
D S Sharma, R Sangal and A K Singh. Proc. of the 13th Intl. Conference on Natural Language Processing, pages 305–314,
Varanasi, India. December 2016. c©2016 NLP Association of India (NLPAI)

Towards Building A Domain Agnostic Natural Language Interface to
Real-World Relational Databases

Sree Harsha Ramesh, Jayant Jain, Sarath K S, and Krishna R Sundaresan
Surukam Analytics

Chennai
{harsha,jayant,sarath,krishna}@surukam.com

Abstract

In this paper we present Surukam-NLI —
a novel system of building a natural lan-
guage interface to databases, which com-
poses the earlier work on using linguis-
tic syntax trees for parsing natural lan-
guage queries with, the latest advances
in natural language processing such as
distributed language embedding models
for semantic mapping of the natural lan-
guage and the database schema. We will be
evaluating the performance of our system
on a sample online transaction process-
ing (OLTP) database called as Adventure-
WorksDB and show that we achieve partial
domain independence by handling queries
about three different scenarios — Human
Resources, Sales & Marketing and Prod-
uct scenarios. Since there is no baseline for
query performance on OLTP databases,
we report f-measure statistics on an inter-
nally curated query dataset.

1 Introduction

Natural language interfaces to databases (NLIs)
are front-ends to a database which help casual
users query the database even without knowing the
schema of the database or any specialised query
languages like Structured Query Language (SQL).
This is especially useful for people in decision
making roles who largely depend on analysts for
their daily dose of reports. For reasons that we’ll
see in the following sections, we are still far from
building a truly domain agnostic system that con-
verts any natural language query successfully into
SQL, given just the information about the database
schema.

1.1 Background

Building a natural language interface to relational
databases is almost as old as the concept of rela-
tional databases itself. Codd (1970) defined rela-
tional database as a digital database whose orga-
nization is based on the relational model of data
in his seminal paper of 1970, while the earliest
documented Natural Language Interface(NLI) is
the Lunar Sciences Natural Language Information
System (LSNLIS), (Woods et al., 1972). It was a
question answering system built in 1972, that en-
abled lunar geologists to query the data collected
during the Apollo missions.

Despite there being many NLIs since the
LSNLIS such as PRECISE, PARLANCE, NaLIR,
SEEKER and TEAM (Popescu et al., 2003; Bates,
1989; Li and Jagadish, 2014; Smith et al., 2014;
Grosz et al., 1987), there has not been an encour-
aging adoption of this technology in the software
industry, probably because of lengthy configura-
tion phases and domain portability issues. SQL
is still the preferred mode of querying relational
databases which have highly complex architecture
and for sensitive operations like inserting, updat-
ing and deleting data.

For a broad class of semantically tractable nat-
ural language questions, PRECISE described in
(Popescu et al., 2003) is guaranteed to map each
question to the corresponding SQL query. PRE-
CISE determines whether a question is semanti-
cally tractable using max-flow algorithm and out-
puts the corresponding SQL query. It collects
max-flow solutions corresponding to possible se-
mantic interpretations of the sentence and discards
the solutions that do not obey syntactic constraints
and generates SQL queries based on remaining so-
lutions. PRECISE is only effective on semanti-
cally tractable questions in which sentence tok-
enization results in distinct tokens which contain305

at-least one wh-word1. So, queries like list the
highest selling product and show me all the goods
purchased in the past week would not be handled
due to lack of wh-words.

Li and Jagadish (2014) present NaLIR which
is an interactive natural language query interface
for relational databases. The system contains a
query interpretation part, an interactive communi-
cator and a query tree translator. The query in-
terpretation part is responsible for interpreting the
natural language query and representing the inter-
pretation as a linguistic parse tree. By communi-
cating with the user, interactive communicator en-
sure that the interpretation process is correct. The
query tree, possibly verified by the user, is trans-
lated into an SQL statement in the query tree trans-
lator and is then evaluated against an RDBMS. Al-
though, this NLI correctly interprets complex nat-
ural language queries across a range of domains,
the use of a conversational agent in the pipeline,
in order to resolve the ambiguities in linguistic
parse trees and query interpretation, precludes ca-
sual users who do not have the knowledge of the
underlying schema and linguistic representation,
from using the tool.

