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Abstract

Figurative language identification is a hard
problem for computers. In this paper we
handle a subproblem: chiasmus detection.
By chiasmus we understand a rhetorical
figure that consists in repeating two el-
ements in reverse order: “First shall be
last, last shall be first”. Chiasmus detec-
tion is a needle-in-the-haystack problem
with a couple of true positives for millions
of false positives. Due to a lack of anno-
tated data, prior work on detecting chias-
mus in running text has only considered
hand-tuned systems. In this paper, we ex-
plore the use of machine learning on a
partially annotated corpus. With only 31
positive instances and partial annotation of
negative instances, we manage to build a
system that improves both precision and
recall compared to a hand-tuned system
using the same features. Comparing the
feature weights learned by the machine
to those give by the human, we discover
common characteristics of chiasmus.

1 Introduction

Recent research shows a growing interest in the
computational analysis of style and rhetorics.
Works like Bendersky and Smith (2012) and
Booten and Hearst (2016) demonstrate that, with
sufficient amounts of data, one can even train a
system to recognize quotable sentences. Classical
machine learning techniques applied to text can
help discover much more than just linguistic struc-
ture or semantic content. The techniques applied
so far use a lot of data already annotated by in-
ternet users, for instance, tumblr sentences with

the label #quotation (Booten and Hearst, 2016). It
is a clever reuse of the web as an annotated cor-
pus, but what happens if the stylistic phenomenon
we want to discover is not as popular on the web?
When there is no available corpus and when the
stylistic phenomenon is rare, collecting a substan-
tial amount of annotated data seems unreachable
and the computational linguist faces the limits of
what is feasible.

This study is a contribution which aims at push-
ing this limit. We focus on the task of automat-
ically identifying a playful and interesting study
case that is rather unknown in computational lin-
guistics: the chiasmus. The chiasmus is a fig-
ure that consists in repeating a pair of identical
words in reverse order. The identity criterion for
words can be based on different linguistic prop-
erties, such as synonymy or morphological form.
Here we focus on chiasmi that have words with
identical lemmas, sometimes referred to as an-
timetabole, and illustrated in Example 1. From
now on, we will refer to this case as simply chi-
asmus.

(1) User services management: changing a
breed or breeding a change?

Chiasmus is named after the greek letter χ because
the pattern of repetition is often represented as an
‘X’ or a cross like in Figure 1.

There are several reasons why NLP should pay
attention to chiasmi. First it is a widespread lin-
guistic phenomenon across culture and ages. Be-
cause of the Greek etymology of its name, one
might believe that chiasmus belongs only to the
rhetoricians of the classical period. It is actually
a much more ancient and universal figure. Welch
(1981) observes it in Talmudic, Ugaritic and even
Sumero-Akkadian literature. Contrary to what one
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Figure 1: Schema of a chiasmus

may think, chiasmus is not an archaic ornament of
language and it is used far beyond advertisement
or political discourses. It is relevant for good writ-
ers of any century. Even scientists use it. For in-
stance, currently, a small community of linguists
gives a monthly ‘Chiasmus Award’ which each
time reveals a new chiasmus produced recently by
the scientific community.1 Thus, we come to the
same conclusion as Nordahl (1971). If the chias-
mus has for a long time seemed to be dying, this
is only true with respect to the interest devoted to
it by linguists. In reality, the chiasmus, rhetorical
or functional, is doing well (Nordahl, 1971). Such
universality and modernity makes chiasmus detec-
tion a fruitful task to perform on many genres, on
old text as on new texts.

Second, we can assume that the presence of
chiasmus is a sign of writing quality because the
author took the time to create it or to quote it.
Nowadays the production of texts on the web is
a huge industry where authors’ compensation is
often based on the number of words produced,
which does not increase the quality. Thus, detect-
ing such figures of speech is one clue (among oth-
ers) that may help distinguish masterpieces from
poorly written texts.

Finally, an additional reason for studying chi-
asmus, which is the focus of this paper, is its rar-
ity. To see just how rare it is, consider Winston
Churchill’s River War, a historical narrative count-
ing more than one hundred thousand words. De-
spite the author’s well-known rhetorical skills, we
could only find a single chiasmus in the book:

(2) Ambition stirs imagination nearly as much
as imagination excites ambition.

