignments, (2) filter out
infeasible alignments, and (3) to evaluate the fea-
sible alignments and choose the best among them.

In order to carry out the first task, the algo-
rithm blindly inserts some (or no) zero symbols
into each stem in order to make all stem candi-
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dates same length. Thus, some stems are expanded
to a number of alternatives where the zeros are at
all different places. Assuming that five letters suf-
fice for our example word, the first stem needs one
zero, the second stem needs two zeros, and the
third stem does not need any.> The insertion of
the zeros to the first stem pagu would produce the
strings @pagu, pOagu, pa@Dgu, pag@u and pagud.
Only one of these five will turn out to be useful but
the algorithm does not know yet which. It does not
actually produce the set of strings with zeros, but
instead, it produces an automaton which accepts
all of them.

The feasibility of an alignment is evaluated us-
ing the phoneme (or letter) correspondences which
are caused by the insertion of zeros. Aligning
Opagu, pa@@o and pakku would imply corre-
spondences @-p-p, p-a-a, a-@-k, g-@-k and u-o-
u. Such an alignment is infeasible, as it includes
two forbidden correspondences: the second and
the third phoneme correspondences p-a-a and a-
-k are both infeasible because they contain both
a consonant and a vowel (the dashes of the cor-
respondences will be omitted hereafter). Another
alignment, e.g. pag@u, pa@@ and pakku would
imply the correspondences ppp, aaa, g0k, DDk
and uou which all seem phonologically feasible
containing only identical or closely related sounds
and zeros.

Each phoneme correspondence is evaluated sep-
arately and assigned a weight according to the
similarity of the participating phonemes. The
goodness of an alignment is computed as a sum
of all weights for the phoneme correspondences in
the alignment. In the same manner as when com-
paring two words, a correspondence consisting of
identical phonemes e.g. ppp has a zero weight.

Two different distance measures were used. For
vowels, the number of distinct vowels participat-
ing the correspondence was used as the measure.
If the zero was also a member of the correspon-
dence, 0.4 was added. For consonants, the differ-
ences of their features was counted. If there were
both voiced and unvoiced, then 1 was added, if
there were different manners of articulation, then
one less than the number of manners was added.
The positions of articulation were numbered from

30ne may start with the shortest possible stems. If no
results are produced (because one would have to match some
consonant to a vowel), one may add one more zero and try
again, and repeat this until the matching succeeds, and then
still try with adding one more zero.



0 to 4 and they contributed so that 0.5 times the
difference of values for the most back and most
front position was added. One or more zeros in the
correspondence added 2.6 to the total measure.

Semivowels were included both as consonants
and vowels. Their combinations with vowels was
restricted to those that are actually feasible, e.g. j
was allowed to combine with i but not with other
vowels.

All these measures are ad hoc. Readers are en-
couraged to experiment and improve the formulas
of the measures. In particular, machine learning
methods could be utilized for optimizing the pa-
rameters.

7 Algorithm for aligning multiple stems

The goal for the aligning of several words or stems
were specified in the preceding section. The logic
of the algorithm which implements them is shown
in Figure 4 as a Python function extracted from the
full implementation.

def multialign(stems, target_len, weighf):
R = shuffle_w_zeros(stems[0], target_len)
for string in stems[1:]:
S = shuffle_w_zeros(string, target_len)
R.cross_product(S)
R.fst_to_fsa()
T = remove_bad_transitions(R, weightf)
return = set_weights(T, weighf)

Figure 4: Function which produces the set of
all feasible alignments and their weights as a
weighted FSA

Variables containing binary FSAs or FSTs as
their values are in capital letters. The Python func-
tion shuffle_w_zeros() takes a stem as a string and
returns an automaton accepting strings of the re-
quired length (by using a few HFST functions) so
that exactly the correct amount of zeros are in-
serted freely.

The first goal of the algorithm (after inserting
the necessary zeros) is to produce all combi-
nations of the first and the second stem (with
zeros inserted). The function cross_product() is a
standard HFST function for the cross product of
two FSAs. As a result, R is a transducer which
maps any of the possible versions of the first stem
into any of the versions of the second stem. Our
example from Section 6, i.e. paku pao pakko
would become mappings between two sets of
strings:

{9Ppagu, p@agu, padgu, pag@u, pagud}
and

{O0pao, PpDao, OpaPo, Dpao®, p@Dao,
pQaPo, pOao®D, paDDo, paPoD, paoPD}

The transducer R maps any of the stings in the
first set into any of the second set. The combina-
tion of the fourth in the first set and the eighth in
the second is a good candidate for the alignment,
i.e. pak@u:pa@@o or equivalently as a sequence
of corresponding character pairs (where identical
pairs are abbreviated): p a g:@ @ u.:o. At this stage
of the algorithm, however, R accepts all 50 com-
binations.

