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Abstract

With the phenomenal growth in social me-
dia, citizens are coming forward to partic-
ipate more in discussions on socially rel-
evant topics including government poli-
cies, public health etc. India is not an ex-
ception to this, and the website mygov.in
launched by the Government of India acts
as a platform for discussion on such topics.
People raise their viewpoints as comments
and blogs on various topics. In India, be-
ing a diverse country, citizens write their
opinions in different languages, which are
often in mixed-languages. Code-Mixing
refers to the mixing of two or more lan-
guages in speech or in a text, and this
poses several challenges. In this paper, we
propose a deep learning based system for
opinion mining in an environment of code-
mixed languages. The insights obtained
by analyzing the techniques lay the foun-
dation for better lives of citizens, by im-
proving the efficacy and efficiency of pub-
lic services, and satisfying complex infor-
mation needs arising within this context.
Moreover, understanding the deep feelings
can help government to anticipate deep so-
cial changes and adapt to population ex-
pectations, which will help building Smart
city.

1 Introduction

The report as published by Statista shows that
there has been a phenomenal growth in the use
of social media and messaging applications. It
has grown 203 percent year-on-year in 2013, with
overall application use rising 115 percent over the
same period. This implies that 1.61 billion people
are now active in social media around the world

and this is expected to rise to 2 billion users in
2016, led by India. The research also reveals that
users daily spend approximately 8 hours on digi-
tal media including social medias and and mobile
internet usages.

At the heart of this interest is the ability for
users to create and share contents via a variety of
platforms such as blogs, microblogs, collaborative
wikis, multimedia sharing sites, social network-
ing sites etc. The unprecedented volume and vari-
ety of user-generated contents, as well as the user
interaction networks constitute new opportunities
for understanding social behavior and building so-
cially intelligent systems. Therefore, it is impor-
tant to investigate tools and methods for knowl-
edge extraction from social media data.

In social media, contents are often written in
mixed-languages, and this phenomenon is known
as code-mixing. Code-Mixing or code-switching
is defined as the embedding of linguistic units such
as phrases, words and morphemes of one language
into an utterance of another language. This phe-
nomenon is prevalent among bi-lingual and mul-
tilingual individuals. This is a well-known trait
in speech patterns of the average bilingual in any
human society all over in the world. With the phe-
nomenal growth in social media, people from dif-
ferent dialects participate on web portals to show-
case their opinions. This diversity of users con-
tributes to the non-uniformity in texts and as a re-
sult the data generated lead to code-mixed. There
is also a tendency among the users to write in
their own languages, but in transliterated forms.
Transliteration is the process of converting a text
from one form to the other. Transliteration is not
merely a task of representing sounds of the origi-
nal characters, ideally it should be done accurately
and unambiguously. Hence, we must have a way
to convert transliterated text into its own original
script for effective analysis. One of the crucial249



issues in code-mixed languages is to identify the
origin of a text for further processing. Hence, we
must have a way to discriminate texts written in
different scripts. Given a text, the task is to iden-
tify the origin of a text, i.e. the language in which
it belongs to. In this paper we propose an approach
based on deep learning for sentiment analysis1 of
the user comments written in a well-known public
portal, namely mygov.in, where citizens express
their opinions on different topics or government
schemes. This will facilitate urban informatics
(for building Smart Cities), where the goal is to an-
alyze the opinions that lay the foundation for im-
proving the lives of citizens, by improving the effi-
cacy and efficiency of public services, and satisfy-
ing complex information needs arising within this
context. Moreover, understanding the deep feel-
ings can help government to anticipate deep so-
cial changes and adapt to population expectations,
which will help building smart city. The first task
that we address is a classification problem, where
each word has to be labeled either with one of the
two classes, either Hindi or English 2. We propose
a technique for language identification, which is
supervised. We also do back-transliteration when-
ever necessary. The final step is to find the opin-
ion expressed in each comment. We propose a
deep convolutional neural network (CNN) based
approach to solve this particular problem.

Most existing work on sentiment analysis
makes use of handcrafted features for training of
the supervised classifier. This process is expensive
and requires significant effort to extract features.
Moreover, handcrafted features which are gener-
ally specific to any particular domain requires to
be altered once we focus on a different domain.
Our proposed model does not use any handcrafted
features for sentiment classification, and hence can
be easily adapted to a new domain and language.
The contributions of the present research can be
summarized as follows: (i). we propose a deep
learning based approach for opinion mining from
a code-mixed data (ii). we develop a system that
could be beneficial for building a smart city by
providing useful feedback to the govt. bodies (iii).
we create resources for sentiment analysis involv-
ing Indian language code-mixed data.