Such rareness is a challenge for our discipline. It
is well known that the statistical methods domi-
nant in NLP work best for commonly occurring

1http://specgram.com/psammeticuspress/
chiasmus.html

linguistic phenomena and that accuracy often de-
clines drastically for the long tail of low-frequency
events typical of language. Detecting chiasmus
is a needle-in-the-haystack problem where all the
interesting instances are in the long tail. Simply
identifying word pairs repeated in reverse order
is trivial, but identifying the tiny fraction of these
that have a rhetorical purpose is not.

Because of its rarity, the chiasmus is not well
suited for large-scale annotation efforts. Previous
efforts aimed at chiasmus detection have there-
fore not been able to use (supervised) machine
learning for the simple reason that there has been
no training data available. These efforts have
therefore mainly been based on hand-crafted rules
defining categorical distinctions and typically suf-
fering from either low precision or low recall.
Dubremetz and Nivre (2015; 2016) proposed a
feature-based ranking approach instead, but be-
cause they had no annotated data to use for train-
ing, they had to resort to tuning feature weights by
hand on the training set. However, an important
side effect of their work was the release of a small
annotated corpus of chiasmi, containing 31 pos-
itive instances, a few hundred (annotated) nega-
tive instances, and several million unannotated in-
stances assumed to be negative.

This paper presents the first attempt to use ma-
chine learning to tune the weights of a model for
chiasmus detection, using the corpus released by
Dubremetz and Nivre (2016). To see whether it is
possible to learn from this type of corpus at all, we
train a log-linear model with the same features as
Dubremetz and Nivre (2015) and Dubremetz and
Nivre (2016). The results show that the machine-
learned model, despite the small number of pos-
itive training instances, improves both precision
and recall over the hand-tuned system, which is
very encouraging. A comparison between the two
types of systems reveals that they agree almost
perfectly about which features are positive and
negative, respectively, and that the difference in
performance is therefore due simply to more well-
calibrated weights. From a more general perspec-
tive, this shows that using a hand-tuned system to
bootstrap a small seed corpus for machine learn-
ing may be a viable strategy for tackling needle-
in-the-haystack problems like chiasmus detection.
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2 Related Work

When documenting chiasmus, the computational
linguist ends up in a paradox: linguists have de-
veloped reflections on this rhetorical figure but
those reflections are not the most helpful. Indeed,
they never question the concept of criss-cross pat-
terns as an insufficient condition for producing a
rhetorical effect. Typically dictionaries and stylis-
tic books (Fontanier, 1827; Dupriez, 2003) will
explain why chiasmus should belong to the cate-
gory of scheme and not of trope. Rabatel (2008)
argues why chiasmus has different functions and
should therefore be divided into subcategories. On
the other side, Horvei (1985) demonstrates that
chiasmus should not be considered as a simple
subcategory of parallelism but rather as a figure
on its own. All those reflections are interesting
but they all focus on placing chiasmus into the
vast family of rhetorical figures. Following this
linguistics tradition, the first computational lin-
guists (Gawryjolek, 2009; Hromada, 2011) work-
ing on chiasmus perform multiple figure detec-
tions. They focus on making detectors that can
perform both the classification and detection of all
kinds of repetitive figures such as epanaphora,2

epiphora, 3 anadiplosis.4 To some extent, their
systems are a success in that they correctly dis-
tinguish figures from each other. Thus they prove
that computers are excellent at extracting each rep-
etition type with the right label (epiphora versus
epanaphora versus chiasmus). However, they do
not evaluate their systems on real corpora, using
precision and recall, and therefore do not really
confront the problem of false positives and acci-
dental repetitions.

It is only a couple of years later that compu-
tational linguists dare to break with the pure lin-
guistic tradition of handling all rhetorical figures
together. With computational linguists like Strom-
mer (2011; Dubremetz (2013) we observe the first
of two important methodological shifts in how the
problem is approached. For the first time compu-
tational linguists decide to focus on only one fig-
ure (epanaphora for Strommer (2011), chiasmus
for Dubremetz (2013)) and provide some insight

2“We shall not flag or fail. We shall go on to the end.
We shall fight in France, we shall fight on the seas and
oceans[...]”

