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Abstract

In this paper we propose a stacked gener-
alization (or stacking) model for event ex-
traction in bio-medical text. Event extrac-
tion deals with the process of extracting
detailed biological phenomenon, which is
more challenging compared to the tradi-
tional binary relation extraction such as
protein-protein interaction. The overall
process consists of mainly three steps:
event trigger detection, argument extrac-
tion by edge detection and finding cor-
rect combination of arguments. In stack-
ing, we use Linear Support Vector Clas-
sification (Linear SVC), Logistic Regres-
sion (LR) and Stochastic Gradient Descent
(SGD) as base-level learning algorithms.
As meta-level learner we use Linear SVC.
In edge detection step, we find out the ar-
guments of triggers detected in trigger de-
tection step using a SVM classifier. To
find correct combination of arguments, we
use rules generated by studying the prop-
erties of bio-molecular event expressions,
and form an event expression consisting of
event trigger, its class and arguments. The
output of trigger detection is fed to edge
detection for argument extraction. Experi-
ments on benchmark datasets of BioNLP-
2011 show the recall, precision and F-
score of 48.96%, 66.46% and 56.38%, re-
spectively. Comparisons with the existing
systems show that our proposed model at-
tains state-of-the-art performance.

1 Introduction

Huge amount of electronic bio-medical docu-
ments, such as molecular biology reports, ge-
nomic papers or patient records are generated

daily. These contents need to be organized in
a more principled way so as to enable advanced
search and efficient information retrieval and in-
formation extraction methods. This can be ben-
eficial to the practitioners and researchers in bi-
ology, medicine and the other allied disciplines.
Success of text mining (TM) is evident from
the organization of different shared-task evalu-
ation campaigns. The bulk of research in the
field of biomedical natural language processing
(BioNLP) have mainly focused on the extraction
of simple binary relations. Some of the very
popular bio-text mining evaluation challenges in-
clude TREC Genomics track (Voorhees, 2007),
JNLPBA1, LLL (Nedellec, 2005) and BioCreative
(Lynette Hirschman, 2007). While the first two
evaluation challenges were concerned with the
issues of information retrieval and named-entity
recognition (NER), the last two addressed the is-
sues of information extraction and seeking rela-
tions between bio-molecules. Relations among
biomedical entities (i.e. proteins and genes) must
be extracted automatically from a large collec-
tion of biomedical datasets since they are very im-
portant in understanding biomedical phenomena.
Simple binary relations are not itself sufficient for
capturing the detailed phenomenon, and there is a
growing demand for capturing more detailed and
complex relations. Two large corpora, BioInfer
(Pyysalo S, 2007) and GENIA (Tomoko Ohta and
Tsujii, 2009), have been proposed for this purpose.

In recent times there has been a trend for fine-
grained information extraction from text (Kim J-
D, 2009). This was addressed in three consecutive
text mining challenges, BioNLP-2009 (Hyoung-
Gyu Lee, 2009), BioNLP-2011 (Jin-Dong Kim,
2011) and BioNLP-2013 (Lishuang Li, 2013). In
this paper we propose an effective technique for

1http://www.geniaproject.org/
shared-tasks/bionlp-jnlpba-shared-task-200455



information extraction (more specifically, event
extraction) at more finer level. This is known
as event extraction where the focus is to extract
events and their different properties that denote
detailed biological phenomenon. This can be
thought of as a three-steps process, viz. event trig-
ger detection, classification of triggers into pre-
defined categories and argument extraction. The
events are classified into 9 potential events, out of
which 5 are simple which corresponds to gene ex-
pression, transcription, protein catabolism, phos-
phorylation and localization. Among the rest four
events, one binding event and three regulatory or
complex events namely regulation, positive regu-
lation and negative regulation. For simple events
we have a single primary theme, which is usually a
protein. But a complex event can include a theme
as well as a cause argument. These themes and
causes can be either proteins or events. Moreover,
number of themes could also vary. In order to ex-
plain this, we consider the following sentence as
an example, where TRAF2 and CD40 denote pro-
teins.