Two problems arise here: First, we cannot con-
tinue immediately, because for the next cross prod-
uct, we need a FSA instead of a FST. A transducer
can be encoded to become an automaton by a stan-
dard function fst_to_fsa() which substitutes all la-
bel pairs x.y with label pairs xy:xy so that the result
becomes a FSA again.

The other problem is, that there may be
many unwanted correspondences in the re-
sult, letting consonants correspond to vowels or
vice versa. Thus, a user-made function re-
move_bad_transitions() checks the encoded FSA
for infeasible labels and removes the correspond-
ing transitions.*

Now the product of the first two stem expres-
sions is again a FSA, and not too large. So we can
proceed by applying the process to the next stem
expression and so on. When all stems have been
processed, we have a FSA representing all feasi-
ble combinations of the zero-padded stems, i.e. all
feasible alignments. All alignments are feasible in
the sense that they do not contain forbidden com-
binations of vowels and consonants.

Consider first stems laps, lapse and las and
some of their feasible alignments, the morpho-
phonemic representation, the weights for each cor-
respondence (i.e. morphophoneme) and the sum
of weights:

laps@ lapse las(@d
1 a pps ss@ DeD

012 2.6 1.4 =7.0
laps@ lapse la@s0®

1 a ppd s Ded
012.601.4 =5.0

The former is not entirely impossible. It in-
volves a stem final deletion of e which is common
4In principle, the cross product multiplies the size of the

automaton fast if there would be several stems and several
zeros involved.



to both alignments, and in addition the deletion of
s and changing the p into s (which would be un-
common). Considering the weights, the second
alignment is clearly better because there is no al-
ternation of s, only a deletion of p.

Other cases may be more difficult to resolve.
Consider the stems litter, litri and litre where we
would have at least two competing alignments, the
latter of which is one inserted zero longer than the
former:

litter litri@ litre0
1 it trr eie r@0

010 2 2 2.6 =7.6
litter@ 1it@@ri 1it@P@re

1it th) eP® r Qie
0102.61.4 0 2.4 =7.4

The linguist would probably choose the latter
and reject the former. So does the formula for as-
signing weights to the morphophonemes. The ex-
ample also shows that that the algorithm must not
stop on the shortest feasible alignment.

The algorithm has a function weightf{) which
computes a weight for each candidate combina-
tion of phonemes according to the principles ex-
plained in Section 6. It is used first in excluding
completely impossible transitions when building
the intermediate results. It is used again in an-
other function set_weights() which inserts appro-
priate weights into the transitions of the final re-
sult containing still all feasible alignments for the
stems.

Once we have a weighted FSA which represents
all alignments, it is easy to choose the best align-
ment with an HFST function n_best. Some sets
of stems, such as t60 t6 would have two equally
good alignments, 190 t6@ and t6é tDé. Therefore,
more than one of the top alignments are chosen
first. Out of the equally good top candidates, the
program selects the one in which the deletions are
more to the right. Behind this choice is the ob-
servation that in suffixing languages, the deletions
are more likely to occur near the affix morphemes.
Using this criterion, td¢ t6@ is chosen over the
other alternative.

Anyway, the weighting is made in a transpar-
ent manner in the program, so it would be easy to
experiment, modify and tune the weighting, if it
turns out that other types of languages need differ-
ent principles to resolve such ties.
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8 Aligning Estonian noun stems

After the initial implementation of the algorithm
it was tested against a language resource tyve-
baas.pmf containing Estonian words with inflec-
tional information and was freely available from
the Institute of the Estonian Language (Eesti Keele
Instituut). The file contained among other things,
a base form, inflectional class, part of speech code
and a list of all actual stem allomorphs of the
lexeme. For this experiment the nouns were ex-
tracted, and furthermore, only those nouns which
had more than one stem given. Out of these en-
tries, only the stems were extracted and all other
information was ignored. The original file con-

tained entries like:

=’aasima 28_V | at: “aasi, an: aasi

=’aasta 01_S | a0: “aasta, aOr: 0

=aastak 02_S | a0: aastak, b0: aastaku, bOr:...
“aastane 10_A | a0: ’aastane, b0: ’aastase,...