The approach described in (Pérez, 2016) pro-
poses a semantically-enriched data dictionary
called as Semantic Information Dictionary (SID)
which stores the information necessary for the NLI
to correctly interpret a query. The performance
of the interface depends on the quantity and qual-
ity of semantic information stored in the domain
dictionary. A translation module, which consists
of components for lexical analysis, syntactic anal-
ysis, semantic analysis generates the SQL repre-
sentation of the natural language query. This ap-
proach has a lengthy customization phase where a
proficient customizer would need to fine-tune the
NLI using the domain editor provided with the
tool, similar to the approach adopted by Access
ELF (Elf, 2009), one of the few surviving com-
mercial NLIs. Yet another NLI that requires a do-
main and linguistic expert for configuring the NLI
is C-Phrase (Minock, 2010). C-Phrase is a natu-
ral language interface system that models queries
in an extended version of Codds tuple calculus,
which are then automatically mapped to SQL. The
NLI author would have to use synchronous con-
text free grammars with lambda-expressions to

1They are function words used to ask a question, such as
what, when, where, who, whom, why, and how.

represent semantic grammars. The given gram-
mar rules may be used in the reverse direction to
achieve paraphrases of logical queries by config-
uring the parser and generator to associate phrases
with database elements.

As detailed in (Androutsopoulos et al., 1995),
NLIs have an ambiguous linguistic coverage and
are prone to tedious and lengthy configuration
phases. Sometimes, they also have an additional
requirement of having a highly specialized team
of domain experts and skilled linguists who are
capable of creating grammar rules. Motivated by
the lack of an easily configurable tool that handles
multiple domains with reasonable accuracy we
propose Surukam-NLI2, a domain-agnostic NLI
that has an automatic configuration phase that uses
a word embedding model trained on the Google
News data-set and the entity-relationship details
about the database.

1.2 Organization

In section 2, we describe the architecture of
Surukam-NLI which includes a discussion on the
parsing phase which identifies the entities and con-
straints, the schema generation phase which gen-
erates a dictionary using word-embeddings that
is subsequently used for generating SQL and the
mapping phase that maps entities and constraints
to SQL clauses and columns. Section 3 contains a
description of the AdventureWorks 3 database and
an evaluation of our system’s performance across
multiple domains of the database. Section 4 con-
tains some observations about our system’s lim-
its and compares our approach with the other ap-
proaches of building NLIs to databases.

2 Surukam-NLI Architecture

In this section we describe the pipeline of steps
involved in translating the natural language query
into a SQL query. This has also been outlined in
Figure 1. Firstly, an intermediate dictionary which
has tokens classified into entities and attributes us-
ing the parse tree output and named entities, is
generated. Secondly, the intermediate output is
mapped to the database schema using a combi-
nation of word-embeddings and database look-ups
to generate the various components of a complete
SQL query such as SELECT, FROM, WHERE

2This system was developed at Surukam Analytics.
3https://technet.microsoft.com/en-

us/library/ms124825(v=sql.100).aspx306

and JOIN. We would be using the following query
as the running example throughout this section:

total sales by year in Southeast Asia after 2001

2.1 Terminology

Let us formalize some terminology first - entity
refers to the “target”of the user query, and hence
the target of the SQL query. These typically map
to SELECT statements in the final query, but may
also contain other information — the “total” in
the running example gives clues about aggregation
and grouping. Information along with the entities
usually tends to be about ordering, limits and ag-
gregate functions viz. SUM, AVG and math oper-
ations viz., MAX, MIN. Any such supplementary
information is considered a modifier.

The constraints refer to other conditions spec-
ified in the user query. Most constraints map to
WHERE, GROUP and ORDER clauses. They
typically correspond to NN phrases combined
with PP phrases and CD values. Within a con-
straint, the terms come from noun phrases and the
condition from prepositional phrases. Each entry
in terms can be mapped to either a database col-
umn, relation, function or a value in a column,
whereas the condition corresponds to either an op-
erator or a clause.

2.2 Entity & Constraint Recognizer

In the first step of the pipeline, the natural lan-
guage query is transformed into a dictionary of en-
tities and constraints based on some rules applied
on the parse tree output and the named entities.

