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Abstract

We discuss a fully statistical approach to the
expression of quantitative information in En-
glish. We outline the approach, focussing on
the problem of Lexical Choice. An initial eva-
luation experiment suggests that it is worth in-
vestigating the method further.

1 Introduction

NLG systems express information in human lan-
guage. To do this well, these systems need to
“know”what expressions are most suitable for ex-
pressing a given piece of information. The most
direct way to define words in NLG systems is ma-
nual coding, as it was done in systems such as FoG
(Golberg et al., 1994) and SumTime-Mousam (Sri-
pada et al., 2003). However, manual coding is time
consuming, it can be argued to be theoretically un-
satisfactory, and it is error prone even when perfor-
med by domain experts. The process is complicated
in the fact that words like pink (Roy, 2002) and eve-
ning (Reiter et al., 2005) have different meanings for
individual speakers.

Recent NLG approaches learn the use of words
through statistical analysis of data-text corpora. For
example, Belz’s semi-automatic system for weather
forecasting automatically learns a grammar based on
a pre-existing (i.e., manually coded) set of grammar
rules (Belz, 2008). Liang et al. (2009) developed
a fully statistical alignment-based algorithm that au-
tomatically acquires a mapping from quantitative in-
formation to English words by adopting a hierarchi-
cal hidden semi-Markov model trained by Expecta-
tion Maximization. Konstas and Lapata (2013) in-
troduced a generation model based on Liang’s algo-

rithm . However, these existing approaches have dif-
ficulty handling situations in which a word expres-
ses a combination of data dimensions, for example
as when the word “mildëxpresses a combination of
warm temperatures and low wind speed.

In this paper, we discuss a new approach to the
problem; the approach is fully statistical and it is
able to handle situations in which a word or phrase
maps to a combination of data dimensions. We focus
on Lexical Choice but are investigating applications
to other areas of NLG.

2 Methodology

In many areas of perception research, a method cal-
led “contour stylizationı̈s employed to mimic a com-
plex signal (i.e., a complex graph) by means of a
limited number of straight lines (Johan t Hart and
Cohen, 1990). Our method uses the similar idea and
applies it to two dimensions (i.e., weather data and
language) at the same time. Our approach builds a
bridge between quantitative information and words
by discretising the data.

2.1 Representing Data in Vector

A continuous dimension can be represented by a set
of discrete parameters, so called key-points. For
example, wind speed (ws) is a continuous dimension
with its value between 0 knot to 36 knots. A group
of key-points can then be used to represent any va-
lue of wind speed. For instance, a possible key-point
group is {ws = 0, ws = 12, ws = 24, ws = 36},
in which key-points are evenly spaced. The aim of
using key-points is to transform the original quanti-
tative dimension into probability dimensions. This
process is similar to Signal Analysis (Reiter 2007)
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in which each key-point plays a role as a Signal Sen-
sor. In the above example, 5 key-points are used to
represent wind speed collectively, where each key-
point specifies a specific range of wind speed. In this
way, if a word describes wind speed within a certain
range, we will find the connection of the word to the
relative key-points.

Based on this formulation, any wind speed can
be represented by weighted key-points through li-
near interpolation. Suppose one would like to re-
present an arbitrary wind speed, say ws = 5. Note
that ws = 5 falls between the range of key-points
ws = 0 and ws = 12 as described above. Using
linear interpolation, one can derive the weights of
key-points ws = 0 and ws = 12 for representing
ws = 5, which are 0.58 and 0.42 respectively. Be-
cause the remaining key points does not contribute
to represent wind speed ws = 5, their weights are
set to 0. Finally, the wind speed ws = 5 can be
represented as a vector 〈0.58, 0.42, 0, 0〉, which en-
codes the weights for the key-point group.

