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Abstract

Lexical information is an important fea-
ture in syntactic processing like part-of-
speech (POS) tagging and dependency
parsing. However, there is no such in-
formation available for out-of-vocabulary
(OOV) words, which causes many clas-
sification errors. We propose to replace
OOV words with in-vocabulary words that
are semantically similar according to dis-
tributional similar words computed from a
large background corpus, as well as mor-
phologically similar according to common
suffixes. We show performance differ-
ences both for count-based and dense neu-
ral vector-based semantic models. Fur-
ther, we discuss the interplay of POS and
lexical information for dependency pars-
ing and provide a detailed analysis and a
discussion of results: while we observe
significant improvements for count-based
methods, neural vectors do not increase
the overall accuracy.

1 Introduction

Due to the high expense of creating treebanks,
there is a notorious scarcity of training data for
dependency parsing. The quality of dependency
parsing crucially hinges on the quality of part-
of-speech (POS) tagging as a preprocessing step;
many dependency parsers also utilize lexicalized
information, which is only available for the train-
ing vocabulary. Thus errors in dependency parsers
often relate to OOV (out of vocabulary, i.e. not
seen in the training data) words.

While there has been a considerable amount of
work to address the OOV problem with continuous
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word representations (see Section 2), this requires
a more complex model and hence, increases train-
ing and execution complexity.

In this paper, we present a very simple yet effec-
tive way of alleviating the OOV problem to some
extent: we use two flavors of distributional sim-
ilarity, computed on a large background corpus,
to replace OOV words in the input with semanti-
cally or morphologically similar words that have
been seen in the training, and project parse labels
back to the original sequence. If we succeed in
replacing OOV words with in-vocabulary words
of the same syntactic behavior, we expect the tag-
ging and parsing process to be less prone to errors
caused by the absence of lexical information.

We show consistent significant improvements
both for POS tagging accuracy as well as for La-
beled Attachment Scores (LAS) for graph-based
semantic similarities. The successful strategies
mostly improve POS accuracy on open class
words, which results in better dependency parses.
Beyond improving POS tagging, the strategy also
contributes to parsing accuracy. Through exten-
sive experiments — we show results for seven dif-
ferent languages — we are able to recommend one
particular strategy in the conclusion and show the
impact of using different similarity sources.

Since our method manipulates the input data
rather than the model, it can be used with any
existing dependency parser without re-training,
which makes it very applicable in existing envi-
ronments.

2 Related Work

While part-of-speech (POS) tags play a major role
in detecting syntactic structure, it is well known
(Kaplan and Bresnan (1982) inter al.) that lexical
information helps for parsing in general and for
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dependency parsing in particular, see e.g. Wang et
al. (2005).

In order to transfer lexical knowledge from the
training data to unseen words in the test data, Koo
et al. (2008) improve dependency parsing with
features based on Brown Clusters (Brown et al.,
1992), which are known to be drawing syntactic-
semantic distinctions. Bansal et al. (2014) show
slight improvements over Koo et al. (2008)’s
method by tailoring word embeddings for depen-
dency parsing by inducing them on syntactic con-
texts, which presupposes the existence of a depen-
dency parser. In more principled fashion, Socher
et al. (2013) directly operate on vector representa-
tions. Chen et al. (2014) address the lexical gap
by generalizing over OOV and other words in a
feature role via feature embeddings. Another ap-
proach for replacing OOV words by known ones
using word embeddings is introduced by Andreas
and Klein (2014).

All these approaches, however, require re-
training the parser with these additional features
and make the model more complex. We present a
much simpler setup of replacing OOV words with
similar words from the training set, which allows
retrofitting any parser with our method.

This work is related to Biemann and Riedl
(2013), where OOV performance of fine-grained
POS tagging has been improved in a similar fash-
ion. Another similar work to ours is proposed
by Huang et al. (2014), who replace OOV named
entities with named entities from the same (fine-
grained) class for improving Chinese dependency
parsing, which largely depends on the quality of
the employed NER tagger and is restricted to
named entities only. In contrast, we operate on
all OOV words, and try to improve prediction on
coarse universal POS classes and universal depen-
dencies.