2.2.1 Named Entity Recognition (NER)
The natural language query is run through the
named entity recognizer (Finkel et al., 2005)
which classifies the named entities in text into pre-
defined categories such as the names of persons,
organizations, locations, expressions of times,
quantities, monetary values and percentages. This
information is used to deduce the constraint at-
tribute from the NER tags of the constraint val-
ues. For e.g., in the syntax tree shown in figure 2,
Southeast Asia is classified as location and 2001
is classified as date which would help in adding
country/territory/region and year/date as the con-
straint attributes.

2.2.2 Syntactic Parse Tree
Parse trees are syntactic representations of a sen-
tence that convey the part of speech (POS) for each

word of a sentence and also denote patterns of use-
ful relationships such as subject-verb-object. POS
tags are assigned to a single word according to its
role in the sentence. Traditional grammar clas-
sifies words based on eight parts of speech: the
verb (VB), the noun (NN), the pronoun (PR+DT),
the adjective (JJ), the adverb (RB), the preposi-
tion (IN), the conjunction (CC), and the interjec-
tion (UH). The tag set is based on the Penn Tree-
bank Tagging Guidelines (Santorini, 1990). Fig-
ure 2 shows the syntax tree representation of the
running example query. Next, we explain how the
patterns of relationships are exploited to classify a
token into entities and constraints.

2.2.3 Generate dictionary of entities and
constraints

These are some rules we have used in extracting
entities and constraints from the syntax tree.

1. In the syntactic parse tree, the prepositional
phrase (PP) which comes under a preposi-
tional phrase node is classified as a con-
straint, while nouns (NN*) are classified as
attribute, cardinal numbers (CD) as value,
and adjectives (JJ) as conditions on attribute.

2. The first noun phrase (NP), which is not a
subtree of a prepositional phrase (PP) is clas-
sified as a candidate for an entity chunk. All
the nouns under this noun phrase (NP) be-
long to entity list, with adjectives (JJ) as mod-
ifier and cardinal numbers(CD) as value. All
the tokens with the POS tag as CD (cardi-
nal numbers) but have a word representation
are converted into numerical form, to gener-
ate valid SQL queries.

3. There are queries which do not have an
entity-item explicitly mentioned. In such
cases, the domain to which the query belongs
is considered as an entity. The contextual or
semantic relation between query and domain
is inferred with the help of attribute words
of all the constraints. For inferring the do-
main name from the set of tokens identified
as attributes in the query, WordNet (Miller et
al., 1990) is used. WordNet is a large lexi-
cal database for English, that collects a net-
work of meaningfully related words into a
SynSet. For example, in the query — who
has the highest salary in last twenty years,
the wh-word who is resolved into the domain307

Figure 1: Surukam-NLI System Architecture

Figure 2: Syntax Tree and NER Output
308

employee based on the constraint term salary
which is semantically related to the domain
name employee, and the token employee is
added as an entity for this query.

In our running example query — total sales by
year in Southeast Asia after 2001, the tokens - to-
tal and sales would belong in entities with sales
being the entity term and total being the entity
modifier. In the same query, the tokens such as
after, 2001, Southeast, Asia, by and year would
be classified as constraint phrases. The constraints
would be further classified as: after into condition
and 2001 as its corresponding value along with the
implicit constraint term year, because of the NER
tag. Similarly, Southeast Asia is classified into
a constraint term which would be resolved into
attribute name and value respectively, in Section
2.3.2.

2.3 SQL Query Generator

This section describes the process of mapping the
output of the parsing stage to the correct columns,
relations and clauses part of the final generated
SQL statement. The basic structure of the output
from the parse tree module is shown in Figure 3.
The generation of the SQL query from the output
of the syntactic parsing stage broadly involves two
distinct parts - Schema Generation and Mapping.

Figure 3: Intermediate representation of the parse
tree output which has classified tokens into entities
and constraints

2.3.1 Schema Generation

The goal of this module is to generate a search
schema containing an expanded set of candidate
database column and relation tokens. The ex-
panded set of tokens is generated by making use of
stemming, word embeddings and lexical ontolo-
gies to determine syntactically as well as semanti-
cally similar tokens.

