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Abstract

Systems that simultaneously identify and
classify named entities in Twitter typically
show poor recall. To remedy this, the task
is here divided into two parts: i) named en-
tity identification using Conditional Ran-
dom Fields in a multi-objective frame-
work built on Differential Evolution, and
ii) named entity classification using Vector
Space Modelling and edit distance tech-
niques. Differential Evolution is an evo-
lutionary algorithm, which not only opti-
mises the features, but also identifies the
proper context window for each selected
feature. The approach obtains F-scores of
70.7% for Twitter named entity extraction
and 66.0% for entity linking to the DB-
pedia database.

1 Introduction

Twitter has established itself as one of the most
popular social networks, with about 320 million
active users daily generating almost 500 million
short messages, fweets, with a maximum length of
140 characters (Twitter, 2016). The language used
is very noisy, with tweets containing many gram-
matical and spelling mistakes, short form of the
words, multiple words merged together, special
symbols and characters inserted into the words,
etc. Hence it is difficult to analyse and monitor
all types of tweets, and the vast number of tweets:
specific messages may need to be filtered out from
millions of tweets. Named entity extraction plays
a vital role when filtering out relevant tweets from
a collection. It is also useful for pre-processing
in many other language processing tasks, such as
machine translation and question-answering.

The paper is organized as follows: Section 2
describes related work on Twitter named entity

recognition and linkiri‘g. The actual Twitter narhéd
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identification methodology and different features
used are presented in Section 3. Section 4 focuses
on classification of the identified named entities
and their linking to DBpedia. Experimental results
and a discussion of those appear in Section 5 and
Section 6, respectively, while Section 7 addresses
future work and concludes.

2 Related Work

The noisiness of the texts makes Twitter named
entity (NE) extraction a challenging task, but sev-
eral approaches have been tried: Li et al. (2012)
introduced an unsupervised strategy based on dy-
namic programming; Liu et al. (2011) proposed
a semi-supervised framework using a k-Nearest
Neighbors (kNN) approach to label the Twitter
names and gave these labels as an input feature
to a Conditional Random Fields, CRF (Lafferty
et al., 2001) classifier, achieving almost 80% ac-
curacy on their own annotated data. Supervised
models have been applied by several authors, e.g.,
Ritter et al. (2011) who applied Labeled LDA (Ra-
mage et al., 2009) to recognise possible types of
the Twitter names, and also showed that part-of-
speech and chunk information are important com-
ponents in Twitter NE identification.

A shared task challenge was organized at the
ACL 2015 workshop on noisy user-generated text
(W-NUT) (Baldwin et al., 2015), with two sub-
tasks: Twitter named entity identification and clas-
sification of those named entities into ten differ-
ent types. Of the eight systems participating, the
best (Yamada et al., 2015) achieved an F; score
of 70.63% for Twitter name identification and
56.41% for classification, by combining super-
vised machine learning with high quality knowl-
edge obtained from several open knowledge bases
such as Wikipedia. Akhtar et al. (2015) used a
strategy based on differential evolution, getting F;
scores of 56.81% for identification and 39.84% for
classification.
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Figure 1: Twitter Named Identification and Classification system.

The challenge was repeated at W-NUT 2016
(Strauss et al., 2016), with ten participating teams.
The best system (Limsopatham and Collier, 2016)
used a bidirectional Long Short-Term Memory
(LSTM) recurrent neural network model, obtain-
ing F-scores of 65.89% for Twitter name iden-
tification and 52.41% for the classification task.
Another system (Sikdar and Gambick, 2016) uti-
lized a CREF classifier built on a large feature set
to get the second highest F-score on identification:
63.22%, but lower (40.06%) on classification.

A specific shared task on Twitter named en-
tity recognition and linking (NEEL) to DBpedia
was held at the #Microposts2016 workshop (Rizzo
et al., 2016), with the problem defined as to
identify named entities from the tweets (called
‘Strong_typed_mention_match’) and to link them
to the DBpedia database (‘Strong_link_match’).
DBpedia extracts structured information from
Wikipedia and links different Web data sets to
Wikipedia data, allowing for sophisticated queries
against Wikipedia. The DBpedia knowledgebase
is available in 125 languages, with the English ver-
sion describing 4.58 million items, out of which
4.22 million are classified in a consistent ontology.