3“When I was a child, I spoke as a child, I understood as
a child, I thought as a child. ”

4“Mutual recognition requires trust, trust requires com-
mon standards, and common standards requires solidarity.”

into precision/recall. By doing so, they come back
to an essential question: When should we consider
a repetition as accidental instead of rhetoric?

This question seems at first simpler than the
question of categorising chiasmus against its alter-
native figures. But answering it leads to more uni-
versal and interesting answers for computational
linguistics research. Indeed, repetition in language
is extremely banal and viewing every repetition in
a text as being rhetorical would be absurd. The
very first problem in repetitive figure detection in
general, in chiasmus detection in particular, is the
disproportional number of false positives that the
task generates. Dubremetz and Nivre (2015) point
out that in 300 pages of historical tale the previous
detector (Gawryjolek, 2009) extracts up to 66,000
of the criss-cross patterns (for only one true pos-
itive chiasmus to be found). At the opposite end,
the more strict detector of Hromada (2011) ends
up giving a completely empty output on the same
book. The pattern that we have to work on, a pair
of repetitions in reverse order, is so frequent and
the true positive cases are so rare that it makes it
impossible to annotate a corpus for a traditional
classification task.

Dubremetz and Nivre (2015; 2016) introduce
the second shift in the approach to chiasmus de-
tection. Their observation is the same as the one
made by Dunn (2013) on metaphora:

One problem with the systems described
[...] is that they are forced to draw an ar-
bitrary line between two classes to rep-
resent a gradient phenomenon. (Dunn,
2013)

Like Dunn (2013) claims for metaphora,
Dubremetz and Nivre (2015) claim that chi-
asmus detection is not a binary detection task.
It is rather a ranking task similar to information
retrieval. As documents are more or less relevant
to a query, some chiasmi are more prototypical
than others. There are extremely relevant cases
like Sentence 3, some completely irrelevant
repetitions like Sentence 4 and there are those in
between or borderline cases like Sentence 5.

(3) How to talk so business will listen ... And
listen so business will talk?

(4) Let me show you the Disease Ontology up-
date: take a look at the expanded and up-
dated database of human diseases, as we can
see, it grew since 2014.
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(5) It is just as contrived to automatically allo-
cate Taiwan to China as it was to allocate
China’s territory to Taiwan in the past.

Consequently, they decide to convert the detec-
tion into a ranking task where prototypical chiasmi
would be ranked at the top and less relevant in-
stances would be gradually ranked lower. By do-
ing so, they allow a new type of evaluation. Before
evaluation was impossible due to the too big num-
ber of false instances to annotate (about 66,000 of
them for only one true positive in 150,000 words).
But instead of annotating the millions of instances
in their training and test set, they decide to anno-
tate only the top two hundred given by the ma-
chine. And by trying several systems and keep-
ing trace of the previous annotations they grad-
ually augment the number of true instances they
can evaluate on (Clarke and Willett, 1997). Thus
they make a needle-in-the-haystack problem a fea-
sible task by reusing the data on which a sys-
tem of detection is confident to improve evalua-
tion and learning progressively. At the end of their
study they show that chiasmi can be ranked using a
combination of features like punctuation position,
stopwords, similarity of n-gram context, conjunc-
tion detection, and syntax.

Because of lack of data, Dubremetz and
Nivre (2015; 2016) tuned their features manually.
They give average precision5 results which is a
good start. But they could not train a proper clas-
sifier. Thus, we have no idea if a computer can
learn the patterns associated with rhetorical chi-
asmi and if a binary system would properly dis-
tinguish some true positives and not just throw
all true instances in the overwhelming majority
of false positives. This is the issue tackled in
this paper. Using a partially annotated corpus we
train a model automatically and compare the per-
formance to the hand-tuned system. We evaluate
the system using both average precision and F1-
scores.