Word stemming is an important feature present
in modern day indexing and search systems. The
main idea is to improve recall by reducing the
words to their word roots, at both index time
and query time. Recall is increased without
compromising on the precision of the documents
fetched, since the word roots typically represent
similar concepts as the original word. Stemming
is usually done by removing any attached suf-
fixes and prefixes (affixes) from index terms be-
fore the actual assignment of the term to the in-
dex. We make use of the Snowball stemming
algorithm in our implementation (Porter, 2001),
which is an improved version of the Porter stem-
mer (Porter, 1980). Although, Lancaster stemmer
(Paice, 1990) is marginally faster than Snowball,
it has significantly lower precision.

Word embeddings are dense, distributed vector
representations of words which try to capture se-
mantic information about the word. Distributed
representations of words in a vector space help
learning algorithms to achieve better performance
in natural language processing tasks by group-
ing similar words, and by solving the sparsity
problem present in n-gram based models. Word
representations computed using neural networks
are especially interesting because the learned vec-
tors explicitly encode many linguistic regularities
and patterns. Semantically similar words can be
found by determining cosine similarities between
the word vectors. We use the skip-gram word2vec
model (Mikolov et al., 2013a; Mikolov et al.,
2013c) for training of word representations.

Pre-trained embeddings released as part of
(Mikolov et al., 2013b) have been used. The word
embeddings were trained on a Google News cor-
pus consisting of 100 billion tokens with a vocab-
ulary of 3 million unique words.

A lexical database is a source of lexical in-
formation that can be used effectively by mod-
ern computing methods. A lexical database of-
ten stores information about a large variety of se-
mantic relations, such as synonymy, antonymy,309

hyponymy and entailment. These semantic rela-
tions can be made use of to generate additional to-
kens for database column and relation tokens. The
WordNet lexical database is used in our paper to
determine such tokens.

The set of additional tokens is generated by
making use of the above - Snowball stemming,
word2vec similarity, and WordNet synsets. Some
preprocessing of the original database tokens
based on simple pattern matching rules commonly
relevant to database column and relation names
- pascal cased tokens (eg: SalespersonName),
camel cased tokens (eg: territoryID) and punc-
tuation (eg: salesperson id) - is also performed
to obtain better tokens. Finally, the generated
tokens are stored in a reverse index to facilitate
easy search and retrieval, and this reverse index is
called the search schema.

In addition to this, a config schema is also cre-
ated which contains mappings between terms and
certain SQL operators, functions and clauses. (eg:
greater: >, top: ORDER BY ASC). These map-
pings are seeded with initial values manually, and
then the same approach as the one used for cre-
ating the search schema is applied. Note that
SQL function names are dependent on the version
and type of database used, and hence this config
schema is made to be configurable by the database
administrator.

2.3.2 Mapping
The aim of the mapping module is to map each
of the elements in both entities and constraints to
a clause and column. This also includes apply-
ing any possible operators to values and aggregate
functions to database columns. The mapping mod-
ule makes use of the parse tree output from the
syntactic parsing stage, and the search and config
schemas generated in the schema generation mod-
ule.

The mapping is done by first doing a direct
lookup on the search schema, and in case that
fails, by determining a similarity score between
the terms in the user query elements and keys of
the search schema. A combination of Levenshtein
distance (Levenshtein, 1966), and semantic simi-
larity is used to compute this similarity.

Levenshtein distance is a commonly used dis-
tance metric between two strings given by count-
ing the minimum number of operations required
to transform one string into the other. It is a com-
monly used metric for spelling error correction.

Semantic similarity is calculated from word em-
beddings by taking their cosine similarity. In case
the word is out of vocabulary, ie there is no word
embedding present for the word, simply the Lev-
enshtein distance is used.

The mapping process is made configurable by
a database administrator in case of special cases
where Levenshtein distance and semantic similar-
ities are not applicable, or in case the database ad-
ministrator wishes to manually override any sim-
ilarity based mapping. The manual configuration
option is provided only for systems intended to run
in production environments, and no manual con-
figuration has been done to generate the results in
this paper.

There are also cases where an explicit column
term is not specified and simply a value is given in
the query. The running example query total sales
by year in Southeast Asia after 2001, does not
specify year specifically, it simply mentions after
2001. This is known as ellipsis. To handle such
cases, the mapper maintains a reverse index of all
value tokens mapped to the column they belong to.
Search query tokens that are not mapped to any
candidate column or relation are checked against
this reverse index to see if they can be mapped to
a column.