The rest of the paper is structured as follows:

1Here we use the terms opinion mining and sentiment
analysis interchangeably

2Here, we consider that our contents are mixed in nature
that contains either English or Hindi or both.

Comments
Language

Identification
Back-Transliteration Opinion

Swachh bharat is a good
initiative to unite every one.
i wish our PM for the same

E E E E E
E E E E E.

E E E E E E E
Not-Required Positive

jab tak puri tarh se polithin
ke prayog band nhi hoga swatch

bharat abhiyan kabhi pura nhin hoga

H H H H H H
H H H H H H
H H H H H H

jb tk p� rF trh s� pAlFETn
k� þyog b�d nhF hogA -vQC

BArt aEByAn kBF p� rA nhF\ hogA
Negative

Table 1: Examples of comments along with the
output at various steps of the proposed approach.
Langage identification E: English, H: Hindi.

In Section 2 we present a brief literature overview.
Pre-processing, annotation and statistics of the re-
sources that we created are described in Section-3.
Section-7 gives the details of our proposed convo-
lutional network model to identify opinion from
comments. The experimental setup along with the
details of external data are described in Section-8.
The obtained results, key observations and error
analysis are discussed in Section-9. Finally, we
conclude in Section-10.

2 Related Works

Nowadays deep learning models are being used to
solve various natural language processing (NLP)
problems. Usually, the input to any deep learn-
ing based model is the word representation. Some
of the commonly used word representation tech-
niques are word2vec (Mikolov et al., 2013), Glove
(Pennington et al., 2014), Neural language model
(Mikolov et al., 2010), etc. Distributed represen-
tation of a word is one of the popularly used mod-
els (Hinton, 1984; Rumelhart et al., 1988). Sim-
ilarly recurrent neural network (Liu et al., 2015)
has been used for modeling sentence and docu-
ments. The numeric vectors, used to represent
words are called word embedding. Word embed-
ding has shown promising results in variety of the
NLP applications, such as named entity recogni-
tion (NER) (dos Santos et al., 2015), sentiment
analysis (Socher et al., 2013b) and parsing (Socher
et al., 2013a; Turian et al., 2010). The convolu-
tional neural network(CNN) (LeCun et al., 1998)
was originally proposed for computer vision. The
success of CNN has been seen in few of the NLP
applications such as sentence modeling (Kalch-
brenner et al., 2014), semantic parsing for ques-
tion answering (Yih et al., 2014), query retrieval
in web search (Shen et al., 2014), sentence clas-
sification (Kim, 2014; Socher et al., 2013b) etc.
Collobert (Collobert et al., 2011) has also claimed
the effectiveness of CNN in traditional NLP task
such as PoS tagging, NER etc. Deep learning
based architectures have shown success for sen-250



timent classification of tweets, such as (Tang et
al., 2014; dos Santos and Gatti, 2014). The do-
main adaption for large scale sentiment classifi-
cation has been handled through deep learning
model (Glorot et al., 2011). In social media con-
tents, code-mixing where more than one language
is mixed is very common that demands special at-
tention. Significant characteristics of code mix-
ing have been pointed out in some of the works
such as (Milroy and Muysken, 1995; Alex, 2007;
Auer, 2013). In a multi-lingual country like India,
code-mixing poses a big challenge to handle the
contents in social media. Chinese-English code
mixing in Macao (San, 2009) and Hong Kong (Li,
2000) indicated that linguistic constructions pre-
dominantly trigger code mixing. The work re-
ported in (Hidayat, 2012) showed that Facebook
users tend to mainly use inter-sentential switching
over intra-sentential. A code-mixed speech cor-
pus of English-Hindi on student interviews is pre-
sented in (Dey and Fung, 2014). It shows analy-
sis and motivations of code mixing, and discusses
in what grammatical contexts code mixing occurs
(Dey and Fung, 2014) . To the best of our knowl-
edge we do not see the use of any deep learning
that addresses the problem of sentiment analysis
in a code-mixed environment.
In our current work we discuss the scope for text
analysis based on deep learning architecture on
government data / citizen views which can very
well frame a new concept of better e-governance.