On a related note, examples for a successful ap-
plication of OOV replacements is demonstrated
for Machine Translation (Gangadharaiah et al.,
2010; Zhang et al., 2012).

3 Methodology

For replacing OOV words we propose three strate-
gies: replace OOV words by most similar ones us-
ing distributional semantic methods, replace OOV
words with words with the most common suffix
and replacing OOV words before or after POS tag-
ging to observe the effect on dependency parsing.

The influence of all components is evaluated sepa-
rately for POS tagging and dependency parsing in
Section 5.

3.1 Semantic Similarities

In order to replace an OOV word by a similar in-
vocabulary word, we use models that are based on
the distributional hypothesis (Harris, 1951). For
showing the impact of different models we use a
graph-based approach that uses the left- and right-
neighbored word as context, represented by the
method proposed by Biemann and Riedl (2013),
and is called distributional thesaurus (DT). Fur-
thermore, we apply two dense numeric vector-
space approaches, using the skip-gram model
(SKG) and CBOW model of the word2vec im-
plementation of Mikolov et al. (2013).

3.2 Suffix Source

In addition, we explore replacing OOVs with
words from the similarity source that are contained
in the training set and share the longest suffix.
This might be beneficial as suffixes reflect mor-
phological markers and carry word class informa-
tion in many languages. The assumption here is
that for syntactic dependencies, it is more crucial
that the replacement comes from the same word
class than its semantic similarity. This also serves
as a comparison to gauge the benefits of the simi-
larity source alone. Below, these experiments are
marked with suffix, whereas the highest-ranked re-
placement from the similarity sources are marked
as sim. As a suffix-only baseline, we replace OOVs
with its most suffix-similar word from the train-
ing data, irrespective of its distributional similar-
ity. This serves as a sanity check whether semantic
similarities are helpful at all.

3.3 Replacement Strategies regarding POS

We explore two different settings for dependency
parsing that differ in the use of POS tags:

(1) oTAG: POS-tag original sequence, then re-
place OOV words, retaining original tags for
parsing;

(2) reTAG: replace OOV word, then POS-tag the
new sequence and use the new tags for pars-
ing.

The oTAG experiments primarily quantify the
sensitivity of the parsing model to word forms,
whereas reTag assess the potential improvements
in the POS tagging.



3.4 Replacement Example

As an example, consider the automatically POS-
tagged input sentence “We/P went/V to/P the/D
aquatic/N park/N” where “aquatic” is an OOV
word. Strategy oTAG sim replaces “aquatic” with
“marine” since it is the most similar in-vocabulary
word of “aquatic”. Strategy oTAG suffix replaces
it with “exotic” because of the suffix “tic” and its
similarity with “aquatic”. The suffix-only baseline
would replace with “automatic” since it shares the
longest suffix of all in-vocabulary words. The re-
TAG strategy would then re-tag the sentence, so
the parser will e.g. operate on “We/P went/V to/P
the/D marine/ADJ park/N”. Table 1 shows an ex-
ample for different similarity-based strategies for
English and German'. We observe that the sim
strategy returns semantically similar words that do
not necessarily have the same syntactic function as
the OOV target.

\ sim \ sim&suffix
English OOV: upgraded
Suffix-only paraded
CBOW upgrade downloaded
SKG upgrade expanded
DT expanded updated
German OOV: Nachtzeit
Suffix-only Pachtzeit
CBOW tagsiiber Ruhezeit
SKG tagsiiber Echtzeit
DT Jahreswende | Zeit

Table 1: Here we show replacements for different
methods using different strategies.

4 Experimental Settings

Here we describe the methods, background cor-
pora used for computing similarities and all further
tools used for the experiments. With our experi-
ments, we target to address the following research
questions:

e Can syntactic processing benefit from OOV
replacement, and if so, under what strategies
and conditions?

o Is there a qualitative difference between sim-
ilarity sources with respect to tagger/parser
performance?