Five teams participated in the #Microposts2016
NEEL challenge. However, most of the sy]s99

tems suffered from very low recall values in the
Twitter NE identification task and were actu-
ally unable to efficiently recognise Twitter names:
Two knowledge-based approaches (Caliano et al.,
2016; Greenfield et al., 2016) achieved F-scores
of 26.7% and 31.9%, respectively, due to recall
values of 18.8% and 24.0%. Two other systems
(Ghosh et al., 2016; Torres-Tramon et al., 2016)
produced recall values of 28.9% and 24.2%. The
best system (Waitelonis and Sack, 2016) achieved
recall, precision and F-measure values of 49.4%,
45.3% and 47.3%. In this system, each token is
mapped to gazetteers that are developed from the
DBpedia database. Tokens are discarded if they
match with stop words or are not nouns.

To increase recall and F-score, we take a
two-step approach to identifying and classifying
named entities in noisy user-generated texts. In
the first step, Twitter names are identified using
CRF within the framework of Differential Evo-
lution (Storn and Price, 1997). In step two, the
named entities are classified into seven categories
and linked to DBpedia using a vector space model
and edit distance techniques. The identified named
entities are also classified using CRF, and the out-
puts of the classification models are later com-
bined. Figure 1 shows the system architecture.



Figure 2: Chromosome representation of five available features; three are present and two absent.

3 Twitter Named Entity Identification

Twitter named entities are first extracted using
a supervised machine learning approach, namely
CRF in a Differential Evolution (DE) setting.
However, Twitter names contain a lot of noise,
making it difficult to identify them directly from
the texts, so some words are segmented: words
containing special characters (e.g., #, @, _), words
containing a lower-case letter followed by a upper-
case letter (e.g., ‘realDonaldTrump’ is split into
real, Donald and Trump), letters followed by
digits, etc. This section first briefly introduces
Multi-objective Differential Evolution and then
describes the DE-based Twitter name identifica-
tion procedure (the left side of Figure 1).

3.1

Differential Evolution (Storn and Price, 1997) is
a parallel direct search method over complex,
large and multi-modal landscapes, and in gen-
eral provides near-optimal solutions to an opti-
mization problem. In DE, the parameters of the
search space are encoded in the form of strings
called chromosomes. A collection of N such
strings is called a population, and is denoted
by D-dimensional parameter vectors X; g =
[$17i7g, T24,Gy+- > l‘D,i,G] ,i = 1, 2, ey N for
each generation (G. The initial vector population
is chosen randomly, which covers different points
in the search space.

For multi-objective optimization, more than one
objective or fitness function is associated with
each chromosome. These objective values rep-
resent the degrees of goodness of the string. DE
generates new parameter vectors (“mutation”) by
adding the weighted difference between two pop-
ulation vectors to a third vector. The mutated
vector’s parameters are then mixed (“crossover”)
with the parameters of another predetermined vec-
tor, the target vector. For selection, these [V trial
vectors are merged with the current population,
and the best IV solutions are chosen from these
2 x N candidate solutions based on dominaticif?

Multi-objective Differential Evolution

non-domination, and crowding distance. The pro-
cesses of mutation, fitness computation, crossover
and selection are executed for a pre-selected max-
imum number of generations.

3.2 DE-based Named Entity Extraction

When extracting named entities, suppose
that there are a number of available features
Fi(—m,n), Fo(—=m,n),... Fx(—m,n), where
K represents the total number of features, while
m and n denote the preceding and succeeding
context window lengths of each feature. Differ-
ential Evolution aims to find the relevant features
along with proper context windows and learn a
classifier using these features to optimize two
objective functions: precision and recall.

Each DE chromosome represents the number of
features along with their context windows, so the
length of the chromosome is D = K x 3. Each
feature consists of one bit and two integer values:
the bit represents presence or absence of a feature
(1 or 0), two integer values denote the length of the
preceding and succeeding context windows (0-5).
The algorithm proceeds as follows:

Chromosome Initialization: All chromosomes
in the first population generation are initialized
with random values within the search space. The
bit position feature value of ‘0’ indicates that the
particular feature is not participating in construct-
ing the classifier and ‘1’ indicates that the feature
is present in constructing the classifier using the
context features. The chromosome initialization is
shown in Figure 2, where features F}, F5 and Fj
are present, and features F5 and F are absent.