3 Resource Creation

We design a web-crawler to crawl user comments
from mygov.in portal. We consider the comments
written for the section of ‘cleanliness in school
curriculum’ under Swachh Bharat Abhiyaan. In
total 17,155 cleaned3 comments were crawled
from the web 4. The contents are mixed in na-
ture containing both English and Hindi. Hence, it
poses several challenges to extract meaningful in-
formation.

3.1 Pre-processing

We pre-process the crawled data in order to effec-
tively extract opinion from the comments. Since
we extract the comments from an open platform
where anyone has the freedom to give their opin-

3this number is after the Pre-processing of comments
4https://mygov.in/group-issue/cleanliness-school-

curriculum/

ions the way they want, there was a necessity to
pre-process the data before its use. We perform
the following steps:
• First we manually remove comments

which are neither in English script
nor in Devanagari (Hindi). For e.g.,

• While analyzing the comments, we noticed
that some of the comments having shorter
length do not contain any vital opinion.
Therefore, we removed all the comments
which have less than 5 words. For e.g. Clean
India, Swachh Bharat Abhiyan etc.
• We define regular patterns to discard the

strings containing html symbols, e.g. &#039,
&quot, &#8364, &trade.
• We remove all webpage and HTML refer-

ences from the data by using proper regu-
lar expressions. For e.g. https://www.
youtube.com/watch?v=wP1bmk.
• We also observe that there are quite a few

cases where the comments are duplicated.
We remove all the duplicates and keep only
one copy for each comment.

3.2 Data Annotation

In order to test the effectiveness of our method we
manually annotate a portion of the data. It is to
be noted that we perform language identification
to identify the origin of written text. Thereafter,
we distribute the data into two groups, one con-
taining comments in English and the other con-
taining comments in Hindi. We manually an-
notate 492 Hindi and 519 English comments us-
ing two sentiment classes, positive or negative.
Sample examples are given in Table-1. The data
were annotated by two experts. In order to as-
sess the quality of a annotations by both annotators
we calculate inter-rater agreement. We compute
Cohen’s Kappa coefficient (Kohen, 1960) agree-
ment ratio that showed the agreements of 95.32%
and 96.82% for Hindi and English dataset, respec-
tively. We present a brief statistics of our crawled-
data in Table-2.

4 Language Identification(LI)

The problem of language identification concerns
with determining the origin of a given word. The
task can be modelled as a classification problem,
where each word has to be labeled with one of
the two classes, Hindi or English. Our proposed251



# of comments 17155

# of sentences 54568

Average No. of sentence/comments 3

No. of identified English Coments 14096

No. of identified Hindi Coments 3059

Total no. of tokens 10, 26, 612

Table 2: Statistics of crawled data from mygov.in

method for language identification is supervised.
In particular we develop the systems based on
four different classifiers, random forest, random
tree, support vector machine and decision tree.
For faster computation, we use Sequential Mini-
mal Optimization (Platt, 1998) implementation of
SVM. Random tree (Breiman, 2001) is basically a
decision tree, and in general used as a weak learner
to be included in some ensemble learning method.
Random forest (Breiman, 2001) is a kind of en-
semble learner. We use the Weka implementa-
tions5 of these classifiers. In order to further im-
prove the performance we construct an ensemble
by combining the decisions of all the classifiers us-
ing majority voting. We use the Character n-gram,
word normalization and gazetteer based features
as used in (Gupta et al., 2014) to build our model.
The accuracy of this model on a gold standard test
set was 87.52%. A public comment is a sequence
of sentences, which are made up of several word-
level tokens. Each token of a sentence is labeled
with one of the classes (denoting English or Hindi)
that correspond to its original script. Based on the
classes assigned at the token-level we classify the
sentence based on the majority voting. The sen-
tence is classified to belong to that particular class
which appears most in the sentence. Mathemati-
cally, it can be defined as follows:

S = {x|x ∈ lang(t),∀t ∈ T}

Lang(comments) = argmax
s∈S

(f(s)) (1)

where f(s) is cardinality function, x ∈ {Hindi,
English} lang(t) is the language of a token t; and
T denotes all the tokens in a comment.

