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Abstract

We present a novel approach to sentence
simplification which departs from previ-
ous work in two main ways. First, it
requires neither hand written rules nor a
training corpus of aligned standard and
simplified sentences. Second, sentence
splitting operates on deep semantic struc-
ture. We show (i) that the unsupervised
framework we propose is competitive with
four state-of-the-art supervised systems
and (ii) that our semantic based approach
allows for a principled and effective han-
dling of sentence splitting.

1 Introduction

Sentence simplification maps a sentence to a sim-
pler, more readable one approximating its content.
As has been argued in (Shardlow, 2014), sentence
simplification has many potential applications. It
is useful as a preprocessing step for a variety of
NLP systems such as parsers and machine trans-
lation systems (Chandrasekar et al., 1996), sum-
marisation (Knight and Marcu, 2000), sentence
fusion (Filippova and Strube, 2008) and seman-
tic role labelling (Vickrey and Koller, 2008). It
also has wide ranging potential societal applica-
tions as a reading aid for people with aphasia (Car-
roll et al., 1999), for low literacy readers (Watan-
abe et al., 2009) and for non native speakers (Sid-
dharthan, 2002).

In this paper, we present a novel approach to
sentence simplification which departs from pre-
vious work in two main ways. First, it requires
neither hand written rules nor a training corpus
of aligned standard and simplified sentences. In-
stead, we exploit non aligned Simple and English
Wikipedia to learn the probability of lexical sim-
plifications, of the semantics of simple sentences
and of optional phrases i.e., phrase which may be

deleted when simplifying. Second, sentence split-
ting is semantic based. We show (i) that our unsu-
pervised framework is competitive with four state-
of-the-art systems and (ii) that our semantic based
approach allows for a principled and effective han-
dling of sentence splitting.

2 Related Work

Earlier work on sentence simplification relied on
handcrafted rules to capture syntactic simplifica-
tion e.g., to split coordinated and subordinated
sentences into several, simpler clauses or to model
e.g., active/passive transformations (Siddharthan,
2002; Chandrasekar and Srinivas, 1997; Canning,
2002; Siddharthan, 2011; Siddharthan, 2010).
While these hand-crafted approaches can encode
precise and linguistically well-informed syntactic
transformations, they do not account for lexical
simplifications and their interaction with the sen-
tential context. Siddharthan and Mandya (2014)
therefore propose an approach where hand-crafted
syntactic simplification rules are combined with
lexical simplification rules extracted from aligned
English and simple English sentences, and revi-
sion histories of Simple Wikipedia.

Using the parallel dataset formed by Simple En-
glish Wikipedia (SWKP)1 and traditional English
Wikipedia (EWKP)2, further work has focused on
developing machine learning approaches to sen-
tence simplification.

Zhu et al. (2010) constructed a parallel
Wikipedia corpus (PWKP) of 108,016/114,924
complex/simple sentences by aligning sentences
from EWKP and SWKP and used the result-
ing bitext to train a simplification model in-
spired by syntax-based machine translation (Ya-
mada and Knight, 2001). Their simplification
model encodes the probabilities for four rewrit-
ing operations on the parse tree of an input sen-

1http://simple.wikipedia.org
2http://en.wikipedia.org
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tences namely, substitution, reordering, splitting
and deletion. It is combined with a language
model to improve grammaticality and the decoder
translates sentences into simpler ones by greedily
selecting the output sentence with highest proba-
bility.

Using both the PWKP corpus developed by
Zhu et al. (2010) and the edit history of simple
Wikipedia, Woodsend and Lapata (2011) learn a
quasi synchronous grammar (Smith and Eisner,
2006) describing a loose alignment between parse
trees of complex and of simple sentences. Fol-
lowing Dras (1999), they then generate all possi-
ble rewrites for a source tree and use integer lin-
ear programming to select the most appropriate
simplification. They evaluate their model on the
same dataset used by Zhu et al. (2010) namely,
an aligned corpus of 100/131 EWKP/SWKP sen-
tences.