Fitness Computation: More than one fitness
function can be associated with each chromosome.
Suppose that k features are present in the chromo-
some and that the context window for each feature
is denoted by F),(—mp,n,) where 1 < p < k.
In Figure 2, the preceding and succeeding context
window lengths of F, F3 and Fj are respectively
2, 1), (1, 3) and (2, 2). The CREF classifier is
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Figure 3: Dominated and non-dominated solutions. Here solutions 1, 2, 3 and 4 are non-dominating in
relation to each other (rank 1). Solutions 5, 6 and 7 are also non-dominating to each other (rank 2), while
solution 8 is dominated by at least one solution from rank 1 or rank 2.

trained on the k features along with their context
features, and the DE search capability maximizes
the two objective values precision and recall.

Mutation: A mutant vector V; o1 is generated
for each target vector X according to

Vi,G+1 = Xrl,G + qu X (XTZ,G - XTB,G)

where {r1,72,r3} €{1,2,..., N}) are randomly
generated indices, Fiy,,, € [0, 1] a mutation factor,
and G resp. G+1 the current and next generations.

Crossover: Crossover is introduced to increase
the diversity of the mutant parameter vector: the
parameters of the mutant vector V; ¢ are mixed
with the parameters of the target vector X; g to
generate a trail vector U; g41:

Ui G+1 = (Ui 1,G41, Ui 2,G4+15 - - - » Wi, D,G+1)

where for j =1,2,..., D,

Vi1 2rdj < Cpoor j = jrq
Uij,G+1 = o
zija rd;>Cp and j# jra

where rd; € [0,1] is a randomly generated float-
ing point value, C,. € [0, 1] is the crossover con-
stant, and j.4 € {1,2,..., D} arandomly chosen
index ensuring that the trail vector gets at least one
parameter from the mutant vector.

Selection: To select the N best chromosomes
for the next generation G + 1, the trial popula-
tion is merged with the current population. These
2xN solutions are ranked based on domination and
non-domination relations in the objective function
space. A solution non-dominated if at least onll

of the objective values is better than another solu-
tion. If all objective values of a solution are better
than another solution, the latter solution is dom-
inated. All the non-dominated solutions form a
Pareto-optimal front (Deb, 2001), as exemplified
in Figure 3. The top ranked solutions are added to
the next generation population until the total num-
ber of solutions is equal to N. If the number of so-
lutions of a particular rank is > N, the crowding
distance sorting algorithm (Deb, 2001) is applied
to discard the excess solutions.

Termination Condition: The processes of mu-
tation, crossover, fitness computation and selec-
tion are executed for G4, generations. A set of
non-dominated solutions is obtained on the final
Pareto optimal front from the last generation popu-
lation. None of these solutions is better compared
to the others, and each of them represents a set of
optimal feature combinations. The last generation
population contains rank 1 solutions where some
are good with respect to recall and others with re-
spect to precision. Here, the solutions with highest
F-scores are selected, but any criterion can be used
based on user preferences.

3.3 Twitter Named Entity Features

A range of different features are utilised to extract
named entities from the noisy text. All features
(except part-of-speech) are domain independent,
and most of them are binary (yes/no) flags:
e Local context (£7): The preceding and suc-
ceeding words of the current token.
e Word prefix (F3) and suffix (F3): Up to 4 left-
most/rightmost characters.



e Special character followed by token (F}): If
a special character (e.g., @, #) follows the to-
ken, this binary flag is set.

o Gazetteer list (F5): A named entity list is ex-
tracted from the training data and Fy indi-
cates if the current token is on that list.

e Last (Fg) and first word (F%): The token is
the last/first word of the sentence.

e Alphanumeric (F3y), all digit (Fy): The token
contains only alphanumerics or digits.

e Single capital (F1g), capital inner (F11), ini-
tial capital (F12), and all capital (F13): The
token contains only one single capital letter,
any capital letter in inner position, starts with
a capital letter, or contains only capitals.

