
Proceedings of the 2nd Workshop on the Use of Computational Methods in the Study of Endangered Languages, pages 156–164,
Honolulu, Hawai‘i, USA, March 6–7, 2017. c©2017 Association for Computational Linguistics

Developing a Suite of Mobile Applications
for Collaborative Language Documentation

Mat Bettinson1 and Steven Bird2,3

1Department of Linguistics, University of Melbourne
2Department of Computing and Information Systems, University of Melbourne
3International Computer Science Institute, University of California Berkeley

Abstract

Mobile web technologies offer new
prospects for developing an integrated
suite of language documentation software.
Much of this software will operate on
devices owned by speakers of endangered
languages. We report on a series of pro-
totype applications that support a range
of documentary activities. We present
ongoing work to design an architecture
that involves reusable components that
share a common storage model and
application programming interface. We
believe this approach will open the way
for a suite of mobile apps, each having a
specific purpose and audience, and each
enhancing the quality and quantity of
documentary products in different ways.

1 Introduction

Documenting a language calls for a substantial
collection of transcribed audio to preserve oral
literature, epic narratives, procedural knowledge,
traditional songs, and so on. Carrying out this
program at scale depends on effective collabora-
tion with speech communities. This collaboration
spans the documentary workflow, starting with
raising awareness and recruiting participants, fol-
lowed by the core work of recording, transcribing
and interpreting linguistic events, and finally the
processes of preservation and access. The collab-
oration goes beyond individual workflow tasks to
collaborative management, whereby the language
community – as the producers and consumers of
the material – help to shape the work.

Our vision is for a suite of applications sup-
porting a variety of workflows, and contributing to
a common store of language documentation, de-
signed to support the kinds of remote and long-
distance collaborations that arise when working

with endangered languages. Emerging web tech-
nologies and proliferating mobile devices open the
door to this future. Creating reusable components
and a common application programming interface
(API) will accelerate the process.

Instead of seeking consensus about a single doc-
umentary workflow enshrined in monolithic soft-
ware, we envisage diverse workflows supported
by multiple applications, built and rebuilt from
shared components as local requirements evolve.
Linguists should be able to customise an app by
tinkering with a top level page, to make changes
like moving a consent process from before to af-
ter a recording, or replacing the language selec-
tion component with a fixed choice, or requiring
not just a portrait of the speaker but a second land-
scape view of the context in which a recording was
made. However, rather than design the whole in-
frastructure, we have taken a bottom-up approach,
developing components and specialised apps that
help to clarify the requirements of the API.

This paper is organised as follows. First, we dis-
cuss the state of the art in section 2. Then in sec-
tion 3 we describe the evolution of our thinking
through a series of prototype applications. Next,
in section 4, we discuss the data requirements for
apps and their constituent components based on
our prototyping experience, and suggest a com-
mon interface of components. Finally, in section 5
we describe further work in support of our goal
of establishing a suite of interconnected language
documentation applications and lay out our vision
for a common language data API.

2 Mobile Apps for Language
Documentation

Digital tools are widely used in documentary
workflows, but they often require specialised train-
ing and are platform specific. In recent years
there has been growing awareness of the impor-
tance of collaborating with language maintenance

156

Figure 1: Aikuma-NG beta transcription web app, available from the Chrome Web Store

and revitalisation groups, particularly as we look
to sustain activity and relationships beyond the 3-
5 year window of a sponsored research project
(Austin, 2010). The shift to mobile technologies
is enabling this collaboration, and may ultimately
transform the practice of documentary linguistics
(Chatzimilioudis et al., 2012; Birch et al., 2013).

To date, dictionary and flashcard apps for lan-
guage learning have been the most popular. For
example, the suite of First Voices apps for iPhone
in Canada, and the ‘Ma’ series of dictionary apps
in Australia and the Pacific including Ma Iwaidja,
Ma Gamilaraay and Ma Bena Bena (Carew et al.,
2015). Taiwan’s Council of Indigenous People’s
e-dictionary includes 16 Formosan languages, via
a mobile-accessible website (Taiwan Indigenous
Council, 2016). Apps have been used to con-
duct experiments on dialect variation, capturing
linguistic judgements together with the location
(Goldman et al., 2014; Leemann et al., 2016). The
Android app Aikuma, a precursor of the work re-
ported here, allows users to collect and translate
spoken narrative (Bird et al., 2014).