Wubben et al. (2012), Coster and Kauchak
(2011) and Xu et al. (2016) saw simplification as
a monolingual translation task where the complex
sentence is the source and the simpler one is the
target. To account for deletions, reordering and
substitution, Coster and Kauchak (2011) trained
a phrase based machine translation system on the
PWKP corpus while modifying the word align-
ment output by GIZA++ in Moses to allow for
null phrasal alignments. In this way, they allow for
phrases to be deleted during translation. Similarly,
Wubben et al. (2012) used Moses and the PWKP
data to train a phrase based machine translation
system augmented with a post-hoc reranking pro-
cedure designed to rank the output based on their
dissimilarity from the source sentence. Unlinke
Wubben et al. (2012) and Coster and Kauchak
(2011) who used machine translation as a black
box, Xu et al. (2016) proposed to modify the opti-
mization function of SMT systems by tuning them
for the sentence simplification task. However, in
their work they primarily focus on lexical simpli-
fication.

Finally, Narayan and Gardent (2014) present a
hybrid approach combining a probabilistic model
for sentence splitting and deletion with a statistical
machine translation system trained on PWKP for
substitution and reordering.

Our proposal differs from all these approaches
in that it does not use the parallel PWKP corpus
for training. Nor do we use hand-written rules.
Another difference is that we use a deep semantic

representation as input for simplification. While
a similar approach was proposed in (Narayan and
Gardent, 2014), the probabilistic models differ in
that we determine splitting points based on the
maximum likelihood of sequences of thematic role
sets present in SWKP whereas Narayan and Gar-
dent (2014) derive the probability of a split from
the aligned EWKP/SWKP corpus using expecta-
tion maximisation. As we shall see in Section 4,
because their data is more sparse, Narayan and
Gardent (2014) predicts less and lower quality
simplifications by sentence splitting.

3 Simplification Framework

Our simplification framework pipelines three ded-
icated modules inspired from previous work on
lexical simplification, syntactic simplification and
sentence compression. All three modules are un-
supervised.

3.1 Example Simplification
Before describing the three main modules of our
simplification framework, we illustrate its work-
ing with an example. Figure 1 shows the input
semantic representation associated with sentence
(1C) and illustrates the successive simplification
steps yielding the intermediate and final simplified
sentences shown in (1S1-S).

(1) C. In 1964 Peter Higgs published his second paper in
Physical Review Letters describing Higgs mechanism
which predicted a new massive spin-zero boson for the
first time.
S1 (Lex Simp). In 1964 Peter Higgs wrote his sec-
ond paper in Physical Review Letters explaining Higgs
mechanism which predicted a new massive elementary
particle for the first time.
S2 (Split). In 1964 Peter Higgs wrote his second pa-
per in Physical Review Letters explaining Higgs mech-
anism. Higgs mechanism predicted a new massive ele-
mentary particle for the first time.
S (Deletion). In 1964 Peter Higgs wrote his paper
explaining Higgs mechanism. Higgs mechanism pre-
dicted a new elementary particle.

First, the input (1C) is rewritten as (1S1) by re-
placing standard words with simpler ones using
the context aware lexical simplification method
proposed in (Biran et al., 2011).

Splitting is then applied to the semantic repre-
sentation of (1S1). Following Narayan and Gar-
dent (2014), we use Boxer 3 (Curran et al., 2007)
to map the output sentence from the lexical simpli-
fication step (here S1) to a Discourse Representa-
tion Structure (DRS, (Kamp, 1981)). The DRS for

3http://svn.ask.it.usyd.edu.au/trac/
candc, Version 1.00
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In 1964 Peter Higgs published his second paper in Physical Review Letters describing Higgs mechanism which predicted
a new massive spin-zero boson for the first time .
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In 1964 Peter Higgs wrote his second paper in Physical Review Letters explaining Higgs mechanism which predicted
a new massive elementary particle for the first time .
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Figure 1: Simplification of “In 1964 Peter Higgs published his second paper in Physical Review Letters
describing Higgs mechanism which predicted a new massive spin-zero boson for the first time.”
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S1 is shown at the top of Figure 1 and a graph rep-
resentation4 of the dependencies between its vari-
ables is shown immediately below. In this graph,
each DRS variable labels a node in the graph and
each edge is labelled with the relation holding be-
tween the variables labelling its end vertices. The
two tables to the right of the picture show the pred-
icates (top table) associated with each variable and
the relation label (bottom table) associated with
each edge. Boxer also outputs the associated po-
sitions in the complex sentence for each predicate
(not shown in the DRS but shown in the graph ta-
bles). Orphan words i.e., words which have no
corresponding material in the DRS (e.g., which at
position 16), are added to the graph (node O1) thus
ensuring that the position set associated with the
graph exactly generates the input sentence.