5 Transliteration

Most of Hindi comments are in their transliterated
forms. In order to train an effective word embed-
ding model we need to have enough data. We have

5http://www.cs.waikato.ac.nz/ml/weka/

abundant of data sources from Hindi Wikipedia.
We back-transliterate the roman script into De-
vanagari script. A transliteration system takes as
input a character string in the source language and
generates a character string in the target language
as output. The transliteration algorithm (Ekbal et
al., 2006) that we used here can be conceptual-
ized as two-levels of decoding: (a) segmenting
source and target language strings into transliter-
ation units (TUs); and (b). defining appropriate
mapping between the source and target TUs by re-
solving different combinations of alignments and
unit mappings. The TU is defined based on a reg-
ular expression. For a given token belonging to
‘non-native’ script X6 written in English Y as the
observed channel output, we have to find out the
most likely English transliteration Y that maxi-
mizes P (Y |X). The Indic word(Hindi) is divided
into TUs that have the pattern C+M, where C rep-
resents a vowel or a consonant or conjunct and M
represents the vowel modifier or matra. An En-
glish word is divided into TUs that have the pattern
C∗V ∗, whereC represents a consonant and V rep-
resents a vowel (Ekbal et al., 2006). The most ap-
propriate mappings between the source and target
TUs are learned automatically from the bilingual
training corpus. The transliteration of the input
word is obtained using direct orthographic map-
ping by identifying the equivalent target TU for
each source TU in the input and then placing the
target TUs in order. We have used three types of
statistical model to obtained transliterated output.
Model-I: This is a kind of monogram model
where no context is considered, i.e.

P (X,T ) = Πk
i=1P (< x, t >i) (2)

Model-II: This model is built by considering next
source TU as context.

P (X,T ) = Πk
i=1P (< x, t >i |xi+1) (3)

Model-III: This model incorporates the previous
and the next TUs in the source and the previous
target TU as the context.

P (X,T ) = Πk
i=1P (< x, t >i | < x, t >i−1, xi+1)

(4)
The overall transliteration process attempts to

produce the best output for the given input word

6Denotes Indian languages written in roman script and
mixed with English language252



using Model-III. If the transliteration is not ob-
tained then we consult Model-II and then Model-
I in sequence. If none of these models produces
the output then we consider a literal transliteration
model developed using a dictionary. The accu-
racy of this model on a gold standard test set was
83.82%.

6 Baseline Models for Sentiment
Analysis

In this section we describe the baseline model that
we build for sentiment analysis.

6.1 Representation of comments
An effective representation of comment is impor-
tant to uncover the opinion associated with a com-
ment. Since we deal with a code-mixed environ-
ment, it is not very straightforward to represent the
tokens. Here, we describe the representation tech-
niques used only for our baseline input. The input
to the CNN based sentiment analysis model is dis-
cussed in Section-7.

Representation of English comments: We use
the well-known word2vec7 tool to generate the
word vectors of each token. We use freely avail-
able Google news word embedding model trained
on news data. A comment is finally represented by
a vector composed of the word vectors of the indi-
vidual tokens. The vector is generated as follows:

Reps(comment) =

∑
ti∈Comment(T )Reps(ti)

number Of Lookups
(5)

Here,Reps(t) is the token representation obtained
by Google news word embedding and number of
lookups is equal to the number of tokens from the
comments present in the word embedding model.

Representation of Hindi comments: For Hindi
we build our own word embedding model. For
training we use the data sets obtained from the
Hindi Wikipedia and some other sources (Joshi.
et al., 2010; Al-Rfou et al., 2013) including all the
comments that we crawled. We use skip-gram rep-
resentation (Mikolov et al., 2013) for the training
of word2vec tool. Further, we use Eq-5 to obtain
the representations of Hindi comments. We set di-
mension to 200 and window size as 5. After we
represent the comments in terms of vectors, we de-
velop two baselines to compare with our proposed
approach.

7https://code.google.com/archive/p/word2vec/

6.2 Baseline-1

The hypothesis behind this baseline being the fact
that, if two comments have the same sentiments
(positive or negative) then the similarity between
them would be higher than any other comments
having different sentiments. We use the IMDB
movie reviews data sets (Maas et al., 2011) con-
taining 2K positive and 2K negative reviews for
English and Hindi movie reviews, and tourism
data (Joshi. et al., 2010) to compare the opin-
ions represented in our Hindi comments. This al-
gorithm takes as input a comment and the source
documents (i.e. datasets that we collected). Each
comment and all the documents belonging to a
particular set (positive set: containing all the posi-
tive comments and negative set: containing all the
negative comments) are represented as vectors fol-
lowing the representation techniques that we dis-
cussed in Subsection-6.1. We compute the cosine
similarity of a given comment with respect to all
the documents present in a ‘positive set’ or ‘nega-
tive set’. Based on the dominance of average co-
sine similarity, we assign the opinion. We sketch
the steps in Algorithm-1.