3 Corpus

We use the corpus from Dubremetz and Nivre
(2015) as our training corpus (used to learn

5Average precision is a common evaluation used in infor-
mation retrieval. It considers the order in which each can-
didates is returned by making the average of the precision
at each positive instance retrieved by the machine. Thus
this measure gives more information on the performance of
a ranking system than a single recall/precision value (Croft et
al., 2010).

weights for a fixed set of features) and a new cor-
pus as our final test corpus. The training corpus
consists of four million words from the Europarl
corpus, containing about two million instances of
criss-cross patterns. Through the previous efforts
of Dubremetz and Nivre (2015; 2016), 3096 of
these have been annotated by one annotator as
True, False, Borderline or Duplicate.6 The True,
Borderline and Duplicate instances were then re-
annotated by a second annotator. Only instances
labeled True by both annotators will be consid-
ered as true positives in our experiments (at both
training and test time). This makes sure that both
training and evaluation is based on the most pro-
totypical true examples. The test set is an unseen
further extract of the Europarl corpus of 2 million
words. For the test phase, two annotators were
asked to annotate the top 200 instances of each
system. In total, this produced 457 doubly anno-
tated instances in our test set containing one mil-
lion instances in total.

4 Features

Dubremetz and Nivre (2015) proposed a standard
linear model to rank candidate instances:

f (r) =
n

∑
i=1

xi ·wi

where r is a string containing a pair of inverted
words, xi is a set of feature values, and wi is the
weight associated with each features. Given two
inversions r1 and r2, f (r1)> f (r2) means that the
inversion r1 is more likely to be a chiasmus than
r2 according to the model.

The features used are listed in Table 1, using
the notation defined in Figure 2. The feature
groups Basic, Size, Similarity and Lexical clues
come from Dubremetz and Nivre (2015), while the
group Syntactic features was added in Dubremetz
and Nivre (2016). We use the same features in
our machine learning experiments but only train
two systems, one corresponding to Dubremetz and
Nivre (2015) (called Base) and one correspond-
ing to Dubremetz and Nivre (2016) (called All
features). This allows us to make a head-to-head
comparison between the systems, where the only
difference is whether feature weights have been
tuned manually or using machine learning.

6For example, if the machine extracts both “All for one,
one for all” and “All for one, one for all”, the first is labeled
True and the second Duplicate, even if both extracts cover a
true chiasmus.
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In prehistoric times︸ ︷︷ ︸
CLeft

women︸ ︷︷ ︸
Wa

resembled︸ ︷︷ ︸
Cab

men︸︷︷︸
Wb

, and︸︷︷︸
Cbb

men︸︷︷︸
W ′

b

resembled︸ ︷︷ ︸
Cba

women︸ ︷︷ ︸
W ′

a

.

Figure 2: Schematic representation of chiasmus, C stands for context, W for word.

Feature Description
Basic

#punct Number of hard punctuation marks and parentheses in Cab and Cba
#softPunct Number of commas in Cab and Cba
#centralPunct Number of hard punctuation marks and parentheses in Cbb
isInStopListA Wa is a stopword
isInStopListB Wb is a stopword
#mainRep Number of additional repetitions of Wa or Wb

Size
#diffSize Difference in number of tokens between Cab and Cba
#toksInBC Position of W’a minus position of Wb

Similarity
exactMatch True if Cab and Cba are identical
#sameTok Number of identical lemmatized tokens in Cab and in Cba
simScore #sameTok but normalised
#sameBigram Number of bigrams that are identical in Cab and Cba
#sameTrigram Number of trigrams that are identical in Cab and Cba
#sameCont Number of tokens that are identical in CLeft and Cbb

Lexical clues
hasConj True if Cbb contains one of the conjunctions ‘and’, ‘as’, ‘because’,

‘for’, ‘yet’, ‘nor’, ‘so’, ‘or’, ‘but’
hasNeg True if the chiasmus candidate contains one of the negative words

‘no’, ‘not’, ‘never’, ‘nothing’
hasTo True if the expression “from . . . to” appears in the chiasmus candi-

date or ‘to’ or ‘into’ are repeated in Cab and Cba
Syntactic Features

sameTag True if Wa Wb W ′b W ′a words have same PoS-Tag.
#sameDepWa W ′b Number of incoming dependency types shared by Wa and W ′b.
#sameDepWb W ′a Same but for Wb and W ′a
#sameDepWa W ′a Same but for Wa and W ′a
#sameDepWb W ′b Same but for Wb and W ′b

Table 1: The five groups of features used to rank chiasmus candidates

5 Learning

Training is performed on the same 4 million
words corpus that was used by Dubremetz and
Nivre (2015; 2016) for feature selection and man-
ual tuning of weights. It contains more than two
million instances of chiasmus candidates with 296
of them doubly annotated. We train a binary lo-
gistic regression classifier and use two fold cross-
validation to set the parameters. To fit the system,
we use the 31 instances labeled as True by both
annotators as our positive examples. All other in-
stances are labeled as False and thus considered as
negative examples (even if most of them are ac-
tually unknown, because they were never encoun-
tered during the hand-tuning process).

