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Abstract

We investigate the characteristics and quan-
tifiable predispositions of both n-gram and re-
current neural language models in the frame-
work of language generation. In modern ap-
plications, neural models have been widely
adopted, as they have empirically provided
better results. However, there is a lack of deep
analysis of the models and how they relate
to real language and its structural properties.
We attempt to perform such an investigation
by analyzing corpora generated by sampling
from the models. The results are compared to
each other and to the results of the same anal-
ysis applied to the training corpus. We carried
out these experiments on varieties of Kneser-
Ney smoothed n-gram models and basic recur-
rent neural language models. Our results re-
veal a number of distinctive characteristics of
each model, and offer insights into their be-
havior. Our general approach also provides a
framework in which to perform further analy-
sis of language models.

1 Introduction

Statistical language modelling is critical to natural
language processing and many generation systems.
In recent years use has shifted from the previously
prevalent n-gram model to the recurrent neural net-
work paradigm that now dominates in most applica-
tions. Researchers have long sought to find the best
language modeling solutions for particular applica-
tions, but it is important to understand the behav-
ior of language models in a more generalizable way.
This is advantageous both in developing language

models and in applying them practically. Whether
in tasks where statistical models are used to directly
generate language or in cases where the model is
used for ranking for surface realization, the statis-
tical predispositions of the language model will be
reflected in the results. In this paper we compare
the behavior of n-gram models and Recurrent Neural
Network Language Models (RNNLMs) with regard
to properties of their generated language.

We use the SRILM toolkit for training and gen-
erating from n-gram models (Stolcke and others,
2002). Our n-gram model is a modified Kneser-
Ney back-off interpolative model, unless otherwise
stated (Chen and Goodman, 1999). We use Tomas
Mikolov’s implementation of an RNNLM, avail-
able at rnnlm.org (Mikolov et al., 2010). This
model has a single hidden recurrent layer, and three
defining parameters: class size, hidden layer size,
and backpropagation through time (BPTT) steps.
Classes are used to factor the vocabulary mappings
to improve performance, by predicting a distribution
over classes of words and then over words in a class
(Mikolov et al., 2011). BPTT steps determine how
many times the recurrent layer of the network is un-
wrapped for training. Unless otherwise mentioned
all neural models have class of 100 and use four
BPTT steps. We use the Penn Tree Bank (PTB),
constructed from articles from the Wall Street Jour-
nal, as our primary training corpus, with the stan-
dard training split of 42068 sentences (Marcus et
al., 1993). Correspondingly, our generated language
corpora also contain 42068 sentences. Novel sen-
tences are easily sampled from trained language
models by prompting with a start of sentence token,

227



Figure 1: Sentence Length Distributions

sampling from the predicted distribution, using the
result as context, and repeating until an end of sen-
tence token is encountered.

We select three primary metrics with which to
evaluate the various resulting corpora. The first is
the distribution of sentence lengths. Sentence length
is compared visually and through the sum of error as
compared to the length distribution from the training
corpus. The second metric is word frequency. Word
frequency is analyzed by fitting a Zipfian distribu-
tion (Kingsley, 1932), and comparing between the
distributions for each model. Third is pronoun fre-
quency relative to distance from the start of a sen-
tence. This was selected as a metric due to the fact
that one-word pronouns are a small class fairly eas-
ily identifiable regardless of context (though there
are a few that can be other parts of speech), partly
avoiding the ambiguities and challenges that follow
from part of speech taggers. This is especially useful
in a corpus with a restricted vocabulary resulting in
the replacement of uncommon tokens with a single
token, such as the PTB, and with generated language
that is not always semantically sound. These experi-
ments were repeated multiple times with small vari-
ations, ensuring the key patterns in the results were
not a product of chance.

Through these three metrics we seek to develop
some insights into the behavior of standard stochas-
tic models in language generation.