Although in the above example key-points {ws =
0, ws = 12, ws = 24, ws = 36} are set evenly spa-
ced, it should be noted that the setting of key-points
(e.g., the choice of key-point values) has relatively
little impact on predicting the use of words. This is
because the our method can be regarded as fitting the
occurrence function of words by a straight line in the
contour stylization angle (in addition to the Signal
Analysis), and the key-points present the inflection
points’ abscissa of the straight line. Although care-
fully selecting key-points can possibly enhance the
model’s performance, our model adopt the evenly
spaced key-points, which empirically works well en-
ough in general.

2.2 Representing Words in Vector

Expressions such as words can be represented by
key-points weight vectors as well. For example, in
English the expression calm is only used to describe
wind speed close to 0. So, calm can also be repre-
sented using the same key-point group as before, i.e.,
represented with a high weight for ws = 0 (such as
0.9, for instance), and a low weight for ws = 12
(e.g., 0.01). For the moment, the weights of calm
are estimated by hand. In section 2.4 we will see
how the weights can be estimated from a data-text
corpus.

2.3 Lexical Choice
This section introduces how our proposed appro-
cah handles the lexical choice in the NLG process
through Cosine similarity. Suppose both quantita-
tive information and lexical expressions have been
converted into vectors (i.e., ~q and ~e) in the same
vector space parameterised by the key-points. The
problem of finding the most likely expression (~e) for
the given quantitative information (~q) can be trans-
formed to the process of finding the most similar
lexical expression vector ~e to ~q. We exemplify the
lexical choice process below, using wind speed as
quantitative dimension.

Suppose the key-points are still {ws = 0, ws =
12, ws = 24, ws = 36}. The candidate expression
words are calm and breeze, which can be represented
in a form of key-point weight vectors as below:

~ecalm = 〈0.9, 0.01,−0.9,−1〉 (1)

~ebreeze = 〈0.7, 0.9,−0.8,−1〉 (2)

Now our goal is to choose the most suitable word
to describe wind speed ws = 5 from the available
candidate word expressions (i.e., calm and breeze).
As discussed in Section 2.1, ws = 5 can also be
represented by a key-point weight vector

~qws=5 = 〈0.58, 0.42, 0, 0〉 (3)

Based on the same key-point vector space, we calcu-
late the Cosine similarities between each candidate
word and the target wind speed ws = 5, and the
most suitable word is naturally the one with the hig-
hest similarity to ws = 5.

Sim(~ecalm, ~qws=5) =
~ecalm · ~qws=5

‖~ecalm‖ ‖~qws=5‖ = 0.45

(4)

Sim(~ebreeze, ~qws=5) =
~ebreeze · ~qws=5

‖~ebreeze‖ ‖~qws=5‖ = 0.64

(5)

As can be seen above, the similarity between
~qws=5 and ~ebreeze is higher than that of ~eclam. There-
fore, breeze is a better choice for expressing ws = 5.

2.4 Estimating Weight Vector for Word
Expressions

One key challenge in applying our approach for
learning the relationship between quantitative infor-
mation and words is to find the optimal vector ~e for
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each possible expression word. Suppose we have r
data to text pairs denoted as < datai, texti >r

i=1,
where datai in the pairs consists of quantitative di-
mensions and texti refers to the expression words as
shown in Eq. 6.

< data, text >⇒ {dim1,...,m, exp1,...,n} (6)

Following section 2.1, for each data to text pair,
we firstly discretise the data dimensions (dim1,...,m)
into a key-point group {~d1, ~d2, ..., ~dm} ≡ ~d. Next,
we can find the optimal values for weight vector ~ei

by solving Eq. 7 constructed based on the training
data < datai, texti >r

i=1.
~d1

~d2
...

~dr

 ~ei
T =


isOccur(expi|text1)
isOccur(expi|text2)

...
isOccur(expi|textr)

 (7)

The function isOccur(expi|texti) returns 1 if expi

occurs in the corresponding texti, and returns 0
otherwise.

Generally, there are fewer free parameters than
the number of equations, so we can always find
the optimised solution for estimating ~ei using Least
Square. If there are more than one solution, we
adopt the solution with the least norm. In the same
way, we can obtain weight vectors for all the candi-
date expressions.