I'Translations: Nachtzeit = night time; tagsiiber = during

the day; Pachtzeit = length of lease; Ruhezeit = downtime;
Echtzeit = real time; Jahreswende = turn of the year
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e Are there differences in the sensitivity of
parsing inference methods to OOV replace-
ment?

4.1 Similarity Computations

We are using two different approaches to deter-
mine semantic similarity: a symbolic, graph-based
framework for distributional similarity and a neu-
ral language model that encodes words in a dense
vector space.

Graph-based Semantic Similarity

The computation of a corpus-based distributional
thesaurus (marked as DT below) is performed fol-
lowing the approach by Biemann and Riedl (2013)
as implemented in the JoBimText> software. For
computing similarities between words from large
unlabeled corpora, we extract as word-context
the left and right neighboring words, not using
language-specific syntactic preprocessing. Words
are more similar if they share more of their most
salient 1000 context features, where salient con-
text features are ranked by Lexicographer’s Mu-
tual Information (LMI), (Evert, 2005). Word sim-
ilarity in the DT is defined as the count of overlap-
ping salient context features. In addition we prune
similar words® below a similarity threshold of 5.

In order to use such a DT to replace an OOV
word, we look up the most similar terms for the
OOV word and choose the highest-ranked word
from the training data vocabulary, respectively the
most similar word with the longest common suf-
fix.

Neural Semantic Similarity

As an alternative similarity we run word2vec
with default parameters (marked as w2v below)
(Mikolov et al., 2013) on our background corpora,
obtaining 200-dimensional dense vector embed-
dings for all words with a corpus frequency larger
than 5. We conduct this for both flavors of w2v:
skipgram, marked as SKG below (based on posi-
tional windows) and CBOW (based on bag of word
sentential contexts).

Following the standard approach, we use the co-
sine between word vectors as a similarity measure:
for each OOV, we compare vectors from all words
in the training set and pick the word that corre-
spond to the most similar vector as a replacement,

2http://www. jobimtext .org

3we have tried a few thresholds in preliminary experi-
ments and did not find results to be very sensitive in the range
of 2-20



respectively the most similar word of those with
the longest common suffix.

4.2 Corpora for Similarity Computation

As we perform the experiments on various lan-
guages, we will compute similarities for each lan-
guage separately. The English similarities are
computed based on 105M sentences from the
Leipzig corpora collection (LCC) (Richter et al.,
2006) and the Gigaword corpus (Parker et al.,
2011). The German (70M) and the Hindi (2M)
corpora are extracted from the LCC as well. We
compute similarities on 19.7M sentences of Ara-
bic, 259.7M sentences of French and 128.1M sen-
tences of Spanish extracted from web corpora*
provided by Schifer and Bildhauer (2013). For the
computation of the Swedish similarities we use a
60M-sentence news corpus from Spraakbanken.’
In summary, all background corpora are in the or-
der of about 1 Gigaword, except the Hindi corpus,
which is considerably smaller.

4.3 Dependency Parser and POS Tagger

For the dependency parsing we use the implemen-
tation of the graph-based dependency parser pro-
vided in Mate-tools (Bohnet, 2010, version 3.6)
and the transition-based Malt parser (Nivre, 2009,
version 1.8.1). Graph-based parsers use global in-
ference to construct the maximum spanning de-
pendency tree for the input sequences. Contrary,
the greedy algorithm in the transition-based parser
uses local inference to predict the dependency
tree. The parsing models for both parsers, Mate-
tools and Malt parser, are optimized using cross-
validation on the training section of the treebank®.
We train the dependency parsers using POS tags
(from the Mate-tools tagger) predicted using a 5-
fold cross-validation. The evaluation of the parser
accuracies is carried out using MaltEval. We re-
port labeled attachment score (LAS) for both over-
all and on OOV token positions.