Using probabilities over sequences of thematic
role sets acquired from the DRS representations
of SWKP, the split module determines where and
how to split the input DRS. In this case, one split is
applied between X11 (explain) and X10 (predict).
The simpler sentences resulting from the split are
then derived from the DRS using the word or-
der information associated with the predicates, du-
plicating or pronominalising any shared element
(e.g., Higgs mechanism in Figure 1) and deleting
any Orphan words (e.g., which) which occurs at
the split boundary. Splitting thus derives S2 from
S1.

Finally, deletion or sentence compression ap-
plies transforming S2 into S3.

3.2 Context-Aware Lexical Simplification

We extract context-aware lexical simplification
rules from EWKP and SWKP5 using the approach
described by Biran et al. (2011). The underly-
ing intuition behind these rules is that the word C
from EWKP can be replaced with a word S from
SWKP if C and S share similar contexts (ten to-
ken window) in EWKP and SWKP respectively.
Given an input sentence and the set of simplifica-
tion rules extracted from EWKP and SWKP, we

4The DRS to graph conversion goes through several pre-
processing steps: the relation nn is inverted making modi-
fier noun (higgs) dependent of modified noun (mechanism),
named and timex are converted to unary predicates, e.g.,
named(x, peter) is mapped to peter(x) and timex(x) =
1964 is mapped to 1964(x); and nodes are introduced for
orphan words (e.g., which).

5We downloaded the snapshots of English Wikipedia
dated 2013-12-31 and of Simple English Wikipedia dated
2014-01-01 available at http://dumps.wikimedia.
org.

then consider all possible (C,S) substitutions li-
censed by the extracted rules and we identify the
best combination of lexical simplifications using
dynamic programming and rule scores which cap-
ture the adequacy, in context, of each possible sub-
stitution6.

3.3 Sentence Splitting

A distinguishing feature of our approach is that
splitting is based on deep semantic representations
rather than phrase structure trees – as in (Zhu et
al., 2010; Woodsend and Lapata, 2011) – or de-
pendency trees – as in (Siddharthan and Mandya,
2014).

While Woodsend and Lapata (2011) report
learning 438 splitting rules for their simplifica-
tion approach operating on phrase structure trees
Siddharthan and Mandya (2014) defines 26 hand-
crafted rules for simplifying apposition and/or rel-
ative clauses in dependency structures and 85 rules
to handle subordination and coordination.

In contrast, we do not need to specify or to learn
complex rewrite rules for splitting a complex sen-
tence into several simpler sentences. Instead, we
simply learn the probability of sequences of the-
matic role sets likely to cooccur in a simplified
sentence.

The intuition underlying our approach is that:

Semantic representations give a clear handle

on events, on their associated roles sets and

on shared elements thereby facilitating both the

identification of possible splitting points and the

reconstruction of shared elements in the sen-

tences resulting from a split.

For instance, the DRS in Figure 1 makes clear
that sentence (1S1) contains 3 main events and that
Higgs mechanism is shared between two proposi-
tions.

To determine whether and where to split the in-
put sentence, we use a probabilistic model trained
on the DRSs of the Simple Wikipedia sentences
and a language model also trained on Simple
Wikipedia. Given the event variables contained
in the DRS of the input sentence, we consider
all possible splits between subsequences of events
and choose the split(s) with maximum split score.
For instance, in the sentence shown in Figure 1,
there are three event variables X3, X10 and X11

6For more details on the lexical simplification process, we
refer the reader to Biran et al. (2011).
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in the DRS. So we will consider 5 split possi-
bilities namely, no split ({X3,X10,X11}), two
splits resulting in three sentences describing an
event each ({X3}, {X10}, {X11}) and one split
resulting in two sentences describing one and
two events respectively (i.e., ({X3}, {X10,X11}),
({X3,X10}, {X11}) and {X10}, {X3,X11}). The
split {X10}, {X3,X11} gets the maximum split
score and is chosen to split the sentence (1S1) pro-
ducing the sentences (1S2).

Semantic Pattern prob.
〈 (agent, patient) 〉 0.059
〈 (agent, in, in, patient) 〉 0.002
〈 (agent, patient), (agent, in, in, patient) 〉 0.023

Table 1: Split Feature Table (SFT) showing some of the
semantic patterns from Figure 1.