e Stop word match (F14): The current word
matches with a stop word.

e Word normalization (F}5): Tokens with simi-
lar word shapes may belong to the same class.
Word mapped to its equivalent class: each
capital letter in the token is mapped to A,
small letters to a, and digits to 0. Other char-
acters are kept unaltered.

e Word frequency (F1g): Whether the word’s
frequency is greater than a certain threshold
(the threshold values were set to 10 for train-
ing data and to 5 for development/test data).

e Word previously occurred (F£77): If the cur-
rent word occurred earlier in the corpus.

e Word length (Fig): The word length is
greater than some threshold (e.g., > 5).

e Part-of-speech (Fpg): Part-of-speech tags
from the TweeboParser'.

e Dynamic (Fbg): The output label(s) of the
previous token(s).

4 Twitter NE Classification and Linking

The previous section described how Twitter named
entities are identified using CRF and Differential
Evolution. In this section, the identified Twit-
ter named entities are classified into seven prede-
fined categories (Thing, Event, Character, Loca-
tion, Organization, Person and Product) and linked
to the DBpedia database. Three models are built
for classification of Twitter names. The outputs
of these three models are later merged using a
priority-based approach (precision value). Finally,
the classified Twitter names are linked to DBpedia.

The three Twitter named entities classification
models are composed as follows.

"http://www.cs.cmu.edu/ ~ark/TweetNLP/202

Model-1: A CRF-based supervised classifica-
tion technique is simply used to predict the classes
of the Twitter names. All the extracted Twitter
names from the DE-based approach are used as a
feature in this model. So the model is developed
with this feature along with the previous and next
two context words of the current word.

Model-2: Model-2 is developed based on train-
ing datasets. Each type of training instances (Twit-
ter names) is stored in a unique document whose
class is one of the seven predefined categories. Af-
ter removing all stop words and special characters
from the tweets, the remaining non-entity words
are stored in a separate document. Each extracted
Twitter name from the DE-based approach is con-
sidered as a query (search keyword). The follow-
ing steps are used to classify Twitter names.

1. Retrieve the top-100 documents for each
query using a Vector Space Model (Salton et
al., 1975) based on cosine similarity.

2. Calculate edit distance (also called Leven-
shtein distance) between the query and each
of the retrieved documents.

3. Assign the closest document’s class to the
query, where the closest document is the one
with minimum edit distance to the query. The
class of an entity is retrieved using Lucene.”

Model-3: Model-3 is based on the DBpedia and
training datasets. From the DBpedia ontology
classes,” the datasets are mapped to the seven
predefined categories and the same technique as
described in Model-2 is applied. We extracted
rdf-schematlabel items from the csv files (e.g.,
African Volleyball Championship) and stored each
in a unique document whose class is one of the
seven predefined categories. In Model-3, the train-
ing data is merged with the DBpedia datasets.*

Combined Model: The extracted Twitter named
entity classes are merged based on the priority of
the above models. The priorities are given to the
models based on the precision value of the devel-
opment data. Suppose, for example, that Model-3
has the highest priority followed by Model-2 and
Model-1. Voting in the ensemble is then carried
out as follows: If Model-3 is unable to identify the

https://lucene.apache.org/core/3_5_0/
contributions.html

‘http://mappings.dbpedia.org/server/
ontology/classes/

*Using the csv format of the DBpedia database.



Number of
Dataset Tweets Entities
Training 4,073 8,665
Development 100 340
Test 296 1,022

Table 1: Statistics of the NEEL2016 datasets

class of an entity (i.e., if it identifies it as belong-
ing to the ‘not-Entity’ document class), the entity
is passed to Model-2. If Model-2 also fails to iden-
tity the class of the entity, the class of the entity is
assigned by Model-1.

A knowledge-based technique is used to link the
Twitter named entities to DBpedia database. In
the training data, for each entity a link was pro-
vided. In DBpedia, for each rdf-schema#label, a
link was assigned. When the class of an entity
(Twitter name) is extracted using the above mod-
els, the corresponding link is maintained based on
training or DBpedia datasets, and the link is as-
signed to that particular entity. If no link is found,
a NIL link is assigned to the entity.