4.4 Treebanks

For training and testing we apply the treebanks
(train/dev/test size in tokens in parentheses) from
the Universal Dependencies project (Nivre et al.,

‘http://corporafromtheweb.org/

Shttp://spraakbanken.gu.se

6Using Malt Optimizer (Ballesteros and Nivre, 2016) for
the Malt parser; for Mate-tools, we tuned the parameter that
represents the percentage of non-projective edges in a lan-
guage, which matches the parameters suggested by Bohnet
(2010).
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2016, version 1.2 released November 15th, 2015)
for Arabic, English, French, German, Hindi, Span-
ish and Swedish. Tagset definitions are available
online.”

5 Results

In this section, we report experimental results and
compare them to the baseline without OOV re-
placement. All statistical significance tests are
done using McNemar’s test. Significant improve-
ments (p < 0.05) over the baseline without OOV
replacement are marked with an asterisk (*), sig-
nificant performance drops with a hashmark (#)
and the best result per experiment is marked in
bold.

5.1 Results for POS Tagging

In Table 2 we show overall and OOV-only POS
tagging accuracies on the respective test set for

seven languages using similarities extracted from
the DT.

LANG |OOV| baseline suffix only DT sim DT suffix
%| all OOV| all OOV all OOV | all OOV
Arabic | 10.3|98.53 94.01|97.82# 87.44# ||98.49# 93.67#|98.52 93.91
English | 8.0/93.43 75.39|93.09# 72.03# ||93.82* 78.67*|93.61* 76.75
French 5.3195.47 83.29|95.17# 78.30#||95.68* 86.28*%|95.73* 86.78*
German | 11.5/91.92 85.63(90.88# 77.70#||91.84 85.32 |91.92 85.68
Hindi 4.4195.35 76.41|95.07# 71.27#|(95.41 77.57 |95.44* 78.00*
Spanish | 6.9/94.82 79.62| 95.00 81.17 ||95.45* 86.36*95.49% 85.84*
Swedish| 14.3195.34 89.80|94.78# 86.04 #|/95.57* 90.88*|95.82* 92.40*

Table 2: Test set overall OOV rates, POS accuracy
in % for baseline, suffix-only baseline, DT simi-
larity and suffix replacement strategies for seven
languages.

Unsurprisingly, we observe consistent perfor-
mance drops, mostly significant, for the suffix-
only baseline. For all languages except German,
the DT-based replacement strategies result in sig-
nificant improvements of either overall accuracy,
OOV accuracy or both. In most experiments,
the DT suffix replacement strategy scores slightly
higher than the DT sim strategy.

Table 3 lists POS accuracies for three lan-
guages for similarities from the w2v neural lan-
guage model in its SKG and CBOW flavors us-
ing the cosine similarity. In contrast to the DT
-based replacements, there are no improvements
over the baseline, and some performance drops are
even significant. Also replacing the cosine similar-
ity with the Euclidian distance did not change this

"http://universaldependencies.org/



SKG CBOW
sim suffix sim suffix
all OOV | all OOV all OOV | all OOV
Arabic |98.46# 93.39#|98.50# 93.73#|98.48# 93.60#(98.52 93.94
English [93.10# 72.29#| 93.57 76.31 ||93.24# 73.91 (93.52 75.70

German |90.99# 77.65#|91.62# 83.61#|| 91.78 83.92#|91.91 85.43

LANG

Table 3: Test set POS accuracies for w2v-based
model’s similarity and suffix replacement strate-
gies for three languages.

observation. The suffix-based strategy seems to
work better than the similarity-based strategy also
for the w2v-based replacement.

It seems that count-based similarities perform
better for the replacement. Thus, we did not ex-
tend the experiments with w2v to other languages.

5.2 Results for Dependency Parsing

As a general trend for all languages (see Ta-
ble 4), we observe that the graph-based parser
achieves higher LAS scores than the transition-
based parser.

However, the optimal replacement strategy de-
pends on the language for both parsers. Only for
Swedish (reTAG DT suffix) and Spanish (reTAG
DT sim), the same replacements yield the highest
scores both on all words and OOV words for both
parsers. Using the modified POS tags (reTAG)
results in improvements for the transitions-based
parser for 4 languages and for 5 languages using
the graph-based parser. Whereas the results im-
prove only marginal when using the reTAG strat-
egy as can be observed from Table 4, most im-
provements are significant.