Sentence: In this study we hypothesized that
the phosphorylation of TRAF2 inhibits binding to
the CD40 cytoplasmic domain.

This sentence contains simple, binding and
complex events. Each bio-molecular event expres-
sion contains a trigger word and one or more ar-
guments. The identified events from the sentence
are:

Simple event: The word phosphorylation is a
trigger of type Phosphorylation. Argument of this
trigger is TRAF2 as theme.

Binding event: The word binding is a trigger
word of Binding type. Arguments of this trigger
are TRAF2 and CD40.

Complex event: The word inhibits is a trigger
word of Negative regulation type. The previously
mentioned two events(i.e. Phosphorylation and
Binding ) are theme type arguments of this trigger
word.

Here, we propose a stack model for event
extraction. In stacking, Linear Support Vector
Classification (Linear SVC)2, Logistic Regression
(LR)3 and Stochastic Gradient Descent (SGD)4

2http://scikit-learn.org/stable/
modules/generated/sklearn.svm.LinearSVC.
html

3http://scikit-learn.org/stable/
modules/generated/sklearn.linear_model.
LogisticRegression.html

4http://scikit-learn.org/stable/

from Scikit-learn (sklearn)5 have been used as
base-level learning algorithms. Linear SVC is an
implementation of Support Vector Machine using
liblinear library6. For meta learning we use Linear
Support Vector Classification. The system is eval-
uated based on the framework of BioNLP 2011
shared task7.

Event extraction systems find both triggers and
their associated arguments. These could pose a
number of challenges. Exact interpretation of trig-
gers depend upon the context, e.g. expression of
[gene] is an event of type Gene Expression, but ex-
pression of [mRNA] is of type Transcription. So
there is ambiguity in sense of trigger words. It is
a challenge to fix these ambiguities. Event argu-
ments can be difficult to detect in case of binding
and regulatory type of arguments, because in these
cases, number of arguments is not fixed. Number
of arguments in binding events can be one or more.
Finding correct combination of arguments is very
challenging. More precisely, we use the annotated
data collected for these tasks and report the results
returned by the evaluation servers on the test sets
of the 2011 GE task. From the experiment it has
been seen that evaluation on test data shows 2-3%
less in performance than the performance on de-
velopment data. So it is challenge to increase the
performance on test data. Coreference resolution
is required for the correct interpretation of certain
event arguments. For example, in the sentence M-
CSF treatment was also associated with a rapid
induction of the jun-B gene, although expression
of this gene was prolonged compared to that of c-
jun. In this example, the word this gene refers jun-
B and the word that refers expression. There are
two gene expression events in the sentence. Ar-
guments of these events can be identified correctly
if coreference resolution method is applied on the
dataset and it is a challenging issue.

2 Few Existing Methods for Combining
Classifiers

In our day to day life, when crucial decisions are
made in a meeting, a voting among the mem-
bers present in the meeting is conducted when the
opinions of the members conflict with each other.

modules/generated/sklearn.linear_model.
SGDClassifier.html

5http://scikit-learn.org/stable/
6https://www.csie.ntu.edu.tw/˜cjlin/

liblinear/
7http://2011.bionlp-st.org/56



This principle of ”voting is very popular in data
mining and machine learning. In voting, when
classifiers are combined, the class assigned to a
test instance will be the one suggested by most
of the base level classifiers involved in the en-
semble process. Bagging (Breiman, 1996) and
boosting (SCHAPIRE, 1990) are the widely used
variants of voting schemes. Bagging is a voting
scheme in which n models, usually of same type,
are constructed. For an unknown instance, each
models predictions are recorded. Finally, that par-
ticular class is assigned which has the maximum
votes among the predictions from models. Boost-
ing is very similar to bagging in which only the
model construction phase differs. Here the in-
stances which are often misclassified are allowed
to participate in training more number of times.
There will be n classifiers which themselves will
have individual weights for their accuracies. Fi-
nally, the class is assigned which is having the
maximum weight.