We tried training on only annotated instances
but the results were not satisfying. Normalizing
features by the maximum values in order to get
only 0 to 1 features deteriorated the result as well.

We tried over-sampling by giving a weight of 1000
to all true positive instances; this neither improved
nor damaged the results. Finally, we tried support
vector machines (SVM), with rbf and linear ker-
nels, and obtained similar average precision scores
as for logistic regression during training. When it
comes to F-score, the SVM, unlike logistic regres-
sion, requires an over-sampling of true positives
in order to perform as well as logistic regression.
Otherwise, it converges to the majority baseline
and classifies everything as false.

Based on these preliminary experiments, we de-
cided to limit the final evaluation on the unseen
test set to the logistic regression model, as its prob-
ability prediction allows us to rank chiasmi easily.
In addition, its linear implementation allows us to
observe the learned feature weights and compare
them to those of the earlier hand-tuned systems.
For the linear logistic regression implementation
we used scikit-learn (Pedregosa et al., 2011).
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Model Avg Precision Precision Recall F1-score
Machine Base 57.1 80.0 30.8 44.4
Machine All features 70.8 90 69.2 78.3
Human Base 42.5 – – –
Human All features 67.7 – – –

Table 2: Results for logistic regression model (Machine) with comparison to the hand-tuned models of
Dubremetz and Nivre (2015; 2016) (Human). Inter annotator agreement κ = 0.69

6 Evaluation

Table 2 shows that the systems based on machine
learning give better performance than the hand-
tuned systems. With only base features, the aver-
age precision improves by as much as 15%. With
syntactic features added, the difference is smaller
but nevertheless 3%. The performance is mea-
sured on the 13 instances in the test set judged as
True by both annotators. For the machine learn-
ing system, we also report precision, recall and
F1-score. Again, we see that syntactic features
help a lot, especially by improving recall from
about 30% to over 69%. The F1-score of about
78% is surprisingly good given how imbalanced
the classes are (13 positive instances to one mil-
lion negative instances). The most impressive re-
sult is the precision score of 90% obtained by the
machine when using all features. This means that
9 out of 10 instances classified as True were actu-
ally real positive instances.

7 Error Analysis

To cast further lights on the results, we performed
an error analysis on the cross-validation experi-
ments (run on the training set). In the all-features
experiment, we encountered 4 false positives. Of
these, 3 were actually annotated as Borderline by
both annotators, and 1 was annotated as Border-
line by one annotator and False by the other, which
means that none of the false positives were consid-
ered False by both annotators. To illustrate some
of the difficulties involved, we list 5 of the 31 pos-
itive instances in the training set (6–10), followed
by the 3 borderline cases (11–13) and the 1 case of
annotator disagreement (14).

Positive

(6) We do not believe that the end justifies the
means but that the means prefigure the end.

(7) Do not pick the winners and let the winners
pick.

(8) Europe has no problem converting euros into
research, but has far greater difficulty con-
verting research into euros.

(9) That it is not the beginning of the end but the
end of the beginning for Parliament’s rights.

(10) It is much better to bring work to people
than to take people to work.

Borderline

(11) In parallel with the work on these practical
aspects, a discussion is ongoing within the
European Union on determining the mecha-
nisms for participation both by EU Member
States which are not members of NATO and
by NATO countries which are not EU Mem-
ber States.

(12) In that way, they of course become the EU’ s
representatives in the Member States instead
of the Member States’ representatives in the
EU.

(13) If there is discrimination between a black
person and a white person, or vice versa, for
example if someone discriminates against a
white Portuguese in favour of a black Por-
tuguese, or against a black Portuguese in
favour of a white Portuguese, this is clearly
unlawful racism and should result in prose-
cution.