Using word embeddings for the reTAG strat-
egy (see Table 5), we again observe performance
drops, except for Arabic.

Following the 0TAG strategy, we observe signif-
icant improvements on German and Arabic for the
CBOW method. For German the best performance
is obtained with the SKG model (74.47*) which
is slightly higher then the suffix only replacement,
which achieves high scores in the 0TAG setting.
Whereas for POS tagging the suffix-based DT re-
placement mostly results in the highest scores,
there is no clear recommendation for a replace-
ment strategy for parsing all languages. Looking
at the average delta (A) values for all languages
(see Tables 4 and 5) in comparison to the baseline,
the picture is clearer: here, for both parser the re-
TAG DT suffix strategy yields the highest improve-
ments and the CBOW and SKG methods only
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result in consistent improvements for the oTAG
strategy. Further average performance gains are
observed for the CBOW suffix-based method us-
ing the reTAG strategy.

To sum up, we have noted that the D7-based
strategies seem more advantageous than the w2v-
strategies across languages. Comparing the differ-
ent strategies for using DT’s, we observe an advan-
tage of reTAG over oTAG and a slight advantage
over suffix vs. sim. Most notably, DT reTAG suf-
fix is the only strategy that never resulted in a sig-
nificant performance drop on all datasets for both
parsers and yields the highest average A improve-
ment of 1.50. Given its winning performance on
the POS evaluation, we recommend to use this
strategy.

6 Data Analysis
6.1 Analysis of POS Accuracy

Since POS quality has a direct influence on parser
accuracy, we have analyzed the two reTag strate-
gies suffix and sim for our three similarity sources
(DT, SKG, CBOW) in more detail for German and
English by comparing them to the 0TAG baselines.
In general, differences are mostly found for open
word classes such as ADJ, ADV, NOUN, PROPN
and VERB, which naturally have the highest OOV
rates in the test data. In both languages, the DT-
based strategies supply about 84% of the replace-
ments of the w2y strategies.

For German, only the DT suffix-based replace-
ments led to a slight overall POS improvement.
All similarity sources improved the tagging of
NOUN for suffix, but not for sim. All replacements
led to some losses in VERBSs, with SKG losing the
most. Both w2y sources lost more on AD J than the
DT, which also showed the largest improvements
on ADV. In addition, we analyzed the POS classifi-
cation only for tokens that could be replaced both
by the DT and the w2v-methods. For these tokens,
the SKG method can not surpass the 0TAG perfor-
mance. Furthermore, for DT and CBOW, the suffix
strategies achieve slightly lower scores than sim
(0.18%-0.63%). On the tokens where all methods
propose replacements, the DT results in better ac-
curacy (86.00%) than CBOW (85.82%).

For English, the picture is similar but in gen-
eral the improvement of the scores is larger: while
the DT sim led to the largest and the DT suffix
to the second-largest overall improvements, the
suffix-based w2v-strategies can also improve POS