In addition to tokens that map to values, cer-
tain tokens may also correspond to aggregate func-
tions. This search is performed on the previously
generated config schema with common terms for
such functions being generated automatically. The
config schema is also manually configurable and
allows adding of custom terms for aggregate func-
tions.

Taking the example of the intermediate repre-
sentation in Figure 3, the constraint with the term
Southeast Asia gets mapped to only the SalesTerri-
tory relation, since no other table contains South-
east Asia as either a value token or a relation or
column token. For the constraints with by year
and after 2001, a number of candidate columns
and relations are generated, since date objects are
common in a lot of relations.

Once the list of possible columns and relations
has been generated, a subset of the relations is
taken such that -

1. Each token has a candidate mapped column
or relation that belongs to the chosen subset
of relations.

2. Schema constraints imposed by foreign keys310

are satisfied. This involves creating a graph
of the relations in the database by making use
of foreign key information.

3. The sum of the size of the subset of relations
and the number of joins required between the
relations multiplied by the average token dis-
similarity score is minimized. The dissimi-
larity score is simply calculated by subtract-
ing the similarity score from 1.

For the given intermediate representation,
the SalesTerritory and SalesOrderHeader re-
lations are chosen, with total sales mapped
to SUM(salesorderheader.TotalDue), by year to
GROUP BY YEAR(salesorderheader.OrderDate),
in Southeast Asia to WHERE salesterritory.name
= Southeast Asia, and after 2001 to WHERE
YEAR(salesorderheader.OrderDate) = 2001.

Mapping of the condition term in constraints
and the modifier term in entities is again done
with the use of the config schema. Generation
of the config schema makes use of semantic simi-
larity computed using word embeddings, as well
as WordNet synsets, after it has been manually
seeded with initial values.

3 Experiments and Evaluation

Evaluation of the performance of our system has
been done on a sample online transaction process-
ing (OLTP) database called AdventureWorksDB,
which is modeled very much along the lines of an
Enterprise Resource Planning (ERP) solution.

AdventureWorksDB is an open database re-
leased as part of Microsoft’s SQL Server and it
has also been ported to MySQL 4. It contains data
about a fictitious bicycle manufacturing company
called Adventure Works Cycles. There are five
different scenarios covered in this database:

1. Sales & Marketing Scenario - It covers the
customers and sales related information of
Adventure Works Cycles. Typical queries in-
clude show me all the individual customers
who purchased goods worth greater than 100
dollars in the last year

2. Product Scenario - It contains tables related
to the product information like the cost of
production, product description and product
models, that is represented in the database.

4https://sourceforge.net/projects/awmysql/

A typical query would be — Which was
the most expensive product manufactured in
Southeast Asia

3. Human Resources Scenario - It contains
employee-related information such as the
salary, joining date and manager details. Typ-
ical query — Which employee had the highest
salary in 2001?

We create a manual dataset of 100 Natural Lan-
guage queries each for three domains in the Ad-
ventureWorks DB - Sales, Product and Human Re-
sources. The different domains have been picked
to evaluate if the system is domain independent
enough to handle queries for different scenarios
without manual configuration.

The performance of the system is evaluated by
running each of the natural language queries in the
dataset through the parsing and mapping system.
In case the system successfully generates a query,
the resulting query is executed on the database,
and the results of the query are compared to the
gold standard.

The evaluation metrics are computed as de-
scribed in (Minock et al., 2008). The precision
is defined as the percentage of successfully gener-
ated SQL queries that result in the correct output,
and the recall is defined as the percentage of natu-
ral language queries that successfully generate an
SQL query.

precision =
of correct queries

of sql queries generated

recall =
of sql queries generated

of natural language queries

f1-score =
2 · precision · recall
precision + recall

4 Results

Figure 4 depicts the results of the query translation
by Surukam-NLI across all the three domains we
have considered in this paper and we observe sim-
ilar performance throughout. The relatively small
variations in precision and recall can easily result
from randomness due to small sample sizes.311

Domain Query SQL
Generated

SQL
Correct

Sales

Who had the highest sales in 2003? Yes Yes
Which country had the highest sales in 2000? Yes Yes
What are the total sales by region in the last five years? Yes Yes
Who were the top 5 salesmen of 2001 by total sales? Yes Yes
List top 10 orders by item price in Southwest. Yes No