Disagreement

(14) European consciousness is that which must
contribute to the development of mutual re-
spect [...] and which must ensure that toler-
ance is not confused with laxity and an ab-
sence of rules and laws and that laws and
rules are not made with the intention of pro-
tecting some and not others.
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How can the classifier achieve such good results
on both recall and precision with only 31 positive
instances to learn from? We believe an important
part of the explanation lies in the way the train-
ing set was constructed through repeated testing
of hand-crafted features and weights. This process
resulted in the annotation of more than 3 000 obvi-
ous false positive cases that were recurrently com-
ing up in the hand-tuning experiments. The human
started tuning and annotating with the most simple
features like stop words to start filtering out false
positives. This is in fact a necessary requirement.
Without stop word filtering, the chance of finding a
true positive in the top 200 instances is extremely
small. Thus, if a false negative is hidden some-
where in the training set, it is likely to be one in-
volving stop words. To the best of our knowledge,
there is only one existing chiasmus ever reported
in the history of rhetorics that relies exclusively on
stopwords:

(15) All for one, one for all

Given this, we cannot guarantee that there are no
false negatives in the training set, but we can defi-
nitely say that they are unlikely to be prototypical
chiasmi. Thanks to this quality of the annotation,
the machine had the maximum of information we
could possibly give about false positives which is
by far the most important class. In addition, the
performance observed with only 31 positive train-
ing instances might be revealing something about
chiasmus: the linguistic variation is limited. Thus,
within 31 examples the patterns are repeated often
enough so that a machine can learn to detect them.

8 Weights

Figure 3 shows the weights assigned to differ-
ent features in the hand-tuning experiments of
Dubremetz and Nivre (2015; 2016) and in the ma-
chine learning experiments reported in this paper.
All weights have been normalized to the interval
[0, 1] through division by the largest weight in
each set.

The comparison gives rise to several interesting
observations. The most striking one is that the ma-
chine and the human agree on which features are
negative versus positive. The only exception is the
#sameTrigram feature (cf. Table 1, group Simi-
larity). This feature counts the number of trigrams
that are identical in the two different parts of the

Figure 3: Feature weights from machine learning
and hand-tuning, normalized to the interval [0, 1]

chiasmus. For instance, in the Kennedy quote (ex-
ample 16), there is one identical trigram: can do
for. However, we can easily explain this disagree-
ment: this feature is one out of four that express
the similarity between chiasmus propositions and
may thus be redundant.

(16) Ask not what your country can do for you;
ask what you can do for your country.

The machine assigned the largest weights to
the stop word features, namely isInStopListA and
isInStopListB (cf. Table 1), which agrees with
human logic. Note, however, that the human
gave the maximum weight to several other fea-
tures as well, like features related to punctuation
(negative) and part-of-speech tag identity (posi-
tive). Finally, we observe that the human gives
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the same absolute value to all the syntactic de-
pendency features, while the machine tuned them
slightly differently. It put a smaller weight on
the negative feature #sameDepWbW ′b but not on
#sameDepWaW ′a. These two negative features are
of the same nature: they target the elimination of
false positives based on enumerations. In proto-
typical chiasmi, like the one from Hippocrates (ex-
ample 17), the two occurrences of a and b in the
abba pattern have different syntactic roles because
they switch positions in a repeated syntactic struc-
ture.

(17) Hippocrates said that food should be our
medicine and medicine our food.

Therefore, both #sameDepWaW ′a and
#sameDepWbW ′b penalize instances where
the pairwise occurrences have the same role. To
the human it was not obvious that they should
be differentiated, but apparently this constraint is
statistically stronger for the outermost a words.

9 Limitations and Future Work

An obvious limitation of our study is the small set
of true positives on which we base the evaluation.
As explained earlier, it is normal to have very few
true examples even out of 2 million words of text.
The Europarl corpus (Koehn, 2005), being large,
consistent, but sometimes noisy, seemed to us con-
venient by its size and the robustness challenge it
represented. Above all, it has a style that is not
too specific, like poetry would be. Thus, we can
hope that models tuned on this corpus would gen-
eralise to other genres (novels, for instance). A
good follow-up experiment would therefore be to
explore other genres and in this way test the gen-
erality of the system. This will be done in future
research.