6.3 Baseline-2: SVM based Model

We construct our second baseline using SVM that
classifies the comments into positive and negative.
The model is trained with the word-embedding
representations as discussed in Subsection-6.1.
For English, we use the IMDB movie review
dataset for training. For Hindi, we use Hindi
movie reviews and tourism datasets which were
used in building the first baseline. In order to per-
form the experiment we use SVM implementation
libsvm (Chang and Lin, 2011) with linear kernel.

7 Sentiment Analysis using CNN

We propose a method for sentiment analysis using
convolutional neural network (CNN). Our model
is inspired by the network architectures used in
(Kim, 2014; Kalchbrenner et al., 2014) for per-
forming various sentence classification tasks. Typ-
ically, a CNN is composed of sentence represen-
tation matrix, convolution layer, pooling layer and
fully connected layer. Our proposed system archi-
tecture is shown in Fig-1. Now We describe each
component of CNN in the following:253



Input: A comment C, Positive reviews data,
Negative reviews data

Output: Sentiment of a comments Sent(C)
nP= no. of Positive reviews data
nN=no. of Negative reviews data
begin

Calculate the cosine similarity of
comment with every positive review

for i = 1 to nP do

sim(C,Pi) =
~Reps(C) · ~Reps(Pi)

‖Reps(C)‖‖Reps(Pi)‖

end
Calculate the average positive similarity
AvgPoS(C) of comment C as follows:

AvgPoS(C) =

nP∑
i=1

sim(C,Pi)

nP

Calculate the cosine similarity of
comment with every negative review.
for i = 1 to nN do

sim(C,Ni) =
~Reps(C) · ~Reps(Ni)

‖Reps(C)‖‖Reps(Ni)‖

end
Calculate the average positive similarity
AvgNeg(C) of comment C as follows:

AvgNeg(C) =

nN∑
i=1

sim(C,Ni)

nN

if AvgPoS(C) >AvgNeg(C) then
Sent(C) = Positive ;

else
Sent(C) = Negative ;

end
return Sent(C)

end
Algorithm 1: Sentiment of comments using
benchmark data sets

7.1 Sentence Representation Matrix

The input to our model is a comment C having ‘n’
words. Each token ti ∈ C is represented by its
distributed representation x ∈ Rk. The distributed
representation x is looked up into the word embed-
ding matrix W. We build a sentence representation
matrix C by concatenating the distributed repre-

sentation xi for every ith token in the comment
C. The sentence representation matrix x1:n can be
represented as:

x1:n = x1 ⊗ x2 . . .⊗ xn (6)

where⊗ is concatenation operator. After this step,
network learns to capture low-level features of
words from word embedding, and then project to
the higher levels. In the next step network per-
forms the series of operations on the matrix that
we obtained.

7.2 Convolution
In order to extract the common patterns through-
out the training set, we use convolution operation
on the sentence representation matrix. A convolu-
tion operator is applied on sentence representation
that involves a filter F ∈ Rm×k, which is applied
to a window of m words and produces a new fea-
ture ci. A feature ci is generated from window of
word xi:i+m−1 as follows.

ci = f(F.xi:i+m−1 + b) (7)

where f is non-linear function and b is a bias term.
The feature ci is the result of element-wise product
between a filter matrix F and column of xi:i+m−1,
which is then summed to a single value in addition
of bias term b. This filter F can be applied to each
possible window of a word in comment C. This
generates a set of features which are also called as
feature map. More formally possible window ofm
words in a comment C having size n would be {
x1:h, x2:h+1, . . . , xn−m+1:n }. A feature map c can
be generated by applying each possible window of
word.

c = [c1, c2, . . . , cn−h+1] (8)

The process described above is able to extract on
feature map with one filter matrix. In order to
form a deeper representation of data, deep learning
models apply a set of filters that work in parallel
generating multiple feature maps.