Alongside these individual web apps there are
web application suites for language documenta-
tion. LDC webann is an online annotation frame-
work supporting remote collaboration (Wright
et al., 2012). LingSync supports collaborative
language documentation, and has been popular
in North American linguistic fieldwork training
(Cathcart et al., 2012). CAMOMILE is a frame-
work for multilingual annotation, not specifically
for linguistic research (Poignant et al., 2016).

These apps fall into two categories according to
their audience and purpose: research apps for lan-
guage documentation and ‘community’ apps for
language development. The developer profile and

funding sources are different, with research apps
generally developed in academia, and community
apps developed by commercial developers. This
situation points to an opportunity for collaboration
in the development of language apps that appeal to
a broader audience.

3 Prototype Apps

This section reports on the development of three
apps over the course of 2016. These apps rep-
resent an evolving understanding of methods to
achieve modularisation through reusable compo-
nents. One component in particular, for language
selection, is required for all apps. We discuss this
component in the context of each app to shed light
on some options concerning web technologies and
data models.

3.1 Transcription: Aikuma-NG

Aikuma-NG was developed to assess the feasibil-
ity of building mobile software using web tech-
nologies and delivering a similar feature set to
desktop software (Figure 1). The app’s audience
is people who wish to transcribe speech, partic-
ularly community members and laypersons. The
expected output is standard srt or vtt files for cap-
tioning YouTube videos. Aikuma-NG is a com-
munity app that requires no internet access post
install.

Aikuma-NG incorporates basic metadata man-
agement and the ability to perform oral respeak-
ing and translation, following the example of Say-
More (Hatton, 2013).

Aikuma-NG’s main feature is multi-tier tran-
scription, making use of the additional audio from
any respeaking or translation activities, in order

157

to create transcriptions of a source and its transla-
tions. The app exports to common video subtitling
formats as well as ELAN, and has been localised
into English, Korean and Chinese.

Aikuma-NG was built as a Chrome App, be-
cause this provided a means to deliver a desktop-
like experience. Chrome apps open full screen
with no URL bars and have unlimited local data
storage. We adopted the technology stack based
on the JavaScript Model-view-controller (MVC)
framework Angular and the UI framework An-
gular Material. The capacity for Angular Ma-
terial to deliver a high quality UI was key fac-
tor in this choice. The Wavesurfer waveform
visualisation package was adopted to handle vi-
sualisation and time series-based data structures
(WaveSurfer, 2017). We found limited support in
the JavaScript ecosystem for multimedia and local
storage, requiring us to gain a deep knowledge of
emerging web standards that had yet to be widely
adopted in third-party software. Key challenges
arose from acquiring experience of asynchronous
programming, poor support for modularisation in
the ES5 JavaScript and, in particular, the weak
inter-component communication model of Angu-
lar 1.

3.1.1 The language selector
MVC frameworks such as Angular allow us to
specify an app view with a template contain-
ing custom HTML tags. Figure 2 depicts four
components in Aikuma-NG. An audio file visu-
aliser/player based on Wavesurfer, and three selec-
tor components based on the touch-friendly Ma-
terial Design UI to select languages, people and
customisable tags. These components are used in
a view template with markup as follows:

<ng-player ...></ng-player>
<ng-language-selector ...></ng-language-selector>
<ng-person-selector ...></ng-person-selector>
<ng-tag-selector ...></ng-tag-selector>

We chose the Angular and Angular Material-
based stack recognising that the well-documented
UI component examples represented a profes-
sional implementation of a UI, one that was recog-
nisable by millions of users of Google’s web tools
and Android platform. Material Design’s ”chip”
UI component was ideally suited to display a list
of arbitrary categories or labels such as languages
and tags. Angular Material’s documentation in-
cluded an implementation binding chips with text
input auto-complete. Thiw was a good fit to facil-

Figure 2: Aikuma-NG view from a template of
sub-components

itate rapid selection from thousands of language
names.

Experience from field testing showed that we
must also allow users to create arbitrary names
for their language. This is necessary to account
for their language being unknown, or their prefer-
ence to write the name of a language in another
language such as the dominant language in the re-
gion. The consequence is that we must allow for
auto complete over customised entries as well as
ISO693 categorised labels.