Human
Resources

Average employee salary by year over the past 10 years? Yes Yes
What is the average salary by department? Yes Yes
How many employees are over the age of 30? No -
How many employees does the sales department have? Yes Yes
What were the average vacation hours in 2002? Yes Yes

Product

What were the top rated 5 products in 2001? Yes Yes
How many transactions took place in 2001? Yes Yes
What is the average cost of products in x category? Yes No
List the number of transactions by country in last 10 years? Yes Yes
Number of purchases of amount 200 in the last month No -

Table 1: Results on sample queries

Figure 4: Histogram of Precision / Recall / F -
measure for each domain.

Listed in Table 1 are a sample of the queries
from each domain, whether they were successfully
mapped to an SQL statement, and if the results of
executing the query match the gold standard.

Delving deeper into a sample of queries for each
domain, we can find some patterns in the queries
that fail either in the mapping phase or in the exe-
cution phase.

1. Some complex operations require a deeper
understanding of the query and the db
schema. Example -

(a) Employees over the age of 30 - This re-
quires the system to understand that the
age of the employee can be calculated
from subtracting the BirthDate from the
current date.

2. Ambiguity in a query token leading to incor-
rect mapping. Example -

(a) What is the average cost of products of
‘x’ category? - The Products table con-
tains ListPrice and StandardCost, and
the user intends to query on the basis of
ListPrice, whereas StandardCost is the
column chosen by our similarity match-
ing algorithm

3. Ambiguity in the language of the query. Ex-
ample -

(a) Top salesmen in 2001 - Top usually
maps to an ORDER BY clause on a col-
umn directly mapped to the term right
after top, however here in the context,
top can refer to either amount of sales
or number of sales. Without additional
information, the system has no way of
resolving such ambiguity.

(b) List top 10 orders by item price - by in
this context should map to an ORDER
BY clause rather than a GROUP BY
clause. This requires a deeper under-
standing of the query beyond the syntac-
tic parsing.

4. Very similar database columns corresponding
to query token. Example -

(a) How many sales have occurred in the
last month? - Here last month is meant312

to be compared against OrderDate. The
similarity matcher is confused by the
presence of DueDate and ShipDate and
is unable to resolve the ambiguity cor-
rectly.

5. Sensitivity of the parser to grammar and
spelling. Example -

(a) How many purchases of amount 200
took place in the last month? - The in-
correct grammar of the sentence causes
the dependency parser to generate an in-
correct parse tree, as a result of which
the mapper is unable to generate a query

6. Sensitivity of Named Entity Recognition to
case information. Example -

(a) Sales last year in the region southeast
asia - both the dependency parser and
the NER system fail to recognize south-
east asia as a proper noun or Named En-
tity, and hence the term is not included
in the constraints.

5 Conclusions and Future Work

In this paper, we have described a novel natural
language interface to real world databases built us-
ing syntactic parse trees for query parsing and a
similarity model composed of word-embeddings,
WordNet and database schema rules for mapping
the tokens to SQL.

By choosing a real-world database like Adven-
tureWorks which has 67 tables spanning across
5 scenarios, our evaluation is much closer to in-
dustry requirements than a simple geological fact
database like GeoBase that has 8 tables in all.

Since many NLIs like C-Phrase, Elf, and the
Spanish NLI described in (Pérez, 2016) have
bench-marked their performance against Atis2
(Garofolo et al., 1993), Geobase and Geo-
Query250 5 , we would like to evaluate our results
against these datasets in future.

We have also shown that we were able to han-
dle queries about three different domains without
manual configuration changes, because we lever-
aged a very generic word embedding model that
was trained on the Google News corpus, and a
WordNet thesaurus to resolve the tables of a given
domain. In future, we would also be enriching the

5http://www.cs.utexas.edu/users/ml/nldata/geoquery.html

auto-configuration phase by using word embed-
ding enriched SynSets (Rothe and Schütze, 2015).

We are improving our system by adding support
for complex SQL queries like nested queries and
we also plan to make it a dialog system that is able
to handle state and context. A typical conversation
that we would like to handle in the future is :

Q: Who were the top 10 salesmen of
2002?

A: This query lists the top 10 salesmen
with the highest sales.

