
Proceedings of The 9th International Natural Language Generation conference, pages 21–25,
Edinburgh, UK, September 5-8 2016. c©2016 Association for Computational Linguistics

Generating English from Abstract Meaning Representations

Nima Pourdamghani , Kevin Knight , Ulf Hermjakob
Information Sciences Institute

Department of Computer Science
University of Southern California

{damghani,knight,ulf}@isi.edu

Abstract

We present a method for generating English
sentences from Abstract Meaning Representa-
tion (AMR) graphs, exploiting a parallel cor-
pus of AMRs and English sentences. We treat
AMR-to-English generation as phrase-based
machine translation (PBMT). We introduce a
method that learns to linearize tokens of AMR
graphs into an English-like order. Our lin-
earization reduces the amount of distortion in
PBMT and increases generation quality. We
report a Bleu score of 26.8 on the standard
AMR/English test set.

1 Introduction

Banarescu et al. (2013) introduce Abstract Meaning
Representation (AMR) graphs to represent sentence
level semantics. Human annotators have created a
dataset of more than 10, 000 AMR/English string
pairs.

AMRs are directed acyclic graphs, where leaves
are labeled with concepts, internal nodes are labeled
with variables representing instances of those con-
cepts, and edges are labeled with roles that relate
pairs of concepts. For instance, the sentence The boy
wants to go is represented as:

(w :instance-of want-01
:arg0 (b :instance-of boy)
:arg1 (g :instance-of go-01

:arg0 b))

Colons discriminate roles from concepts. In this pa-
per, :instance-of is our way of writing the slash (/)
found in the AMR corpus.

Because AMR and English are highly cog-
nate, the AMR-to-English generation problem might
seem similar to previous natural language genera-
tion (NLG) problems such as bag generation (Brown
et al., 1990), restoring order to unordered depen-
dency trees (Guo et al., 2011) or generation from
logical form (Corston-Oliver et al., 2002). However,
AMR’s deeper logic provides a serious challenge for
English realization. AMR also abstracts away de-
tails of time, number, and voice, which must be in-
serted.

Langkilde and Knight (1998) introduced Nitro-
gen, which used a precursor of AMR for generating
English. Recently, Flanigan et al. (2016) presented
the first trained AMR-to-English generator. They
generate spanning trees from AMR graphs and ap-
ply tree-to-string transducers to the trees to generate
English.

We attack AMR-to-English generation using the
tools of phrase-based machine translation (PBMT).
PBMT has already been applied to natural lan-
guage generation from simple semantic structures
(Mairesse et al., 2010), but deep semantic represen-
tations such as AMR are more challenging to deal
with. PBMT expects strings for its source and target
languages, so we cannot work with AMR graphs as
input. Therefore, we develop a method that learns
to linearize AMR graphs into AMR strings. Our lin-
earization strives to put AMR tokens roughly into
English word order, making the transformation to
English easier.

It may seem surprising that we ignore much of the
structure of AMR, but we follow string-based sta-
tistical MT, which ignored much of the structure of

21



Figure 1: AMR-to-English generation pipeline.

language but nonetheless provided a strong baseline.

Figure 1 shows our pipeline for generating En-
glish from AMR. Our contributions are:

1. We present a strong baseline method for AMR-
to-English generation.

2. We introduce a method that learns to linearize
AMR tokens into an order resembling English.

3. We obtain a Bleu score of 26.8 on the stan-
dard AMR/English test set, which is 4.9 points
higher than previous work.

2 Method

Given a set of AMR/English pairs, divided into train,
development, and test sets, we follow these steps:
Construct token-level alignments: We use the
method proposed in (Pourdamghani et al., 2014) to
construct alignments between AMR and English to-
kens in the training set.
Extend training data: We use special realization
components for names, dates, and numbers found in
the dev/test sets, adding their results to the training
corpus.
Linearize AMR graphs: We learn to convert AMR
graphs into AMR strings in a way that linearized
AMR tokens have an English-like order (Section 3).
Clean AMR strings: We remove variables, quote
marks, and sense tags from linearized AMRs. We
also remove *-quantity and *-entity concepts, plus
these roles: :op*, :snt*, :arg0, :arg1, :arg2, :name,
:quant, :unit, :value, :year, :domain-of.
Phrase-Based Machine Translation: We use
Moses (Koehn et al., 2007) to train and tune a PBMT
system on string/string training data. We then use
this system to produce English realizations from lin-
earized development and test AMRs.

3 Linearization

When we linearize AMR, we would like—at a
minimum—for semantically-related tokens to stay
close together. A straightforward, pre-order depth
first search (DFS) accomplishes this (Pourdamghani
et al., 2014). For instance, linearizing
(w :instance-of want-01

:arg0 (b :instance-of boy)
:arg1 (g :instance-of go-01

:arg0 b))

yields “w :instance-of want-01 :arg0 b :instance-of
boy :arg1 g :instance-of go-01 :arg0 b”.