So far we have described how to estimate the key-
point weight vector for every candidate expression
from training data, i.e., data-text pairs. In the test
phase, to predict the most likely words for unseen
data, we firstly represent data as a weight vector, and
then compare its cosine similarity against every can-
didate expression. Since the weight vectors for ex-
pressions ~ei are trained through the occurrence func-
tion isOccur(), the similarity between unseen data
and a candidate expression reflects the suitability of
an expression in expressing the data.

2.5 Discussion: Handling multiple dimensions

One of the important features of our approach is the
ability of choosing expressions for data with mul-
tiple dimensions. We stress that both the training
process and lexical choice process are applicable to

multiple data dimensions. First, in the training pro-
cess, information of different quantitative dimensi-
ons is converted into key-point weights, so the boun-
daries between different dimensions have disappea-
red. The training process could even calculate the
implicit relationship between expressions and quan-
titative data. Second, the lexical choice process se-
lects expressions based on a set of dimensions rather
than each single dimension. This is why this appro-
ach can handle the multiple dimension information.

3 Evaluating the proposed approach to
Lexical Choice

To perform an initial sanity check on our appro-
ach, we built a small corpus from SumTime-Meteo
Corpus (Sripada et al., 2002), which contains hu-
man writing weather forecasts with meteorological
data. We selected 144 wind speed forecasts with
data whose wind speeds do not change a lot during a
forecast period, and summarize these data into three
dimensions, as shown in Table 1.

We randomly selected 96 records of the total 114
data records to train the model, and adopt the rest of
data records to evaluate. We evaluated 10 words1:
LESS, N, S, OR, SE, NE, VARIABLE, GUSTS, WS,
MAINLY, which are the words occurring more than
5 times in the small corpus. For each candidate word
wi, we separate the testing data into two groups.
Forecast texts in group 1 contain word wi but not
in group 2. When we use our model (trained with
the SumTime-Meteo Corpus) to predict the occur-
ring probability of wi in group 1 and group 2 res-
pectively, we expect to obtain higher occurring pro-
bability p(wi|G1) from group 1 than p(wi|G2) from
group 2. The results are shown in Figure 1.

As shown in Figure 2, it is clear that experimental
results are inline with our expectation: our approach
does produce higher occurring probabilities in group
1 than in group 2. Recall that one key feature of our
approach is its capability to model multiple dimen-
sional features. To show the benefit of this feature,
we have also applied our approach modelling taking
into account each single dimension separately. By
comparing Table 1 and Table 2, we can see that the

1“Wordsı̈n the SumTime-Meteo Corpus include abbreviati-
ons such as SW (South-West) etc., see Table 1 for examples of
text fragments and data.
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Tabel 1: Some sample records of our corpus.
Wind Speed Wind Direction Wind Variance

MAINLY W-NW 10 OR LESS 4.2 282 7
VARIABLE 8 OR LESS 7.5 319 12
. . . . . . . . . . . .

Figuur 1: The predicted occurring probabilities based on data

of all dimensions.

prediction performance of words based on multiple
dimension outperforms all the models considering
a single dimension only, especially when predicting
words variable and mainly.

4 Conclusion

We have sketched an approach to choosing lexical
expressions according to multiple quantitative infor-
mation. To have this ability, this approach learns the
relationship between quantitative information and
words by the following steps: a) resolving quanti-
tative information and the occurrence of expressions
into the same linear space; b) building equations of
expressions’ weight vector; c) finding the best solu-
tion of the equations. Initial evaluation suggest that
this approach may be on the right track.

The possibility of applications to Lexical Choice
in Natural Language Generation is perhaps most ob-
vious, but the mapping that we learn is applicable to
interpretation as well. In other words, our proposal
aims to solve the age-old problem in Linguistics and
Fuzzy Logic of how to specify the meaning of vague
words (Van Deemter, 2012), which resists traditi-
onal approaches to semantics, because these words
admit borderline cases.

Figuur 2: The predicted occurring probabilities based on data

of single dimension: wind direction, wind speed, and wind di-

rection variation.
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