S Experiments and Results

The approach was tested on the NEEL2016
datasets (Rizzo and van Erp, 2016). The statis-
tics of the datasets are given in Table 1. This data
was used to train a CRF-based classifier as base-
line and then to build all the models of the full
DE-based system, for Twitter named entity identi-
fication as well as for categorization and DBpedia
linking, as described in turn below.

5.1 Baseline Model

To obtain a baseline model, the CRF-based ma-
chine learning approach was applied to identify
and classify the Twitter named entities using the
features described in Section 3.3 and the same
evaluation scorer as in the NEEL2016 challenge.
After building a classifier on the training data,
the recall (R), precision (P), and F;-measure val-
ues of the development datasets were 36.20%,
69.9% and 47.7% (as also shown in the first row of
Table 3 below). The low F-score is due to the poor
recall. The baseline approach was also evaluated
on the unseen test data, obtaining recall, precision
and F; scores of 23.7%, 50.7% and 32.3%. The
performance on the test data is similar to that on
the development data because of the bad recall. 203

In order to increase the data for available for
training the models, the development data was
merged with the training data. This also increases
the number of named entities in the gazetteer list
(feature F3) and the statistics that some of the
other features are based on. When the same model
is built by merging the training and development
data, and evaluated on the test data, the results are
improved considerably, with recall, precision and
F-measure values of 55.6%, 69.7% and 61.9%.

5.2 Twitter NE Identification Experiments

To enhance recall and F-score, Twitter names are
first identified using the multi-objective DE-based
technique. In a second step, the identified Twit-
ter named entities are classified using vector space
modelling and edit distances.

A baseline model for identification of Twitter
names was built using the features described in
Section 3.3. When trained on the training data
and evaluated on the development data, the model
shows recall, precision and F;-scores of 56.1%,
87.5% and 68.4%, respectively, as given in the
‘Dev Data’ column of Table 2.

To improve on these results, a Differential
Evolution-based feature selection technique was
used to identify named entities in noisy text. For
Twitter named entity identification, the parameters
of the DE were set as follows:

e N (population size) = 100,

C.- (probability of crossover) = 0.5,
G'maz (number of generation) = 100, and
F},,, (mutation factor) = 0.5.

The best feature set along with the context fea-
tures was determined based on development data.
The selected features along with context features
are Fl(—3, 4), F5(—1, 0), F@(O, 1), Fg(—]_, 0),
F11(0,1), Fi2(—2,2), Fi14(—2,1), Fi7(=2,1),
Fi9(—2,1) and F5y(—1,0). This setup achieved
recall, precision and F-measure values of 79.9%,
93.8% and 86.3% on the development data. The
performance of the system increases almost 18 F-
measure points over the baseline model.

To fairly evaluate the approach, it was applied
to the unseen test data using the selected features
along with the context features, giving the re-
call, precision and F;-scores of 73.9%, 89.2% and
80.8%, respectively; also shown in Table 2 (the
“Test Data’ column). The F-measure performance
is increased by 20 points over the baseline.



Training set Training Data Training + Dev Data
Test set Dev Data Test Data Test Data
Method R P Fy R P Fy R P Fy
Baseline (CRF-based) 56.1 875 684 | 484 81.8 60.8 | 793 882 835
DE-based identification | 79.9 93.8 863 | 73.9 892 80.8 | 81.3 90.8 857

Table 2: Twitter Named Entity Identification results

When merging the development data with the
training data and building a model using selected
features, the recall, precision and F-measure val-
ues are 81.3%, 90.8% and 85.7%, respectively,
also improving on the scores obtained by the base-
line model. The results show that the multi-
objective DE-based approach efficiently identifies
Twitter names from noisy text.

5.3 Twitter NE Classification Experiments

In the next step, the identified Twitter names ex-
tracted using the multi-objective DE-based ap-
proach were classified. Three models were built to
classify the Twitter named entities into the seven
categories described at the beginning of Section 4.

In the first model (Model-1), the identified Twit-
ter named entities are passed through a CRF-based
supervised classifier. The recall, precision and F-
measure values given in Table 3 are 38.8%, 40.7%
and 39.8%, respectively, showing that the recall is
increased over the baseline model (Section 5.1),
which simultaneously identifies and classifies the
named entities.