Q: Sort them by their department

A: This query resolves the coreference
their to the top 10 salesmen and them
by their respective departments. This in-
formation would be fetched by creating
an SQL JOIN operation on the employee
table.

References
Ana-Maria Popescu, Oren Etzioni, and Henry Kautz.

Towards a theory of natural language interfaces to
databases. Proceedings of the 8th international con-
ference on Intelligent user interfaces. ACM, 2003.

Barbara J. Grosz, Douglas E. Appelt, Paul A. Martin,
and Fernando CN Pereira. TEAM: an experiment in
the design of transportable natural-language inter-
faces. Artificial Intelligence 32, no. 2 (1987): 173-
243.

Beatrice Santorini Part-of-speech tagging guidelines
for the Penn Treebank Project (3rd revision). 1990

Chris D Paice Another stemmer. SIGIR Forum, 24(3),
56-61, 1990.

Edgar F Codd A relational model of data for large
shared data banks. Communications of the ACM
13.6 (1970): 377-387.

Elf Natural-language database interfaces from elf soft-
ware co. http://www.elfsoft.com. Accessed 25 Aug
2016

E. V. Smith, K. Crockett, A. Latham, and F. Bucking-
ham. SEEKER: A Conversational Agent as a Nat-
ural Language Interface to a relational Database.
Proceedings of the World Congress on Engineering
2014 Vol I, WCE 2014, July 2 - 4, 2014, London,
U.K.

Fei Li, and H. V. Jagadish Constructing an interactive
natural language interface for relational databases.
Proceedings of the VLDB Endowment 8.1 (2014):
73-84.313

George A. Miller, Richard Beckwith, Christiane Fell-
baum, Derek Gross, and Katherine J. Miller. Intro-
duction to WordNet: An on-line lexical database. In-
ternational journal of lexicography 3, no. 4 (1990):
235-244.

Ion Androutsopoulos, Graeme D. Ritchie, and Peter
Thanisch. Natural language interfaces to databas-
esan introduction. Natural language engineering
1.01 (1995): 29-81.

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. Incorporating Non-local Information into
Information Extraction Systems by Gibbs Sampling.
Proceedings of the 43nd Annual Meeting of the
Association for Computational Linguistics (ACL
2005), pp. 363-370.

Joaquı́n Pérez Comparative study on the customiza-
tion of natural language interfaces to databases.
SpringerPlus 5.1 (2016): 1

John Garofolo et al. ATIS2 LDC93S5. Web Download.
Philadelphia: Linguistic Data Consortium, 1993.

Madeleine Bates Rapid porting of the parlance nat-
ural language interface. Proceedings of the work-
shop on Speech and Natural Language. Association
for Computational Linguistics, 1989.

Martin F. Porter An algorithm for suffix stripping. Pro-
gram 14.3 (1980): 130-137.

Martin F. Porter Snowball: A language for stemming
algorithms. 2001

Michael Minock C-Phrase: A system for building ro-
bust natural language interfaces to databases. Data
& Knowledge Engineering 69, no. 3 (2010): 290-
302.

Michael Minock, Peter Olofsson, and Alexander
Nslund. Towards building robust natural language
interfaces to databases. In International Conference
on Application of Natural Language to Information
Systems, pp. 187-198. Springer Berlin Heidelberg,
2008

Sascha Rothe, and Hinrich Schütze. Autoextend: Ex-
tending word embeddings to embeddings for synsets
and lexemes Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing, pages 17931803, Beijing,
China, July 26-31, 2015.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. Efficient estimation of word representations
in vector space. arXiv preprint arXiv:1301.3781
(2013).

Tomas Mikolov and Jeffrey Dean. Distributed repre-
sentations of words and phrases and their composi-
tionality. Advances in neural information process-
ing systems (2013).

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
Linguistic Regularities in Continuous Space Word
Representations. In Proceedings of NAACL HLT,
2013a.

Vladimir I. Levenshtein Binary codes capable of cor-
recting deletions, insertions and reversals. In Soviet
physics doklady, vol. 10, p. 707. 1966.

W. Woods, R. Webber Kaplan. B. The Lunar Sciences
Natural Language Information System. Final Re-
port, Bolt Beranek and Newman Inc., Cambridge,
Massachusetts. No. 2378. BBN Report, 1972.

314