2 Sentence Lengths

The natural expectation is that a recurrent neural
model, with its superior ability to ‘remember’ com-

Corpus Sum of Error
Trigram 27736
5-gram 29694
Neural Hidden 100 19237
Neural Hidden 500 14132

Table 1: Sum of errors for sentence lengths, including normal-

ized over total sentences.

plex context, would vastly outperform even fairly
high order n-gram models in modeling sentence
length. While in training errors are only propagated
as far back as truncated backpropagation is executed
(the BPTT steps hyperparameter), the power of the
recurrent layer seems to exceed its apparent depth
during training, taking advantage of the ability of re-
current memory to retain subtle contextual informa-
tion. As seen in Figure 1, even the four BPTT step
model performs fairly well. Contrastingly, n-gram
models perform very poorly. Table 1 notes the sum
of the absolute errors across the full range of mod-
els. N-gram models exhibit no improvement with
increasing order. In neural production, however, we
see substantial improvements with increasing net-
work complexity; specifically, with an increase in
the size of the hidden layer and the number of BPTT
steps. However, the neural models tested here are
unable to replicate the precise shape of the distribu-
tion. All models overestimate the incidence of very
long sentences.

3 Vocabulary Distribution

Zipf’s Law states that, for N unique words and s as
the defining parameter, the frequency of a word with
rank k is given by the following (Kingsley, 1932):

f(k; s, N) =
1/ks∑N

n=1(1/ns)

There are two aspects of evaluation for word fre-
quencies: First, the difference between the Zipf
parameters of distributions fitted to various text
sources; second, the error on the data set to which a
Zipfian distribution is fitted, indicating how closely
the data follows a distribution known to match natu-
ral language production.

As shown in table 2, n-gram smoothing tech-
niques have a significant effect on the accuracy of
the generated Zipf distribution. As an n-gram model
approaches being a simple unigram model, it should
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Corpus s LL
Real 0.99193 -104598
Unigram 0-Discount 0.99293 -104416
Trigram 0-Discounts 0.98348 -103967
Trigram Discounts 0.97921 -104049
Trigram Back-Off Only 0.93515 -102532
Neural Hidden 100 0.98707 -104332
Neural Hidden 500 0.99735 -104655
Table 2: Zipf fit parameters s with Log-Likelihood.

Figure 2: Zipf Distributions

approach the same distribution as real language, due
to the fact that a unigram model behaves like direct
sampling of words from the training corpus. Thus
it is intuitive that the interpolated models, in which
unigram information always influences generation,
performs better than a simple Kneser-Ney back-off
model. Critically, on any configuration, non-zero
discounting seems to worsen the distribution. As
discounting is a method by which probability is held
out to distribute amongst less likely or unseen se-
quences or tokens, it is reasonable that it would af-
fect the distribution. Figure 2 shows the distributions
from a selection of models on a log-log scale, with
the trigram model with non-zero discounts (D) and
with zero discounts (ND).

4 Pronoun Frequency with Depth

Finally, we observe the probability of encountering
a pronoun at an index according to the following ex-
pression: ∑

s∈sentences s[i] ∈ pronouns∑
s∈sentences len(s) ≥ i + 1

We find that there is a spike in the probability

Figure 3: Pronoun Probability with Position

of encountering a pronoun as the first word in a
sentence, to approximately 0.15, an intuitive result
given the prevalence of pronouns as sentence sub-
jects. All models captured this fairly well. More in-
terestingly, the probability of generating or observ-
ing a pronoun decreases with depth into a sentence.
This phenomenon is clearly observable in the train-
ing set, with a fairly linear slope, which we cal-
culate to be approximately −6.9 × 10−4 when re-
stricted to the first twenty indices, excluding zero,
due to the low number of samples at further posi-
tions in the sentence causing noise to dominate. In
order to verify this result, the slope was calculated
by sampling 20 subsets of sentences and averaging
the slope across subsets. A comparable slope exists
even when the domain is restricted to a set of sen-
tences all of the same length (for example fourteen
word sentences). This means the phenomenon is not
an artifact resulting from the distribution of sentence
lengths and a relationship between pronoun occur-
rences and sentence endings.