oTAG reTAG
baseline suffix only DT sim DT suffix suffix only DT sim DT suffix
Language || all OOV || all (0]6)% all ooV all ooV all ooV all (0]6)% all ooV
H Graph-based Parser
Arabic 75.60 5690 || 75.61  57.76* | 75.74*% 58.18%* | 75.71* 58.31* || 74.54# 52.84# | 75.75*% 58.18* | 75.72*% 58.31*
English 79.57 63.64 || 79.55 < 63.77 | 79.64  64.38* | 79.54  64.20 79.24# 6237 | 79.95% 66.17*% | 79.78* 65.30*
French 77.76 6459 || 7791 6534 | 77.61 64.09 | 77.79  64.84 7759 6459 | 77.59 64.09 | 7797 65.84
German 7424 68.93 || 74.43* 69.66* | 7427 69.14 | 7421  69.24 T2.26# 63.43# | 74.13  68.10 | 7422 69.09
Hindi 87.67 72.00 || 87.76* 7274 | 87.78* 72.80* | 87.71  72.86* || 87.49# 70.60 | 87.67 72.62 | 87.69 7274
Spanish 80.02 63.56 || 80.07  65.28* | 80.32* 67.18* | 80.30* 66.84* || 79.38# 64.59 | 80.41* 68.91* | 80.27  68.05*
Swedish 7713 70.70 || 77.16  70.87 | 77.44* 71.07 | 77.31*% 71.03 76.55# 69.12# | 77.62* 71.96* | 77.65* 72.05%
A all 0.00  0.00 0.10 0.72 0.10 0.89 0.08 0.93 -0.79 -1.89 0.02 0.95 0.12 1.35
H Transition-based Parser
Arabic 72.63 52.81 || 72.71  53.67 | 72.779*% 53.94% | 72.75*% 53.91* || 7T1.75# 48.61# | 72.77* 53.84* | 72.74* 53.84*
English 77.26 61.84 || 77.15# 61.67 | 77.16 61.84 | 77.30 62.41 76.85# 60.14# | 77.32  62.33 | 77.53* 63.29*
French 7425 63.09 || 7437 63.84 | 7438 64.09 | 7424 62.84 7414 6234 | 74.59* 64.59 | 74.69* 64.09
German 70.29 63.02 || 70.24 6297 | 70.22 62.76 | 70.29  63.07 67.97# 56.38# | 70.21  62.19 | 70.16  62.34
Hindi 84.08 66.14 || 83.99# 65.16 | 84.16% 67.24* | 84.14* 67.05* || 83.78# 63.08# | 84.10 66.99 | 84.14  66.99
Spanish 7539 57.86 || 75.52  59.59* | 75.67* 59.93* | 7538  59.07 75.19  60.10 | 76.10% 63.90*% | 75.68  62.52*
Swedish 7345 66.59 || 7348 6646 | 73.52 66.66 | 73.60* 67.02 T291# 64.61# | 74.01* 68.27* | 74.09* 68.53*
A all 0.00  0.00 0.02 0.36 0.11 0.70 0.02 0.53 -0.76 -2.10 0.12 1.01 0.20 1.50

Table 4: LAS scores for the parsing performance on the test sets when replacing OOV words with a DT.

Additionally, we present A values for all languages.

oTAG reTAG
similarity suffix similarity suffix
SKG CBOW SKG CBOW SKG CBOW SKG CBOW
Language | all OOV all OO0V |all OOV all OOV ||all OOV all OOV |all OOV all (6]0)%
Graph-based Parser
Arabic 75.62 58.00% 75.71% 57.97*%|75.67 58.62% 75.73* 58.49%|75.54 57.66% 75.69 57.83*%|75.65 58.42% 75.73* 58.49*
English |79.55 63.85 79.57 64.16 [79.58 63.99 79.61 64.03 ||78.86# 59.97# 79.64 64.12 |79.38 62.81 79.57 64.03
German |74.47% 69.55% 74.39 69.29 |74.39*% 69.35 74.40*% 69.24 ||72.82# 64.26# 73.70# 66.60#|74.06 67.95 74.14 68.41
Aall 008 064 008 083 | 0.09 0.65 0.11 0.76 ||-0.73 -253 -0.11 -0.10 |-0.13 -0.31 0.0l 049
Transition-based Parser
Arabic 72.62 53.67*% 72.65 53.60%|72.88% 54.80% 72.72 53.67%|/72.60 53.46 72.64 53.49%|72.85% 54.53* 72771 53.63*
English |77.10# 61.49 7724 62.06 |77.17 6228 77.28 62.46%|/76.54# 57.78# 7722 61.84 |77.07 60.58 77.24 62.37
German |70.19 63.07 70.22 63.38 |70.17 63.54 70.36 63.49 |/68.90# 57.62# 69.48# 60.68#|69.98# 62.09 70.06 62.60
Aall -0.09 0.19 001 098 |-0.02 046 0.06 065 ||-0.71 -294 -0.09 -0.16 |-028 -0.55 0.06 0.31