7.3 Pooling
The aim of pooling layer is to aggregate informa-
tion and reduce representation. The output of con-
volution layer is fed into the pooling layer. There
are several ways to apply pooling operations on
the output of convolution layer. The well-known
pooling operations are: max pooling, min pooling,
average pooling, and dynamic pooling. We ap-
ply max pooling operation (Collobert et al., 2011)254



over the feature map and take the maximum value
as the feature corresponding to this particular filter
F.

7.4 Fully Connected Layer

Finally, the output of pooling layers p is subjected
to a fully connected softmax layer. It computes
the probability distribution over the given labels
(positive or negative):

P (y = j|c, p, a) = softmaxj(p
Tw + a)

=
ep

Twj+aj

∑K
k=1 e

pTwk+ak

(9)

where bk and wk are the bias and weight vector of
the kth labels.

8 Datasets and Experimental setup

8.1 Datasets

Our language identification system is trained
on FIRE-2014 (Choudhury et al., 2014) Hindi-
English query word labeling data sets. We back-
transliterate FIRE-2013 (Roy et al., 2013) data
sets. Detailed statistics of training and test data
used in our experiment are shown in Table-4.

8.2 Regularization

In order to overcome the effect of overfit of net-
work, we apply dropout on the penultimate layer
of the network with a constraint on l2-norms of the
weight vectors (Hinton et al., 2012). Dropout pre-
vents feature co-adaptation by randomly setting to
zero a portion of hidden units during the forward
propagation when passing it to the softmax output
layer.

8.3 Network Training and Hyper-parameters

We use the rectified linear units (Relu) through-
out training as a non-linear activation function.
However, we also experiment with sigmoid and
tanh but it could not perform better than Relu.
For English, we use 15% of training data of En-
glish movie reviews as the development data to
fine-tune the hyper-parameters of CNN. Similarly,
we use 10% of training data of Hindi reviews as
the development data to tune the hyper-parameter
of CNN. The stochastic gradient descent (SGD)
over mini-batch is used to train the network and
backpropagation algorithm (Hecht-Nielsen, 1989)
is used to compute the gradients. The Adadelta

(Zeiler, 2012) update rule is used to tune the learn-
ing rate. A brief details of hyper-parameters are
listed in Table-5.

Parameter Parameter Name English CNN Hindi CNN
dx Word embedding dimension 300 200
n Maximum length of comments 50 50
m Filter window sizes 3,4,5,6 3,4,5,6
c Maximum feature maps 100 100
r Dropout rate 0.5 0.5
e Maximum epochs 50 60

mb Mini-batch size 50 50
λ Learning rate 0.2 0.2

Table 5: Neural network hyper-parameters

9 Results and Discussion

Results of our proposed model based on deep
CNN are shown in Table-3. The first baseline
model which is based on cosine similarity measure
does not perform well. We observe that this is bi-
ased towards a specific class. However, the second
baseline performs well to identify the opinions for
both Hindi and English. Performance of our pro-
posed CNN based model is encouraging for both
the languages. We experiment with different filter
sizes for both the languages. The effect of varying
window size is shown in Fig-2. From further anal-
ysis of the system outputs, we come up with the
following observations:
• Performance of the proposed model for Hindi

is not at par with English. One possible rea-
son could be the less amount of data that
we use to train the network. The amount of
data on which the word embedding model is
trained is also less for Hindi.
• Results show that, for Hindi, the system per-

forms better for the negative opinion. This
may be due to the un-equal distribution (1035
vs.559 of negative vs. positive) of training in-
stances.
• Model performance depends upon the size

of filter window being used to train the net-
work. It is clearly shown in Fig-2. The sys-
tem performs well with window size com-
bination {3,4,5} for Hindi. The best suited
window size(s) for English is {4,5,6}.

9.1 Error Analysis

We analyze the system outputs to understand the
shortcomings of the proposed system. We observe
the following:

1. We observe that many errors were due to
incorrect classification of positive comments255



Figure 1: Proposed system architecture

Model
English Data Hindi Data Overall

R P F Acc R P F Acc R P F Acc
Baseline-1 58.75 70.89 50.01 56.06 51.05 54.73 36.77 44.71 54.90 62.81 43.38 50.38

Baseline-2 67.21 67.73 67.25 67.82 57.70 70.5 54.30 57.72 62.45 69.11 60.77 62.77

Code-mixed-CNN 71.90 71.80 71.66 71.68 65.21 68.71 60.68 61.58 68.56 70.25 66.17 66.63