Formally, the split score Psplit associated with
the splitting of a sentence S into a sequence of
sentences s1...sn is defined as:

Psplit =
1

n

∑

si

Lsplit

Lsplit+ | Lsplit − Lsi |
× lmsi × SFTsi

where n is the number of sentences produced af-
ter splitting; Lsplit is the average length of the split
sentences (Lsplit = LS

n where LS is the length
of the sentence S); Lsi is the length of the sen-
tence si; lmsi is the probability of si given by
the language model and SFTsi is the likelihood of
the semantic pattern associated with si. The Split
Feature Table (SFT, Table 1) is derived from the
corpus of DRSs associated with the SWKP sen-
tences and the counts of sequences of thematic
role sets licenced by the DRSs of SWKP sen-
tences. Intuitively, Psplit favors splits involving
frequent semantic patterns (frequent sequences of
thematic role sets) and sub-sentences of roughly
equal length. This way of semantic pattern based
splitting also avoids over-splitting of a complex
sentence.

3.4 Phrasal Deletion

Following Filippova and Strube (2008), we for-
mulate phrase deletion as an optimization prob-
lem which is solved using integer linear program-
ming7. Given the DRS K associated with a sen-
tence to be simplified, for each relation r ∈ K ,
the deletion module determines whether r and its
associated DRS subgraphs should be deleted by
maximising the following objective function:

7In our implementation, we use lp solve, http://
sourceforge.net/projects/lpsolve.

∑

x

xr
h,w×P (r|h)×P (w) r 6∈ {agent, patient, theme, eq}

where for each relation r ∈ K , xr
h,w = 1 if r

is preserved and xr
h,w = 0 otherwise; P (r|h) is

the conditional probability (estimated on the DRS
corpus derived from SWKP) of r given the head
label h; and P (w) is the relative frequency of w in
SWKP8.

Intuitively, this objective function will favor
obligatory dependencies over optional ones and
simple words (i.e., words that are frequent in
SWKP). In addition, the objective function is sub-
jected to constraints which ensure (i) that some
deletion takes place and (ii) that the resulting DRS
is a well-formed graph.

4 Evaluation

We evaluate our approach both globally and by
module focusing in particular on the splitting com-
ponent of our simplification approach.

4.1 Global evaluation

The testset provided by Zhu et al. (2010) was
used by four supervised systems for automatic
evaluation using metrics such as BLEU, sentence
length and number of edits. In addition, most re-
cent simplification approaches carry out a human
evaluation on a small set of randomly selected
complex/simple sentence pairs. Thus Wubben et
al. (2012), Narayan and Gardent (2014) and Sid-
dharthan and Mandya (2014) carry out a human
evaluation on 20, 20 and 25 sentences respectively.

Accordingly, we perform an automatic com-
parative evaluation using (Zhu et al., 2010)’s
testset namely, an aligned corpus of 100/131
EWKP/SWKP sentences; and we carry out a
human-based evaluation.

Automatic Evaluation Following Wubben et al.
(2012), Zhu et al. (2010) and Woodsend and Lap-
ata (2011), we use metrics that are directly related
to the simplification task namely, the number of
splits in the overall data, the number of output sen-
tences with no edits (i.e., sentences which have not

8To account for modifiers which are represented as predi-
cates on nodes rather than relations, we preprocess the DRSs
and transform each of these predicates into a single node sub-
tree of the node it modifies. For example in Figure 1, the node
X2 labeled with the modifier predicate second is updated to a
new node X ′

2 dominating a child labeled with that predicate
and related to X ′

2 by a modifier relation.

115



System
Levenshtein Edit distance BLEU

w.r.t simple
Sentences
with splits

Average
sentence
length

Average
token
length

Complex to
System

System to Sim-
ple

LD No edit LD No edit
GOLD 12.24 3 0 100 100 28 27.80 4.40
Zhu 7.87 2 14.64 0 37.4 80 24.21 4.38
Woodsend 8.63 24 16.03 2 42 63 28.10 4.50
Wubben 3.33 6 13.57 2 41.4 1 28.25 4.41
Narayan 6.32 4 11.53 3 53.6 10 26.24 4.36
UNSUP 6.75 3 14.29 0 38.47 49 26.22 4.40

Table 2: Automatic evaluation results. Zhu, Woodsend, Wubben, Narayan are the best output of the models of Zhu et al.
(2010), Woodsend and Lapata (2011), Wubben et al. (2012) and Narayan and Gardent (2014) respectively. UNSUP is our
model.