Another line of future research is to extend the
approach to other (repetitive) rhetorical figures,
such as anadiplosis (the repetition of the last word
of one clause or sentence at the beginning of the
next) or anaphora (the repetition of the same word
or group of words at the beginning of successive
clauses, sentences, or lines). It would be interest-
ing to see, first, whether the same types of features
would be useful and, secondly, how easy or diffi-
cult it is to discriminate between different figures.

10 Conclusion

In this paper, we target a task outside the NLP
comfort zone: chiasmus detection. The challenge
consists in training a model for an extremely rare
stylistic phenomenon, with a corpus that is only
very partially annotated. Previously, only hand
tuned systems existed and we had no idea how
many examples were needed to train an effective
model. We trained a log-linear classifier on a four
million word corpus of political debates. This cor-
pus contained only 31 true examples, a few hun-
dred instances explicitly annotated as false, and
millions of unknown instances labeled as false by
default. This method gives good recall and preci-
sion and even gives slightly higher accuracy than
the hand-tuned system when it comes to ranking.

We observed strong similarities in the assign-
ment of feature weights by human and machine,
with almost total agreement on which features
should be positive or not, although the machine
could fine-tune the weights, for example, to ac-
count for differential syntactic patterns. An error
analysis revealed that false positives were more
likely than not to be cases that were consid-
ered borderline (or unclear) by human annotators.
Taken together, these results indicate that we have
created a system coherent with the human percep-
tion of rhetoric.

Our research is transforming a difficult needle-
in-the-haystack problem into a feasible task and
the only concession to do is to accept partial recall.
As in old traditional methods (Blum and Mitchell,
1998; Yarowsky, 1995), we wielded the full po-
tential of labeled and unlabeled data. We adapted
it to the domain of style and creative language.
Detecting chiasmus is a creative manipulation of
texts that has potential applications in figurative
language processing (Veale, 2011), where infor-
mation retrieval becomes creative text retrieval.
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sociation for Computational Linguistics.

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural Language Processing with Python. O’reilly
edition.

44



Avrim Blum and Tom Mitchell. 1998. Combin-
ing Labeled and Unlabeled Data with Co-training.
In Proceedings of the Eleventh Annual Conference
on Computational Learning Theory, pages 92–100,
New York, NY, USA. ACM.

Kyle Booten and Marti A Hearst. 2016. Patterns of
Wisdom: Discourse-Level Style in Multi-Sentence
Quotations. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 1139–1144, San Diego, Califor-
nia, jun. Association for Computational Linguistics.

Sarah J. Clarke and Peter Willett. 1997. Estimating the
recall performance of Web search engines. Proceed-
ings of Aslib, 49(7):184–189.

Bruce Croft, Donald Metzler, and Trevor Strohman.
2010. Search Engines: Information Retrieval in
Practice: International Edition, volume 54. Pear-
son Education.

Marie Dubremetz and Joakim Nivre. 2015. Rhetor-
ical Figure Detection: the Case of Chiasmus. In
Proceedings of the Fourth Workshop on Computa-
tional Linguistics for Literature, pages 23–31, Den-
ver, Colorado, USA. Association for Computational
Linguistics.

Marie Dubremetz and Joakim Nivre. 2016. Syntax
Matters for Rhetorical Structure: The Case of Chias-
mus. In Proceedings of the Fifth Workshop on Com-
putational Linguistics for Literature, pages pages
47–53, San Diego, California,USA. Association for
Computational Linguistics.

Marie Dubremetz. 2013. Vers une identifica-
tion automatique du chiasme de mots. In Actes
de la 15e Rencontres des Étudiants Chercheurs
en Informatique pour le Traitement Automatique
des Langues (RECITAL’2013), pages 150–163, Les
Sables d’Olonne, France.

Jonathan Dunn. 2013. What metaphor identification
systems can tell us about metaphor-in-language. In
Proceedings of the First Workshop on Metaphor in
NLP, pages 1–10, Atlanta, Georgia. Association for
Computational Linguistics.

Bernard Dupriez. 2003. Gradus, les procédés
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