Another Twitter named classification model
(Model-2) was built using VSM and edit dis-
tance techniques based on training data, giving re-
call, precision and F-scores of 27.9%, 87.2% and
42.3%. The probable reason for the low perfor-
mance is that sufficient examples (instances) may
not be found in the training data.

When the Model-2 approach was applied to the
DBpedia database (Model-3), the recall, precision
and F-scores are 67.4%, 86.7% and 75.8%, respec-
tively. Model-3 achieves one of the best results
among all the models and also outperforms all ex-
isting approaches, as shown in Table 3.

All the models were blindly evaluated on the
test data (the second set of R-P-F; scores given
in Table 3). The Model-3 results show that its
performance is far better than all other present
state-of-the-art approaches. It achieves recall, pre-
cision and F-measure values of 50.8%, 76.1%
and 60.9%, respectively. Even though the per-
formance of Model-3 on the development dataZQ4

only slightly better than the best existing system,
KEA (Waitelonis and Sack, 2016), the gap in per-
formance on the test data is a lot larger, since the
KEA system tries to increase the recall value as
much as possible without controlling the precision
value. As a result, KEA’s performance on the test
data is fairly bad.

In the last model (Combined Model), the out-
puts of the three models are merged, increasing
the F-score almost 5 points compared to Model-
3 on the test data. The precision, recall and F;-
scores of the Combined Model are 65.3%, 67.1%
and 66.2%, respectively (see Table 3). Hence the
Combined Model produces the best results com-
pared to all the other models as well as to all the
#Microposts2016 systems.

When merging the development data with the
training data (the third set of R-P-F; scores in Ta-
ble 3), the performances of Model-1 and Model-2
are better than Model-3 because many examples in
the test data are seen in the development data and
these two models are developed based on train-
ing instances, while Model-3 classifies the Twit-
ter names based on the DBpedia database. Here,
the Combined Model also achieves the best results
among all the approaches, with precision, recall
and F-score of 69.7%, 71.7% and 70.7%.

5.4 Twitter NE Linking Experiments

To link the classified Twitter names, we use a
knowledge-based approach (utilizing either train-
ing data or the DBpedia database). The DBpedia
links for Models 1 and 2 reported in Table 4 are
based on training data. These models achieve bet-
ter precision values than the state-of-the-art sys-
tems. In Model-3, the links are retrieved from the
DBpedia database. The performance of Model-3
is better than the first and second models. The re-
call, precision and F-measure values of Model-3
on the test data are 26.9%, 67.1% and 38.4%.

The Combined Model performs best among
our models and produces an F-measure value of
42.1%. All these models outperform the NEEL
2016 systems in terms of precision, but fail get



Training data Training + Dev Data
Strong_typed_mention_match Dev Data Test Data Test Data

R P Fy R P Fy R P Fi

Baseline Model 36.2 699 47.7 | 237 50.7 323 | 556 69.7 619

Model-1 38.8° 407 39.8 | 328 338 333 | 645 663 654

Model-2 279 872 423 | 278 869 422 | 493 91.0 640

Model-3 674 86.7 758 | 50.8 76.1 609 | 525 76.6 623

Combined Model 753 790 771 | 653 671 662 | 69.7 71.7 70.7
KEA (Waitelonis and Sack, 2016) 66.0 572 613 | 494 453 473 - - -
MIT Lincoln Lab (Greenfield et al., 2016) 28.7 587 38.6 | 240 474 319 - - -
JU (Ghosh et al., 2016) 353 41.1 38.0 | 289 338 312 - - -
UniMiB (Caliano et al., 2016) 178 545 268 | 188 462 26.7 - - -
Insight-centre @NUIG (Torres-Tramén et al., 2016) | 355 334 344 | 242 249 246 - - -

Table 3: Twitter Named Entity Classification results (‘Baseline Model’: using all features)