Neither class of model does particularly well at
capturing this property, as can been seen in Figure
3. N-gram models were able to effectively capture
the pronoun probability at the first word, as expected
given the model should more or less reproduce the
first-word distribution of the training data. They also
appear to reflect the probabilities at the next sev-
eral indices, but as with sentence length, they fail
at any significant sentence depth regardless of n-
gram order. The distribution in the n-gram generated
language becomes approximately uniform. Neural
models seem to capture some negative slope in the
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first ten to twenty words, but with depressed overall
probabilities, and a loss of the pattern after a certain
depth. Figure 3 also shows that increasing RNNLM
complexity, whether in class, hidden size, or number
of BPTT steps, does little to change the performance
of the model in this metric.

This is concerning regarding the ability of this
form of RNNLM to capture certain complex struc-
tural patterns, and indicates that the structure is in-
herently limited. It may be that a model with a
Long-Short Term Memory unit (LSTM) as the re-
current component could perform better, with its
superior ability to capture longer term contextual
dependencies (Hochreiter and Schmidhuber, 1997).
Indeed, LSTMs have become highly popular in
many sequential learning tasks. However, given that
these same basic RNNLMs performed well in the
position-dependent sentence length metric, this re-
sult is disappointing.

5 Future Work

There are a number of clear steps to expand on
this line of research, including experimenting with
a greater variety of language models. In particular,
a recurrent model with a Long Short-Term Memory
unit (LSTM) might improve on the weaknesses of
the simple RNNLM demonstrated here.

Additionally, further diversification of data sets is
important to learning about patterns as they differ
or remain consistent across sources. For example,
preliminary analysis of the more stylistically diverse
Brown corpus (Francis, 1964) indicates that the pro-
noun trend observed in the PTB may not be present
in other domains, at least not as clearly. Addition-
ally to profiling models on specific text genres, the
experiments must be recreated on a far more sizeable
dataset, such as the Wikipedia text corpus.

Finally, the introduction of new metrics to the lan-
guage model analysis could add further value. Auto-
matic tagging and parsing systems are likely to suf-
fer from significant inaccuracy on the often flawed
text produced by stochastic models; however, the
results from applying such systems could prove in-
formative about language model quality, as a model
is not effectively capturing structural and semantic
properties of language if parsing and tagging results
statistics are not comparable to those of real lan-

guage. Statistical analysis of parsing results would
help expand the quantitative portrait of a language
model.

6 Conclusion

Our work characterizes some key structural proper-
ties of language generated from two common sta-
tistical models. The results presented here ver-
ify many of the expectations regarding the behav-
ior of n-gram and RNN techniques, and also intro-
duce some new observations. RNNs have a struc-
tural capacity largely missing from n-gram models,
which is particularly apparent in sentence length dis-
tributions. The recurrent model used here, however,
struggled in reproducing the more complex pattern
represented by the pronoun distribution over posi-
tion. The results of the Zipfian distribution analysis
indicate that neural networks with reasonable com-
plexity are capable of approaching the correct vo-
cabulary distribution, and competing favorably with
the most vocabulary-optimized n-gram models. We
found some interesting phenomena where smooth-
ing, especially with high order n-gram models, flat-
tened the Zipf distribution. At the very least we see
that basic RNNLMs exhibit no real weaknesses next
to n-gram models, beyond training time.

Overall, the methods we present here comprise an
approach to language model analysis that is more in-
dependent from specific applications than previous
reviews of language model performance. By select-
ing structural properties of language that are mea-
surable and ideally equally valid on real and sam-
pled language, it is possible to characterize language
models and examine their learning capacities and
predispositions in generation and ranking. Future
avenues of investigation in line with this paradigm
can provide more detailed portraits and serve as
guidance both in the selection of models for applica-
tions and for further developments in statistical lan-
guage modeling.
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