System
Levenshtein Edit distance BLEU Scores

with respect to
Average
sentence
length

Average
token
length

Complex to
System

System to Sim-
ple

LD No edit LD No edit complex simple
complex 0 100 12.24 3 100 49.85 27.80 4.62
LexSimpl 2.07 22 13.00 1 82.05 44.29 27.80 4.46
Split 2.27 51 13.62 1 89.70 46.15 29.10 4.63
Deletion 2.39 4 12.34 0 85.15 47.33 25.41 4.54
LexSimpl-Split 4.43 11 14.39 0 73.20 41.18 29.15 4.48
LexSimpl-Deletion 4.29 3 13.09 0 69.84 41.91 25.42 4.38
Split-Deletion 4.63 4 13.42 0 77.82 43.44 26.19 4.55
LexSimpl-Split-Deletion 6.75 3 14.29 0 63.41 38.47 26.22 4.40
GOLD (simple) 12.24 3 0 100 49.85 100 23.38 4.40

Table 3: Automated Metrics for Simplification: Modular evaluation. LexSimpl-Split-Deletion is our final system UNSUP.

been simplified) and the average Levenshtein dis-
tance (LD) between the system output and both the
complex and the simple reference sentences. We
use BLEU9 as a means to evaluate how close the
systems output are to the reference corpus.

Table 2 shows the results of the automatic eval-
uation. The most noticeable result is that our un-
supervised system yields results that are similar to
those of the supervised approaches.

The results also show that, in contrast to Wood-
send system which often leaves the input unsim-
plified (24% of the input), our system almost al-
ways modifies the input sentence (only 3% of the
input are not simplified); and that the number of
simplifications including a split is relatively high
(49% of the cases) suggesting a good ability to
split complex sentences into simpler ones.

Human Evaluation Human judges were asked
to rate input/output pairs w.r.t. to adequacy (How
much does the simplified sentence(s) preserve the
meaning of the input?), to simplification (How
much does the generated sentence(s) simplify the
complex input?) and to fluency (how grammatical
and fluent are the sentences?).

We randomly selected 18 complex sentences
from Zhu’s test corpus and included in the eval-
uation corpus: the corresponding simple (Gold)

9Moses support tools: multi-bleu http://www.
statmt.org/moses/?n=Moses.SupportTools.

sentence from Zhu’s test corpus, the output of our
system (UNSUP) and the output of the other four
systems (Zhu, Woodsend, Narayan and Wubben)
which were provided to us by the system au-
thors10. We collected ratings from 18 participants.
All were either native speakers or proficient in En-
glish, having taken part in a Master taught in En-
glish or lived in an English speaking country for an
extended period of time. The evaluation was done
online using the LG-Eval toolkit (Kow and Belz,
2012)11 and a Latin Square Experimental Design
(LSED) was used to ensure a fair distribution of
the systems and the data across raters.

Systems Simplicity Fluency Adequacy
GOLD 3.62 4.69 3.80
Zhu 2.62 2.56 2.47
Woodsend 1.69 3.15 3.15
Wubben 1.52 3.05 3.38
Narayan 2.30 3.03 3.35
UNSUP 2.83 3.56 2.83

Table 4: Average Human Ratings for simplicity, fluency
and adequacy.

Table 4 shows the average ratings of the hu-
man evaluation on a scale from 0 to 5. Pair-
wise comparisons between all models and their
statistical significance were carried out using a
one-way ANOVA with post-hoc Tukey HSD tests.

10We upload the outputs from all the systems as supple-
mentary material with this paper.