Table 5: LAS scores for the parsing performance replacing OOV words with w2v and A values.

tagging quality, whereas the sim w2v-strategies de-
crease POS accuracy. Here, we see improvements
for ADJ for all but the sim-based w2v-strategies,
improvements on NOUN for all but SKG suffix,
and for all suffix strategies for VERB. Inspecting
again the words that can be replaced by all re-
placement strategies we observe the highest accu-
racy improvement using the suffix strategies: here
the scores outperform the baseline (78.07%) up
to 84.00% using the DT and up to 80.90% with
CBOW.

The largest difference and the decisive factor
for English and German happens on the PROPN
tag: Whereas DT sim and SKG suffix only result
in small positive changes, all other strategies fre-
quently mis-tag PROPN as NOUN, increasing this
error class by a relative 15% — 45%. These are
mostly replacements of rare proper names with
rare nouns, which are less found in DT replace-
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ments due to the similarity threshold. Regarding
the other languages, we found largest improve-
ments in French for NOUN for the DT sim replace-
ment, coupled with losses on PROPN. Both DT
strategies improved VERB. For Spanish largest im-
provements were found in ADJ, NOUN and PRON
for both DT strategies. Small but significant im-
provements for Hindi were distributed across parts
of speech, and for Arabic, no sizeable improve-
ments were observed.

Only for Arabic we observe a general perfor-
mance drop when replacing OOV words. Inspect-
ing the OOV words, we detect that around 97%
of these words have been annotated as X (other).
Overall, the test set contains 8.4% of such anno-
tations, whereas X is rarely encountered in our
other languages. Since the baseline performance
for Arabic POS is very high, there is not much to
improve with replacements.



6.2 Analysis of Parsing Accuracy by Relation
Label

We have conducted a differential analysis compar-
ing LAS F-scores on all our languages between
the baseline and the different replacement options,
specifically for understanding the effects of DT re-
TAG strategies. Focusing on frequent dependency
labels (average occurrence: 4% — 14%), we gain
improvements for the relations conj, amod and
case across all test sets. Except for Hindi, the
LAS F1 score increases up to 0.6% F1 for case
relations, which is the relation between preposi-
tion (or post-positions) and the head noun of the
prepositional phrase. For the amod relation that
connects modifying adjectives to nouns, we ob-
serve a +0.5% — +1% improvement in F-score
for all languages except Hindi and French, cor-
responding largely to the increased POS accuracy
for nouns and adjectives.

For English, we found most improvements in
the relations compound (about +1 F1) and name
(+0.5 — +5.0 F1) for both parsers, while rela-
tions cop and xcomp were recognized less pre-
cisely (-0.2 — -0.9 F1). The graph-based parser
also improves largely in appos (+3.5 — +4.2
F1) and nmod:npmod (+5.2 — +6.5 F1), while
the transition-based parser sees improvements in
iobj (+3.8 — +5.1 F1) and neg (+1.0 F1). For
German, the case relation improves for both
parsers with +0.2 — +0.6 F1. The graph-based
parser improves on auxpass (+1.1 — 1.4 F1)
and conj (+0.4 — +0.9 F1). Whereas pinpointing
systematic differences between the two parsers is
hardly possible, we often observe that the graph-
based parser seems to perform better on rare re-
lations, whereas the transition-based parser deals
better with frequent relations.

As with the overall evaluation, there is no clear
trend for the suffix vs. the sim strategy for single
relations, except for graph-based German dob
and iobj, which stayed the same or performed
worse for the DT suffix reTAG (0 — -0.9 F1), but
improved greatly for DT sim reTAG (+0.9 — +2.4
F1).

In summary, OOV replacement seems to ben-
efit dependency parsing mostly on relations that
involve open class words, as well as relations
that need semantic information for disambigua-
tion, e.g. case, dobj and iobj.
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Figure 1: Learning curve of LAS for OOV words
for English development set.