Typical data flow involves passing an array of
pre-populated languages to the component, if we
are restoring a previous UI. The component ac-
cesses a data service to retrieve a list of ISO693
languages and custom languages for the auto-
complete. Two-way data binding returned the data
to a parent component.

3.1.2 Key findings
Web technologies can be used to build a full fea-
tured desktop app, as demonstrated by the ongo-
ing popularity of Aikuma-NG. The Chrome App
platform worked well for this application, but just
months after the release, Google announced their
intent to retire Chrome Apps. We believe Aikuma-
NG can be implemented effectively as a progres-
sive web app. Rapid iteratation of UI designs in
the field is particularly valuable, allowing us to
find the best approach for our target audience.

3.2 AikumaLink: Task management
Aikuma-Link (Figure 3) is an online only research
app that allows the researcher audience to recruit
a remote participant to perform an activity of the
linguist’s choosing.

The app was motivated by the observation that
researchers often return from the field with data

158

(a) Task creation (b) Receiving a task

Figure 3: Aikuma-Link: Linguists define documentary tasks with supporting materials, the task is dis-
patched to participants to perform with a mobile app

that requires further interaction with native speak-
ers to become useful. The same app offers desktop
and mobile views and employed a real-time back
end as a service (BaaS) as a common data model.
The app was intended to investigate the ability of
web apps to virtually eliminate the ‘on-boarding’
cost of recruiting participants to use research soft-
ware.

Aikuma-Link is based on a process where the
researcher first defines a task such as translating
or respeaking audio recordings. From this task,
the app generates a URL link which the researcher
sends to the remote participant, typically by so-
cial media. Clicking the link on a phone launches
the Aikuma-Link mobile app, which invites their
participation and allows them to perform the pre-
scribed tasks. The resulting data is then returned
to the linguist. A stretch design goal is to facili-
tate crowdsourced experiments by crafting a single
link which can invite any number of participants to
perform the same activity.

3.2.1 The language selector
Material Design was originally chosen specifically
because it was touch-friendly for mobile devices.
Nevertheless, components based on text input (and
therefore virtual keyboards) and long lists of auto-
complete choices represent UI challenges of a dif-

ferent order to desktop. Where the component is
used for the desktop browser linguist view, it can
be used inline with many others because desktop
users have large displays and scrolling in accept-
able. For mobile, a component is better realised
as one step in a wizard-like approach of multiple
actions.

We were keen to improve upon inter-component
communication and migrating to the commercial
real-time backend Firebase turned out to be a
great boon. We experimented with an approach
where components accepted Firebase objects as
arguments, effectively passing the component the
means to read and write data to a specific database
schema defined by the parent component. The lan-
guage selector component was modified to read
the current state and bind UI elements directly to
the database.

In the following snippet, the language selector
controller is adding an object specifying a lan-
guage id directly to a Firebase array provided
via the Firebase SDK. The ‘then’ syntax is a
JavaScript asynchronous ‘promise’ pattern where
the following will be evaluated when the promise
to save the data is complete.
ctrl.selectedLanguagesFb.\$add({id: langId})
.then(function(ref) {

chip.saved = true
})

159

Figure 4: Zahwa Procedural Discourse App proto-
type: Users narrate while swiping through photos

The UI ”chip” saved property is set to true when
the Firebase database write is complete. The saved
property is used in the component template to ap-
ply a CSS class with the result that the chip colour
changes to provide a visual indication that a save
is complete.

The obvious issue with this component com-
munication pattern is that it locks in a particular
data system, or third-party vendor SDK in this
case. Ideally a component should accept and re-
turn stand-alone data structures and leave parent
components to decide how to retrieve and save
such data. This was a general problem with the the
current generation of MVC frameworks (Angular
1.x). We describe this pattern in the discussion of
the Zahwa app to follow.

3.2.2 Key findings
Aikuma-Link’s showed that, with care, web tech-
nologies could deliver a performant native app-
like experience on relatively low-end phones. The
link-share method of onboarding is promising and
opens up a number of possibilities for crowd-
sourced research. We found Firebase to be an
excellent solution for rapidly prototyping mobile
apps with collaborative data. Accounting for dif-
ferent sized displays, orientation changes and vir-
tual on-screen keyboards is a significant challenge
for mobile software development.