Training Data Training + Dev Data
Strong_link_match Dev Data Test Data Test Data

R P Fi R P Fi R P Fi

Baseline Model 184 855 303 | 135 750 228 | 469 744 575

Model-1 353 909 508 | 26.1 678 377 | 542 781 640

Model-2 29.0 902 439 | 192 659 29.7 | 493 774 60.2

Model-3 43.1 873 577|269 67.1 384|524 775 626

Combined Model 447 87.0 59.1 | 304 685 421 | 572 781 @ 66.0
KEA (Waitelonis and Sack, 2016) 86.2 667 752 | 56.0 454 50.1 - - -
MIT Lincoln Lab (Greenfield et al., 2016) 41.8 799 549 | 285 64.6 39.6 - - -
JU (Ghosh et al., 2016) 16.1 58.6 252 | 21.7 29.0 248 - - -
Insight-centre @NUIG (Torres-Tramén et al., 2016) | 324 49.1 39.0 | 16.7 257 20.2 - - -
UniMiB (Caliano et al., 2016) 3877 452 417 | 139 354 162 - - -

Table 4: Twitter Named Entity Linking results (‘Baseline Model’: using all features)

a higher F-score than the KEA system (Waitelo-
nis and Sack, 2016) due to lower recall. How-
ever, when development data are merged with the
training data for the model building, the Combined
Model again gives the best test data results among
all the systems, achieving recall, precision and F-
measure values of 57.2%, 78.1% and 66.0%.

6 Discussion

The task is divided into two parts: identification
of Twitter named entities, and classification and
linking to DBpedia. For the NE identification, a
Conditional Random Fields classifier is used in a
Differential Evolution framework. DE selects fea-
tures randomly and lets the CREF classifier train on
these features in order to optimize the feature se-
lection based on fitness values on the development
data. Hence, the CRF classifier runs many times
based on the size of the population and the number
of generation given as parameters to the Differen-
tial Evolution. So the learning time depends on
the training data size, number of features, number
of class, etc. Here, the training time is reduced
since the training data size, number of featurédd

and number of classes are small. To increase the
speed, a multi-threading approach was also used
for CRF learning.

When running the CRF classifier for the iden-
tification task using all the features described in
Section 3.3, the performance (baseline model) is
low because the model fails to efficiently retrieve
Twitter names. To enhance the performance on
the identification task, the DE setting was used,
since it identifies near optimal features based on
its search capability.

The system output was analysed in order to
understand the nature of the errors encountered:
a significant number of entities were not cor-
rectly detected, resulting in low performance. A
closer look reveals that many misclassifications
are caused by common word(s) in both query and
document. For example, ‘LiberalPhenom’ is an-
notated as a person name, but the system identi-
fies it as a organization since the ‘LiberalPhenom’
(split as ‘Liberal Phenom’) query is closer to the
document ‘Liberal Forum’. In many cases, the
system classifies an entity as a Twitter name even
though it is not considered as an entity in the gold



standard annotation. For example, ‘InAbuDhabi’
(split as‘In Abu Dhabi’ which is closer to ‘Abu
Dhabi’) is tagged as a location, but in gold anno-
tation it is not considered to be a Twitter name.
The output of the entity linking to DBpedia
was also analysed. The linking performance is
not good because many entities with links are not
in the DBpedia database. For example, “The-
ForceAwakens’ (split as ‘“The Force Awakens’) is
correctly identified as a Twitter named entity by
the system, but that name along with a link is not
in DBpedia (Release 2014). Another cause of er-
rors is that many entities and their corresponding
links simply are not identified at all by the system.

7 Conclusion

In this paper, we propose a system for Twitter
named entity extraction and linking to DBpedia.
Twitter names are first identified from the noisy
texts using a multi-objective technique based on
Differential Evolution and a range of different fea-
tures. The most important features are identified
along with their context features. In a second step,
the identified Twitter named entities are classified
and linked to the DBpedia database. For classi-
fication of Twitter names, a vector space model
and edit distance techniques are used, achieving
results outperforming both a tough baseline model
and other state-of-the-art systems.

In the future, we will experiment with other
datasets and try to collect more examples along
with contextual information to reduce misclassi-
fications. It would also be interesting to apply the
approach described here to tweet named entity ex-
traction for under-resourced languages, such as the
languages of India.

Furthermore, we will develop other entity ex-
traction models to perform ensemble classifica-
tion using a multi-objective approach, and exper-
iment with tree-based structured learning (Yang
and Chang, 2015) for the task of linking Twitter
named entities to DBpedia.
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