11http://www.nltg.brighton.ac.uk/research/lg-eval/
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System pairs Average Score (number of split sentences)

A B ALL-A ALL-B ONLY-A BOTH-AB ONLY-BA B

UNSUP

GOLD

2.37(49)

3.85(28) 2.15(32) 2.80(17) 3.70(17) 4.05(11)
Zhu 2.25(80) 1.53(4) 2.45(45) 2.42(45) 2.02(35)

Woodsend 2.08(63) 2.42(11) 2.36(38) 2.29(38) 1.78(25)
Wubben 2.73(1) 2.32(48) 4.75(1) 2.73(1) 0(0)
Narayan 2.09(10) 2.29(41) 2.78(8) 1.79(8) 3.81(2)

Table 5: Pairwise split evaluation: Each row shows the pairwise comparison of the quality of splits in UNSUP and some other
system. Last six columns show the average scores and number of associated split sentences. The second column (ALL-A)
and the third column (ALL-B) present the quality of all splits by systems A and B respectively. The fourth column (ONLY-A)
represents sentences where A splits but not B. The fifth and sixth columns represents sentences where both A and B split. The
seventh column (ONLY-B) represents sentences where B splits but not A.

If we group together systems for which there is
no significant difference (significance level: p <
0.05), our system is in the first group together
with Narayan and Zhu for simplicity; in the first
group for fluency; and in the second group for ade-
quacy (together with Woodsend and Zhu). A man-
ual examination of the results indicates that UN-
SUP achieves good simplicity rates through both
deletion and sentence splitting. Indeed, the aver-
age word length of simplified sentences is smaller
for UNSUP (26.22) than for Wubben (28.25)
and Woodsend (28.10); comparable with Narayan
(26.19) and higher only than Zhu (24.21).

4.2 Modular Evaluation

To assess the relative impact of each module (lexi-
cal simplification, deletion and sentence splitting),
we also conduct an automated evaluation on each
module separately. The results are shown in Ta-
ble 3.

One first observation is that each module has an
impact on simplification. Thus the average Lev-
enshtein Edit distance (LD) to the source clause
(complex) is never null for any module while the
number of “No edit” indicates that lexical simpli-
fication modifies the input sentence in 78%, sen-
tence splitting 49% and deletion 96% of the cases.

In terms of output quality and in particular, sim-
ilarity with respect to the target clause, deletion is
the most effective (smallest LD, best BLEU score
w.r.t. target). Further, the results for average token
length indicate that lexical simplification is effec-
tive in producing shorter words (smaller average
length for this module compared to the other two
modules).

Predictably, combining modules yields systems
that have stronger impact on the source clause
(higher LD to complex, lower number of No Ed-
its) with the full system (i.e., the system combin-
ing the 3 modules) showing the largest LD to the

sources (LD to complex) and the smallest number
of source sentences without simplification (3 No
Edits).

4.3 Sentence Splitting Using Deep Semantics
To compare our sentence splitting approach with
existing systems, we collected in a second human
evaluation, all the outputs for which at least one
system applied sentence splitting. The raters were
then asked to compare pairs of split sentences pro-
duced by two distinct systems and to evaluate the
quality (0:very bad to 5:very good) of these split
sentences taking into account boundary choice,
sentence completion and sentence reordering.

Table 5 shows the results of this second evalua-
tion. For each system pair comparing UNSUP (A)
with another system (B), the Table gives the scores
and the number of splits of both systems: for the
inputs on which both systems split (BOTH-AB),
on which only UNSUP splits (ONLY-A) and on
which only the compared system split (ONLY-B).

UNSUP achieves a better average score (ALL-
A = 2.37) than all other systems (ALL-B column)
except Wubben (2.73). However Wubben only
achieves one split and on that sentence, UNSUP
score is 4.75 while Wubben has a score of 2.73
and produces an incorrect split (cf. S3 in Figure 6).
UNSUP

In terms of numbers of splits, three systems of-
ten simplify by splitting namely Zhu (80 splits),
Woodsend (63) and UNSUP (49). Interest-
ingly, Narayan, trained on the parallel corpus of
Wikipedia and Simplified Wikipedia splits less of-
ten (10 splits vs 49 for UNSUP) and less well (2.09
average score versus 2.37 for UNSUP). This is un-
surprising as the proportion of splits in SWKP was
reported in (Narayan and Gardent, 2014) to be a
low 6%. In contrast, the set of observations we
use to learn the splitting probability is the set of
all sequences of thematic role sets derived from
the DRSs of the SWKP corpus.
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S1 Complex. This array distributes data across multiple disks, but the array is seen by the computer user and operating
system as one single disk.
Zhu. This array sells data across multiple disks but the array is seen. The computer user and operating as one disk. [0]
Woodsend. This array distributes data across several disks. The array is seen by the computer user and operating
system as one single disk. [4.85]
UNSUP. This array moves data across disks. The array is seen by the computer user and operating system as one disk.
[4.83]