The first and the last entries were not nouns and
they were discarded. The second entry was a noun
but only with one stem. It was discarded as well.
The third entry was a noun and had more than one
stem, and it was chosen and produced an entry for
the purposes of this study. The selected 15 934 sets
of noun stem sets entries were like the following
examples (after some cleaning):

aastak aastaku

aatom aatomi aatome
abajas abaja

The whole test material was run through the
aligner and the result studied using some sampling
and some other checking. Some example align-
ments made by the algorithm are given in Figure 5.

At least for the author, the alignments in Fig-
ure 5 appeared to be acceptable. The whole ma-
terial was then checked by sampling and by look-
ing at infrequent or untypical letter combinations
in a frequency list of all letter combinations. In
the whole material, three alignments were found
where the author disagrees with the result of the
algorithm, see Figure 6. The remaining 15931
alignments might be acceptable.®

SThe goal was just to test the algorithm, at this time not to
produce a lexicon to be accompanied with endings and mor-
phophonological rules. Those other tasks would seem quite
feasible to do at a later stage with some cooperation with suit-
able parties.

0ne could have used a more phonemic representation for
the words by representing long vowels by a single phoneme,
e.g. A instead of aa. Such a representation could have made
the task a bit simpler and maybe the mistakes could have been
avoided altogether.



birmalane birmalase birmalas birmalasi
birmal ansss eefi
faktuur faktuuri faktuure
faktuur Qie
hamarik h&marikku hamariku h&marikke
hamarike
dmar ik 0kPk@ Puuee
kogre kokre kogri kokri
o ggkgk ePPDP r Peeii
kuusk kuuske kuuse kuuski kuusi
k u u s kk@k@ Qeeii
liud liuda liua liudu
1 i u dd@d Paau
mutter mutri mutre
mut tld eP0 r Pie
pagu pao pakku
p a gfk POk uou
pugu pukku
pugkOku
ruga roa ruge rukka
r uouu ghgk DPPk aaea
sugu soo sukku
s uou gPk @0k uou
toht tohtu tohu tohte tohe
t o h ttPtd Quuee
vahk vahku vahu vahke vahe
v a h kkPk@ Quuee
die aige
aifge

h
koger
k

Figure 5: Some example stem sets and their align-
ments
raag raagu rao raage
raagl raagu raolp raage
r a aaoa gglg Pule
saad saadu sao saade
saad) saadu saol@ saade
s a aaoa dd@d Qule
sae saaja saaju
saefp saaja saaju
s a eaa Pjj Pau

Figure 6: The three questionable alignments found
in the Estonian word list of nouns

9 Tasks for the future

Distances between phonemes as described in Sec-
tion 4 seems like a challenge for further research.
In essence, the relation looks like a two-level rule
relation with weights. No present compiler for
two-level rules can directly assign weights to cor-
respondences. It appears to be possible to include
some form of weighting to the rule formalism and
write a compiler.

A two-level compiler dedicated for alignment
tasks could express the language specific pat-
terns of phoneme alternations. A clear case for
such rules would be the proper handling of vowel
lengthening and gemination. Furthermore, one
guiding the insertions and deletions could be made
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more transparent and robust using rules.

Writing dedicated compilers for two-level rules
has now become much easier. It would be a rea-
sonable project to write a compiler which is ori-
ented towards alignment. In this way, one could
implement suitable context constraints for the tar-
get language(s) and integrate it into the process of
alignment.

The algorithm with the weights made for Esto-
nian stems, was tested also for the alignment of
Finnish noun stems. The result appeared to be
fully clean, but only model words for different in-
flectional classes were tested. The same weights
were also tested for some cognate word sets for
Uralic languages found in en.wictionary.org as far
as the symbols were available. The alignments for
those seemed to be OK. Extensive tests are needed
to evaluate the performance on those areas.

All programs made and the testing data used
in this project is in the open source and has been
made accessible to all’. Even without a nicer com-
piler, the modification of the weighting schemes
is easy for anybody who has slight command of
Python programming. In particular, researchers
interested in statistical or machine learning meth-
ods are encouraged to apply their methods for
finding optimal weightings for phoneme combi-
nations or using the material as a gold standard
for other types of solutions. Even linguists who
have better command of Estonian than the author,
are encouraged to report mistakes in the aligned
material or critique on what the optimal alignment
ought to be.

Using the Python programs with the finite state
tools requires the availability of Python3, the
HFST library and the SWIG interface for using the
library from Python.®

10 Credits

The FIN-CLARIN language infrastructure project
has developed and maintains the HFST software.
The author is grateful for their technical support
and assistance. Particular thanks are due to Erik
Axelsson.

"See https://github.com/koskenni/alignment for the pro-
grams and for the test data

8See https://hfst.github.io/ for the documentation and in-
structions for downloading, installing and using the Python
HEST
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