Table 3: Results of baselines and the proposed model. The best results obtained from the window size
combination {3,4,5} with feature maps size 100 are reported here. Here, R : Recall, P: Precision, F:
F-score and Acc: Accuracy

Language
Train Test

Sources
# Positive
instances

# Negative
instances

Sources
# Positive
instances

# Negative
instances

English
IMDB movie

Review(Maas et al., 2011)
2000 2000

Our crawled
data

279 240

Hindi

Tourism Review(Joshi. et al., 2010) 98 100
Our crawled

data
282 210

Movie Review(Joshi. et al., 2010) 127 125
SAIL(Patra et al., 2015) 334 810

Total 559 1035

Table 4: Training and test data statistics used in
our experiments

into negative. The possible reason is that the
comments seem to have conflicting opinions.
For e.g., “The scheme is fantastic but it
would not be successful until polybag get
banned....”

2. Some positive comments were mis-classified
as negative due to the presence of strong neg-
ative triggeres in context of suggestion, but
not in the context of government scheme8.
For e.g.
“ is aEByAn s� bh� t K� q h� pr aAp
e�sA kAn� n lAIy� Ejss� jo g�dgF kr�
us� p{s� Brn� pw� aOr d\X ho ”
(very happy with the campaign but imple-
ment a law so that those who litter get

8Suggestion is given with respect to any government
scheme.

Figure 2: Effect of varying window size on accu-
racy in CNN model on both languages

penalized and punished.) In this example,
opinion is positive about the scheme, but user
has given some suggestions with negative
opinion bearing words such as p{s� Brn� and
d\X .

3. A number of errors were also due to anno-
tations of suggestive comments as positive.
Our proposed approach often fails to classify
the suggestive comments properly due to the
presence of negative triggers such as should
not, should also, does no mean, very few,256



but, at least, should be added etc.. “Swach
bharat abhiyaan should also include clean-
ing of polluted rivers”
(iv). The model could not perform well to
classify the comments which are conditional
in nature. For e.g., “unless we make judicial
system fair, fast, economical and secure we
won’t see good days I bet my life on it.” Sys-
tem predicts this comment as positive, but ac-
tual opinion should be negative.

10 Conclusion

In this paper we propose a deep learning based
opinion miner that could be beneficial for urban
informatics, where the goal is to work for the bet-
terment of human lives through social media net-
works. We build this model based on the user
comments crawled from Mygov.in portal where
users write comments on various topics related to
govt schemes. We create our own resources in or-
der to build the model. One of the major chal-
lenges was to handle the code-mixed cases where
the language of more than one script is mixed. We
have developed algorithms to solve three crucial
problems, viz. language identification, machine
transliteration and opinion mining. Experiments
on Hindi and English show encouraging results for
the tasks. Further we would like to enhance the
size of the corpus, build deep CNN models utiliz-
ing hand-crafted features and study the effective-
ness of the proposed model.
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and Grégoire Mesnil. 2014. Learning semantic rep-
resentations using convolutional neural networks for
web search. In Proceedings of the 23rd Interna-
tional Conference on World Wide Web, pages 373–
374. ACM.

Richard Socher, John Bauer, Christopher D Manning,
and Andrew Y Ng. 2013a. Parsing with compo-
sitional vector grammars. In In Proceedings of the
ACL conference. Citeseer.

Richard Socher, Alex Perelygin, Jean Y Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. 2013b. Recursive deep
models for semantic compositionality over a senti-
ment treebank. In Proceedings of the conference on
empirical methods in natural language processing
(EMNLP), volume 1631, page 1642. Citeseer.

Duyu Tang, Furu Wei, Bing Qin, Ting Liu, and Ming
Zhou. 2014. Coooolll: A deep learning system for
twitter sentiment classification. In Proceedings of
the 8th International Workshop on Semantic Evalu-
ation (SemEval 2014), pages 208–212.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: a simple and general method
for semi-supervised learning. In Proceedings of the
48th annual meeting of the association for compu-
tational linguistics, pages 384–394. Association for
Computational Linguistics.

Wen-tau Yih, Xiaodong He, and Christopher Meek.
2014. Semantic parsing for single-relation question
answering. In ACL (2), pages 643–648. Citeseer.

Matthew D Zeiler. 2012. Adadelta: an adaptive learn-
ing rate method. arXiv preprint arXiv:1212.5701.

258