3.3 Zahwa: Procedural discourse

Zahwa is a community app (Figure 4) that has
users take a series of photos and short videos
from their device, then swipe through them while
recording a voice-over. The app as conceived and
designed with cooking recipes in mind but it is
broadly applicable to documenting of any proce-
dural discourse. Users who view the recipe, or
instructions for making craft, etc, are able to inter-

act with recipes, providing their own translation or
reusing the media set for their own version.

Zahwa is a fully-featured mobile app built with
web technologies (it is a progressive web app) and
with robust offline capabilities. We first built a
prototype out of a newer generation of our for-
mer framework but later adopted the Ionic 2 mo-
bile framework, and with it Angular 2 and the
Typescript variant of JavaScript. Migrating to this
framework meant that all UI components would
need to migrate from Angular Material to Ionic’s
native UI. Ionic offers both an iOS-like UI and
Material Design (Android).

Broadly speaking, the reasons for adopting of
Ionic 2 were threefold. First, Angular 2 brought
substantial improvements in the methods to de-
fine components and views (pages), and inter-
component communication. This virtually elimi-
nated a slew of performance and reliability issues
with Angular 1. Second, we realised that when
building a full-scale mobile app, we are less in-
terested in building common components for all
mobile apps where we ought to concentrate on
language documentation specific components. Fi-
nally, we found that Ionic had already demon-
strated, through their user community, a realisa-
tion of our own goal to expand the base of poten-
tial app developers.

Ultimately, adopting Ionic allowed us to be
more ambitious, and focus on technology compo-
nents and user interfaces specific to our domain
without needing to reinvent functionality that is
common across mobile apps. This win turned out
to be fortuitous because there was a substantial
engineering challenge ahead. We had previously
built offline-only and online-only apps, but had yet
to combine the two, to craft a collaborative app
that would use a network where available, while
allowing for meaningful app usage offline.

After determining that there are no good off-
the-shelf solutions, we retrofitted Zahwa with: of-
fline storage based on PouchDB, a new service
to synchronise local storage with Firebase, and a
caching service to support offline behavior. These
allow Zahwa to provide offline users with features
to find salient recipes, e.g. geographically nearby,
or use search such as languages and tags. The user
can indicate that they would like to download a
recipe when they have a connection. Creating new
recipes and translating cached recipes can be per-
formed offline. The work is sychronised when a

160

(a) Searching by Language (b) Editing Languages with Popover

Figure 5: Zahwa: The language selector component used in different contexts. A simplfied in-line search
mode and a more comprehensive popover mode to support the full range of the language selector’s
enhanced capabilities.

network reappears. Users may specify to limit this
to WiFi rather than cellular data.

Zahwa has been a helpful vehicle to prototype a
UI based on progressive enhancement of the data
around a core activity. Given an existing recipe,
community members may be motivated to trans-
late it into another language, or record a new ver-
sion of the same recipe by reusing the media. They
may be motivated to tag the images of a recipe,
contributing to an evolving lexicon. These en-
hancements may not be attractive to all users, but
one could explore gamification as a way to encour-
age users to perform such tasks.

3.3.1 The language selector
Zahwa offers a more comprehensive demonstra-
tion of the ways in which a component may be
utilised in different contexts within the same app
(Figure 5). Users can discover recipes by lan-
guage, even if offline, and mark the recipes for re-
trieval. The language selector in these cases sim-
ply presents chips to touch to select. With intel-
ligent context, most users do not need to use the
keyboard at all.

Mobile UIs should tend towards the minimal
until the user has indicated they wish to engage
in further detail. In Zahwa, the language selector
offers a minimal list of languages but upon user in-
teraction the component launches a pop up modal
UI that is able to utilise most of the displays real-
estate for the task at hand.

With there now being separate storage systems
at play, child components ought now to act on
pure data and let parent components load or save.
Angular 2’s component communication paradigm
urges one-way binding for data inputs and an
event-driven schema for data output as seen in this
example from Zahwa:
<lang-edit [languages]="recipe.languages"

(langsUpdated)="langsChanged(\$event)">
</lang-edit>

Zahwa’s atomic components are children of ac-
tivity components, usually represented as a page
view. An example of an activity/page compo-
nent is ‘new recipe’ and ‘recipe edit’. Activity
components create or modify higher order types,
or documents, assembled or edited from child
components. In the given example, the variable
recipe is of type Recipe, which must have a prop-
erty ‘languages’ of type Language. The function
call langsChanged() would update the ‘languages’
property of the recipe document and execute a ser-
vice call to persist the recipe to local and remote
storage. While these were prototype services in
Zahwa, this pattern corresponds well to more gen-
eralisable API calls as we’ll discuss in section 5.