7 Discussion

In the following we want to discuss about select-
ing a recommendation for the OOV replacement
and will highlight the differences we observed in
our experiments between graph-based and dense-
vector-based similarities.

7.1 Recommendations for OOV Replacement

Our experiments show that a simple OOV replace-
ment strategy can lead to significant improvements
for dependency parsing across typologically dif-
ferent languages. Improvements can be partially
attributed to gains in the POS tagging quality espe-
cially with the suffix-based replacement strategy,
and partially attributed to improved use of lexical-
ized information from semantic similarity.

Overall, the strategy of replacing OOV words
first and POS-tagging the sequence on the basis of
the replacements (reTAG) shows to be more effec-
tive than the other way around. While improve-
ments are generally small yet significant, we still
believe that OOV replacement is a viable strat-
egy, especially given its simplicity. In learning
curve experiments, as exemplified in Figure 1, we
found the relative effect to be more pronounced for
smaller amounts of training, despite having less
in-vocabulary material to choose from. Thus, our
approach seems especially suited for low-resource
languages where labeled training material is noto-
riously scarce.

The question whether to use DT suffix or DT sim
as replacement strategy for dependency parsing is
not easily answered — while DT suffix shows the
best overall improvements across the datasets, DT



sim performs slightly better on Arabic and English
graph-based parsing and English POS tagging.

7.2 On Differences between Graph-Based
and Dense-Vector Similarity

What would be needed to fruitfully utilize the pop-
ular neural language model w2v as a similarity
source, and why does the graph-based DT seems
to be so much more suited for OOV replacement?
From above analysis and from data inspection, we
attribute the advantage of DT to its capability of
NOT returning replacements when it has too low
confidence, i.e. no in-vocabulary word is found
with a similarity score of 5 or more. In contrast,
vector spaces do not provide an interpretable no-
tion of similarity/closeness that can be uniformly
applied as a similarity threshold: we have com-
pared cosine similarities of token replacements
that lead to improvements, no changes and drops,
and found no differences between their average
values. A further difference is the structure of
the vector space and the DT similarity rankings:
Whereas the DT returns similar words with a fre-
quency bias, i.e. rather frequent words are found
in the most similar words per OOV target, the vec-
tor space does not have such frequency bias and,
since there are more rare than frequent words in
language, returns many rare words from the back-
ground corpus®. This effect can be alleviated to
some extent when applying frequency thresholds,
but is in turn aggravated when scaling up the back-
ground corpus. Thus, a condition that would only
take the top-N most similar words from the back-
ground collection into account for expansions is
also bound to fail for w2v. The only reason-
able mechanism seems to be a background corpus
frequency threshold on the in-vocabulary word.
However, even when comparing only on the po-
sitions where both DT and w2v returned replace-
ments, we still find DT replacements more advan-
tageous. Inspection revealed that while many re-
placements are the same for the similarity sources,
the DT replacements more often stay in the same
word class (cf. Table 1), e.g. regarding conjuga-
tive forms of verbs and regarding the distinction
between common and proper nouns.

8we have seen this effect repeatedly and consistently

across corpora, languages and parameters
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8 Conclusion

In this paper, we have shown that syntactic prepro-
cessing, both POS tagging and dependency pars-
ing, can benefit from OOV replacement. We have
devised a simple yet effective strategy (DT suffix
reTAG) to improve the quality of universal depen-
dency parsing by replacing OOV words via se-
mantically similar words that share a suffix, sub-
sequently run the POS tagger and the dependency
parser over the altered sequence, and projecting
the labels back to the original sequence. In these
experiments similar words from a count-based dis-
tributional thesaurus are more effective than the
dense numeric w2v approach.

In future work, we will apply our method for
other types of lexicalized parsers, such as con-
stituency grammar and combinatory categorial
grammar parsers, as well as examine the influence
of OOVs on semantic tasks like semantic role la-
beling or frame-semantic parsing.
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