Of course, we are free to visit AMR sister nodes
in any order. For instance, if we visit sisters in or-
der (:arg0, :instance-of, :arg1), we get this string
instead: “w :arg0 b :instance-of boy :instance-of
want-01 :arg1 g :instance-of go-01 :arg0 b” , which
more resembles English word order.

We therefore induce an ordering function that
takes any set of edge labels as input and produces
a permutation of those labels. We call this the lin-
earization function.

The input to this function is a sequence consist-
ing of the concept under the :instance-of edge (e.g.,
want-01) followed by the other edges sorted alpha-
betically (e.g., :arg0 :arg1). The output is a permu-
tation of the input (e.g., (2, 1, 3)).

Because :instance-of concepts often have no
equivalent in English, e.g.:
(n :instance-of name

:op1 "Pierre" -> Pierre Vinken
:op2 "Vinken")

we additionally allow the first component of the out-
put to be “-1”, indicating deletion.

Our linearization function therefore has the fol-
lowing form:

p : {c, r1, r2, ..., rk−1} → (π1, π2, ..., πk) (1)
22



where c is a concept token, ri are role tokens, πi>1 ∈
{1, 2, ..., k} and π1 ∈ {−1, 1, 2, ..., k}.

Here are sample input/output pairs for the lin-
earization function:

(want-01, :arg0, :arg1) -> (2, 1, 3)
(name, :op1, :op2) -> (-1, 1, 2)
(and, :op1, :op2) -> (2, 1, 3)
(area-quantity, :quant, :unit) -> (-1, 1, 2)
(win-01, :arg0, :arg1, :time) -> (2, 1, 3, 4)

Our overall objective is to minimize the number
of crossings in the alignment links after lineariza-
tion. We use our token-aligned AMR/English data to
produce training examples for the function (1). We
assign each outgoing AMR edge a position equal to
the median of the alignment points of all tokens in
its subtree, including the edge itself. We assign −1
to an edge if none of its subtree tokens are aligned.
Then we extract all sets of sibling edges in the AMR
graph, and sort them based on these numbers. We
use these sorted sets to create training instances.

We now describe three linearization methods.

3.1 Pre-order DFS

This baseline method linearizes AMR by simple pre-
order traversal, ignoring the data just described.

3.2 Majority Method

The majority method memorizes the most common
order for each role set in the data. If no match is
found, we use the ordering given in the original,
human-annotated AMR, with the :instance-of edge
first.

3.3 Classifier Method

The classifier method breaks the problem into learn-
ing three binary classifiers over inputs of the form
(c, r1, r2, ..., rk−1):

1. Should the :instance-of edge be dropped?
• Features: k, c, (c, ri), whether c is a Prop-

bank frameset, and whether c is a “special
keyword” as defined by Banarescu et al.
(2013).

2. Should edge ri appear before :instance-of ?
• Features: ri, (c, ri), (ri, rj) for all j 6= i

3. Should edge ri appear before rj?
• Features: (c, ri, rj)

We use the toolkit of Zhang (2004) to learn a max-
imum entropy classifier for each task.

AMR/English pairs English word tokens
Train 10,313 218,021
Dev 1,368 29,848
Test 1,371 30,263

Table 1: Data for AMR-to-English generation.

After training, for a given input query, we con-
sult the first classifier on whether or not to drop the
:instance-of edge.

If we drop this edge, we consider the rest of
the edges as one group; otherwise, we divide them
into two groups each appearing on one side of the
:instance-of edge, using the second classifier.

Next, we order the edges within each group. Let
P(ri < rj) be the probability—according to the third
classifier—that ri precedes rj . For each edge ri, we
assign it a “left-leaning” score, which is the product
of all P(ri < rj), for all j 6= i. We remove the edge
with the highest left-leaning score. We then recur-
sively process the remaining edges in the group.

We were inspired by Lerner and Petrov (2013) to
break the problem down this way. Because their de-
pendencies are ordered, while our AMRs edges are
not, we defined a different set of features and classi-
fiers.

4 Experiments

We use AMR/English data from the AMR 1.0 cor-
pus,1 along with the provided train/development/test
split (Table 1).

We implement the method of Pourdamghani et
al. (2014) to construct alignments for the training
set. We train the linearization function introduced
in Section 3 on the aligned training set and use it to
re-linearize that training set, maintaining the align-
ment links. This gives us aligned string-to-string
training data for PBMT. We use the same trained lin-
earization function to linearize development and test
AMRs.

To measure the quality of linearization, we make
calculations on the development set, using align-
ments to references (these alignments are used only
for this experiment, and not for decoding).

A good linearization function should: (a) reduce
the number of crossings in the alignment links, and
(b) correctly identify concepts to be dropped.

1LDC Catalog number 2014T12.

23



Crossings Adj. crossings
Pre-order DFS 46671 7409
Majority Method 33772 (72%) 4850 (65%)
Classifier Method 35603 (76%) 4015 (54%)

Table 2: Total alignment crossings, and crossings between ad-

jacent links after linearizing development AMRs with different

methods. Numbers in parentheses show the reduction compared

to Pre-order DFS.