3.3.2 Key findings
Many of the challenges we faced over a year of
development were challenges inherent in the state
of web technologies, particularly MVC frame-
works. Engineering software with the Ionic 2, An-
gular 2 and Typescript stack represents a dramatic

161

Figure 6: The ecosystem of a proposed Language Data API. Firebase is just one potential backend.

improvement at nearly every level, with fewer
‘gotchas’ requiring expert diagnostics. Ionic 2’s
definition of a ‘page’ as a type of component is a
helpful counterpart for the notion of a language
documentary activity combining several compo-
nents toward one goal. A shift away from UI im-
plementation details allowed us to focus on inter-
action design for higher level workflows.

4 A simple web component schema

We hope that the developers of language docu-
mentation technology will collaborate on a library
of documentary components specific to the do-
main of language documentation. Adopting clean
APIs on web-based components opens the door
for others to modify open source apps to meet
their requirements. Defining interfaces and pro-
viding a library of implementations is an effec-
tive way to build an open source community.1

Current-generation JavaScript MVC frameworks
offer a robust pattern for component communica-
tion based on attributes and event handelers passed
as attributes on HTML templates. This can be
demonstrated with this Angular 2 syntax example:
<type-select [input]="var" (output)="func($event)">
</type-select>

1This has been the model used in the computational lin-
guistics community which has developed the Natural Lan-
guage Toolkit (Bird et al., 2009).

We suggest a simple selector name constructed
from the name of a data type such as Language,
and an implementation specific label based on the
verb for the action such as ’select’. A example
selector name is language-edit. [input] represents
a one-way data binding from JavaScript variable
‘var’ of the type, e.g. Language. (output) speci-
fies a local function to be executed when the com-
ponent emits data. The function ‘func’ is passed
an argument ($event) of schema {type: [Type...]},
e.g. a single property of the named type, with a
value of an array of objects of this type. Occasion-
ally components need to emit data other than the
raw data type and those may be safely added as
custom properties of the object.

With Typescript, we define a type Language as
follows, noting that only ‘name’ is obligatory in
this type:

export interface Language {
name: string
id?: string
iso693?: string

}

A consequence of collaboration on shared com-
ponents will be less duplication of effort, more re-
liable implementations, and ultimately, better user
experiences and wider uptake of the software. Si-
multaneously, we lower the barrier to entry for
would-be language app developers.

162

5 Further Work

As we develop increasingly sophisticated apps, we
require increasingly sophisticated manipulation of
linguistic data. Supporting this in offline apps
leads to a requirement for a JavaScript implemen-
tation. The API should also be implemented out-
side of the JavaScript ecosystem to facilitate data
exchange and mobilising of data intensive capabil-
ities into mobile applications.

Implementation of an API can be seen as an
extension of defining language data types as the
common interface for components as discussed
earlier. We will develop the API as a JavaScript
library initially, for use across mobile apps and
server instances utilising NodeJS. Figure 6 illus-
trates the language data API in an ecosystem in-
cluding research tools in other domains.

Our aim is for this API to encourage collabo-
ration by facilitating data interchange between an
array of language documentation apps for differ-
ent audiences. A common API provides a gate-
way for other ecosystems to collect linguistic data
and to mobilise existing data to new audiences via
mobile devices.

6 Conclusion

In this paper, we have reported on our investi-
gation of web technologies to craft a series of
web and mobile apps in language documenta-
tion. We have shown with Aikuma-NG that
it is feasible to use these technologies to mi-
grate the well-established genre of audio transcrip-
tion with waveforms to platform-independent web
technologies. Aikuma-Link provides a glimpse of
new capabilities arising from the low onboarding
cost of mobile web apps, and the potential for a
new generation of crowdsourcing applications. Fi-
nally with Zahwa, we developed a complete mo-
bile app for a narrowly-defined linguistic task, and
supported the online-offline requirement of many
fieldwork situations.

Despite the inherent productivity gains of web
technologies, our prototyping experience was oc-
casionally frustrating due to the lack of matu-
rity of some common technologies. We initially
struggled to find a suitable pattern for compo-
nent modularisation, data interchange and online-
offline storage. However these common problems
were and remain the target of significant engineer-
ing efforts by major players and the current sit-
uation is already much improved. A significant

benefit of this prototyping work was reaching the
point where we could collaborate with our target
audience and deliver software people want to use.