S2 Complex. Here, simulations of evolution using evolutionary algorithms and artificial life started with the work of
Nils Aall Barricelli in the 1960s, and was extended by Alex Fraser, who published a series of papers on simulation of
artificial selection.
Zhu. Here, simulations of evolution using evolutionary algorithms and artificial life started with the work of nils aall
barricelli in the 1960s, and was extended by alex fraser. Alex fraser published a series of papers on feeling of artificial
selection. [3.6]
Woodsend. It has Genetic algorithms. Evolution is using artificial life. This is Nils Aall Barricelli in the 1960s. Here,
simulations started with the work. He was extended by Alex Fraser. He published a group of papers on simulation of
artificial selection. [0.33]
UNSUP. Here, models of evolution using evolutionary algorithms and artificial life started with the work in the 1960s,
and was led by Alex Fraser. Alex Fraser wrote a series of papers on model of selection. [5]

S3 Complex. By 1928, the regional government was moved from the old Cossack capital Novocherkassk to Rostov, which
also engulfed the nearby Armenian town of Nor Nakhijevan.
Zhu. By 1928, the government was moved from the old cossack capital novocherkassk to rostov. Rostov also of the
city the nearby armenian town of nor nakhijevan. [2.8]
Woodsend. By 1928, the regional government was moved from the old Cossack capital Novocherkassk to Rostov. Both
also engulfed the nearby Armenian town of Nor Nakhijevan. [3]
Wubben. by 1928 , the regional government was moved from the old cossack capital novocherkassk to rostov. the
nearby armenian town of nor nakhichevan. [2.7]
Narayan. by 1928, the regional government was moved from the old cossack capital novocherkassk to rostov. rostov
that engulfed the nearby armenian town of nor nakhichevan. [2.7]
UNSUP. The regional government was moved from the old Cossack capital Novocherkassk to Rostov. Rostov also
absorbed the nearby town of Nor Nakhijevan. [4.75]

Table 6: Example Outputs for Sentence splitting with their average human annotation scores.

In sum, the unsupervised, semantic-based split-
ting strategy allows for a high number (49%) of
good quality (2.37 score) sentence splits . Be-
cause there are less possible patterns of thematic
role sets in simple sentences than possible con-
figurations of parse/dependency trees for complex
sentences, it is less prone to data sparsity than the
syntax based approach. Because the probabilities
learned are not tied to specific syntactic structures
but to more abstract semantic patterns, it is also
perhaps less sensitive to parse errors.

4.4 Examples from the Test Set

Table 6 shows some examples from the evaluation
dataset which were selected to illustrate the work-
ings of our approach and to help interpret the re-
sults in Table 2, 4 and 5.

S1 and S2 and S3 show examples of context-
aware unsupervised lexical substitutions which are
nicely performed by our system. In S1, The array
distributes data is correctly simplified to The ar-
ray moves data whereas Zhu’s system incorrectly
simplifies this clause to The array sells data. Simi-
larly, in S2, our system correctly simplifies Papers
on simulation of artificial selection to Papers on
models of selection while the other systems either
do not simplify or simplify to Papers on feeling.

For splitting, the examples show two types of
splitting performed by our approach namely, split-
ting of coordinated sentences (S1) and splitting be-
tween a main and a relative clause (S2,S3). S2 il-
lustrates how the Woodsend system over-splits, an
issue already noticed in (Siddharthan and Mandya,
2014); and how Zhu’s system predicts an incorrect
split between a verb (seen) and its agent argument
(by the user). Barring a parse error, such incorrect
splits will not be predicted by our approach since,
in our cases, splits only occur between (verbali-
sations of) events. S1, S2 and S3 also illustrates
how our semantic based approach allows for an
adequate reconstruction of shared elements.

5 Conclusion

A major limitation for supervised simplification
systems is the limited amount of available paral-
lel standard/simplified data. In this paper, we have
shown that it is possible to take an unsupervised
approach to sentence simplification which requires
a large corpus of standard and simplified language
but no alignment between the two. This allowed
for the implementation of contextually aware sub-
stitution module; and for a simple, linguistically
principled account of sentence splitting and shared
element reconstruction.
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