Dev Bleu Test Bleu
1: Pre-order DFS 17.7 16.6
1a: 1 + clean AMRs 21.6 21.0
1b: 1a + name/number/date 23.5 22.5
2: Majority Method 26.5 25.6
3: Classifier Method 27.2 26.9
Flanigan et al. (2016) 22.7 22.0

Table 3: Results for AMR-to-English generation on develop-

ment and test data. Experiments 2 and 3 include cleaning AMRs

and name/number/date translations. Bleu scores are single-

reference, case insensitive, {1..4}-grams.

Table 2 shows the total number of crossings and
number of crossings between adjacent alignment
links after linearizing development AMRs with the
three methods introduced in Section 3. Both ad-
vanced methods highly reduce the number of cross-
ings. The Classifier Method reduces the number
of adjacent crossings much more than the Majority
Method, helping to enhance locality. End-to-end ex-
periments (Table 3) show that the Classifier Method
outperforms the Majority Method in improving Bleu
score.

With respect to concept dropping, 97% of the con-
cepts dropped by the Classifier Method are in fact
not aligned, and the method correctly drops 87% of
the unaligned concepts.

Next, we use the Moses (Koehn et al., 2007) sys-
tem for our PBMT implementation. Phrase extrac-
tion, limited to maximum phrase length 9, yields
1.2m phrase pairs. We use a 5-gram language model
trained on 1.7b tokens of Gigaword English. We use
MERT for tuning, and we decode linearized AMRs
into English with a maximum stack size of 1000.

Table 3 shows our results. We find that better lin-
earization methods lead to better Bleu scores. The
Majority Method outperforms Pre-order DFS by 3.1
Bleu on test data, and the Classifier Method adds an-
other 1.2 Bleu. We also find that steps of cleaning

and specialized name/number/date generators sig-
nificantly improve Bleu. Compared to (Flanigan et
al., 2016) our best system achives 4.5 Bleu points
improvement on dev and 4.9 points improvement on
test data.

Here is a small-sized input/output example from
the automatic AMR-to-English generation system:

Input AMR:
(s / state-01
:arg0 (p / person
:name (n / name :op1 "fan"))

:arg1 (c / concern-01
:arg1 (c3 / commission)
:arg2 (t / term
:mod (i / invest-01

:arg2 (c2 / country
:name (n3/name :op1 "taiwan"))

:time (f / future)))
:manner (p2 / primary)))

Linearized, Cleaned AMR: fan state commission
:manner primary concern invest taiwan :time future
term
System Output: fans who have stated that the com-
mission is primarily concerned with the terms of the
investment in taiwan in the future .
Gold English: fan stated the commission is primar-
ily concerned with the term of future investment in
taiwan .

5 Conclusion

We introduce a method for learning to generate En-
glish from AMR. We use phrase-based machine
translation technology and carry out experiments to
compare different AMR linearization methods. We
show that our method outperforms prior work by
a large margin. We consider our results to form a
strong baseline for future work.

References
Laura Banarescu, Claire Bonial, Shu Cai, Madalina

Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract Meaning Representation
for sembanking. In Proc. ACL Linguistic Annotation
Workshop (LAW).

Peter F. Brown, John Cocke, Stephen A. Della Pietra,
Vincent J. Della Pietra, Fredrick Jelinek, John D. Laf-

24



ferty, Robert L. Mercer, and Paul S. Roossin. 1990. A
statistical approach to machine translation. Computa-
tional linguistics, 16(2):79–85.

Simon Corston-Oliver, Michael Gamon, Eric Ringger,
and Robert Moore. 2002. An overview of Amal-
gam: A machine-learned generation module. In Proc.
INLG.

Jeffrey Flanigan, Chris Dyer, Noah A. Smith, and Jaime
Carbonell. 2016. Generation from abstract mean-
ing representation using tree transducers. In Proc.
NAACL.

Yuqing Guo, Haifeng Wang, and Josef Van Genabith.
2011. Dependency-based n-gram models for general
purpose sentence realisation. Natural Language Engi-
neering, 17(4):455–483.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, et al. 2007. Moses: Open source toolkit for sta-
tistical machine translation. In Proc. ACL Poster and
Demonstration Sessions.

Irene Langkilde and Kevin Knight. 1998. Generation
that exploits corpus-based statistical knowledge. In
Proc. ACL.

Uri Lerner and Slav Petrov. 2013. Source-side classifier
preordering for machine translation. In Proc. EMNLP.

François Mairesse, Milica Gašić, Filip Jurčı́ček, Simon
Keizer, Blaise Thomson, Kai Yu, and Steve Young.
2010. Phrase-based statistical language generation us-
ing graphical models and active learning. In Proc.
ACL.

Nima Pourdamghani, Yang Gao, Ulf Hermjakob, and
Kevin Knight. 2014. Aligning English strings with
Abstract Meaning Representation graphs. In Proc.
EMNLP.

Le Zhang. 2004. Maximum entropy modeling toolkit for
Python and C++. http://bit.ly/1DGnb2p.

25