There are many opportunities for collaboration
in this space of app development, to unite exist-
ing initiatives and communities, and to share im-
plementations. The work reported here has al-
ready served others as an effective starting point
for quickly developing new mobile apps. For those
who prefer to use other technologies, we neverthe-
less hope to collaborate on the design of a shared
implementation-independent language data API.
Our ultimate goal is to employ the web platform
to connect tools outside of the web genre, improv-
ing the flow of data and the production of language
documentation, while gaining rich new capabili-
ties we have yet to explore.

Acknowledgments

We are grateful for support from the ARC Center
of Excellence for the Dynamics of Language and
from the National Science Foundation (NSF award
1464553).

References
Peter K Austin. 2010. Current issues in language doc-

umentation. In Language Documentation and De-
scription, volume 7, pages 12–33. SOAS.

Bruce Birch, Sebastian Drude, Daan Broeder, Peter
Withers, and Peter Wittenburg. 2013. Crowdsourc-
ing and apps in the field of linguistics: Potentials and
challenges of the coming technology.

Steven Bird, Ewan Klein, and Edward Loper.
2009. Natural Language Processing with Python.
O’Reilly Media.

Steven Bird, Florian R Hanke, Oliver Adams, and Hae-
joong Lee. 2014. Aikuma: A mobile app for col-
laborative language documentation. In Proceedings
of the 2014 Workshop on the Use of Computational
Methods in the Study of Endangered Languages,
pages 1–5.

Margaret Carew, Jennifer Green, Inge Kral, Rachel
Nordlinger, and Ruth Singer. 2015. Getting in
touch: Language and digital inclusion in australian
indigenous communities. Language Documentation
and Conservation, 9:307–23.

MaryEllen Cathcart, Gina Cook, Theresa Deer-
ing, Yuliya Manyakina, Gretchen McCulloch, and
Hisako Noguchi. 2012. Lingsync: A free tool
for creating and maintaining a shared database for
communities, linguists and language learners. In
Proceedings of FAMLi II: workshop on Corpus Ap-
proaches to Mayan Linguistics, pages 247–50.

163

Georgios Chatzimilioudis, Andreas Konstantinidis,
Christos Laoudias, and Demetrios Zeinalipour-
Yazti. 2012. Crowdsourcing with smartphones.
IEEE Internet Computing, 16:36–44.

Jean-Philippe Goldman, Adrian Leemann, Marie-
José Kolly, Ingrid Hove, Ibrahim Almajai, Volker
Dellwo, and Steven Moran. 2014. A crowdsourcing
smartphone application for Swiss German: Putting
language documentation in the hands of the users. In
Proceedings of the 9th International Conference on
Language Resources and Evaluation, pages 3444–
47.

John Hatton. 2013. SayMore: language documenta-
tion productivity. In Proceedings of the 3rd Interna-
tional Conference on Language Documentation and
Conservation. University of Hawaii.

Adrian Leemann, Marie-José Kolly, Ross Purves,
David Britain, and Elvira Glaser. 2016. Crowd-
sourcing language change with smartphone applica-
tions. PloS one, 11(1):e0143060.

Johann Poignant, Mateusz Budnik, Hervé Bredin,
Claude Barras, Mickael Stefas, Pierrick Bruneau,
Gilles Adda, Laurent Besacier, Hazim Ekenel, Gil
Francopoulo, et al. 2016. The CAMOMILE collab-
orative annotation platform for multi-modal, multi-
lingual and multi-media documents. In Proceedings
of the 10th International Conference on Language
Resources and Evaluation. European Language Re-
sources Association.

Taiwan Indigenous Council. 2016. Taiwan Indigenous
Council e-dictionary.

WaveSurfer. 2017. WaveSurfer.js. https://
wavesurfer-js.org.

Jonathan Wright, Kira Griffitt, Joe Ellis, Stephanie
Strassel, and Brendan Callahan. 2012. Annotation
trees: Ldc’s customizable, extensible, scalable, an-
notation infrastructure. In Proceedings of the 8th In-
ternational Conference on Language Resources and
Evaluation, pages 479–85. European Language Re-
sources Association.

164