The classifiers can be combined using two
popular approaches, viz. majority voting and
weighted voting. In majority voting, we se-
lect the class that receives maximum votes. In
weighted voting, classifiers are combined based on
the strengths and weaknesses of classifiers.

Stacked generalization or stacking is a method
for combining multiple classifiers. The idea
of stacked generalization (Wolpert, 1992; Geor-
gios Sigletos, 2005) is to learn a meta-level (or
level-1) classifier based on the output of base-level
(or level-0) classifiers, estimated as follows:
Define D as a training data set consisting of fea-
ture vectors, also referred to as level-0 data, and
L1...LN as a set of N different learning algorithms.
During the K-fold cross-validation process, D is
randomly split into K disjoint parts D1...DK of
almost equal sizes. At each j-th fold, j =1..K ,
the L1...LN learning algorithms are applied to the
training part D-Dj (i.e. part of training data ex-
cluding Dj , where D is the whole training data and
Dj is the current test part for cross-validation) and
the induced classifiers C1(j)...CN (j) are applied to
the test part Dj . The concatenated predictions of
the induced classifiers on each feature vector xi in
Dj , together with the original class value yi(xi),
form a new set MDj of meta-level vectors.

At the end of the entire cross-validation process,

MD=
K⋃
j=1

MDj constitutes the full meta-level data

set, also referred to as level-1 data, which is used
for applying a learning algorithm LM and induc-
ing the meta-level classifier CM . The learning al-
gorithm LM that is employed at meta-level could
be one of the L1 ...LN or a different one. Finally,
the L1...LN learning algorithms are applied to the
entire data set D inducing the final base-level clas-
sifiers C1 ...CN to be used at runtime. In order to
classify a new instance, the concatenated predic-
tions of all base-level classifiers C1...CN form a
meta-level vector that is assigned a class value by
the meta-level classifier CM .

3 Proposed Approach

In this section we describe our proposed approach
for event extraction. The steps to extract event ex-
pression are sentence splitting, tokenization, trig-
ger detection, argument extraction by edge detec-
tion and finding correct combination of arguments
as shown in figure 1. In sentence splitting and tok-
enization steps we use sentence split and tokenised
data which was made available as the supportive
resources in BioNLP-2011 shared task8. We use
SVM to extract arguments and its correct combi-
nations.

Figure 1: Steps to extract event expression

Our method is based on the principle of stack-
ing. We generate 10 classifiers for each of the al-
gorithms (i.e. Linear SVC, SGD and LR) men-
tioned above. We describe the algorithms in the
subsequent sections.

8http://weaver.nlplab.org/˜bionlp-st/
BioNLP-ST/downloads/support-downloads.
html#parse-formats57



3.1 Linear Support Vector Classification
(Linear SVC)

Linear SVC is learning algorithm for classifica-
tion. Using Linear SVC algorithm, we generate
10 classifiers by varying C parameter of the algo-
rithm. The C parameter is a parameter for opti-
mization that specifies the learning algorithm how
much it wantS to avoid misclassifying each train-
ing example. Starting C value (here, 0.001) is cho-
sen by running the algorithm using C values as
1000, 100, 1, 0.1, 0.001, 0.00001, and choose final
value based on the highest accuracy obtained.

CSV C
i = 0.001 + i× 0.05 (1)

where CSV C
i represents C parameter for SV Ci

classifier.

3.2 Stochastic Gradient Descent (SGD)
We generate 10 classifiers by varying the alpha
parameters of SGD algorithm. The parameter al-
pha is Constant that multiplies the regularization
term used in the implementation of the algorithm.
These 10 classifiers are SGDi, for i=0 to 9. The
value of alpha is set to 0.000029 based on the dif-
ferent experiments executed.

alphaSGD
i = 0.000029 + i× 0.000015 (2)

where alphaSGD
i represents alpha parameter for

SGDi classifier.

3.3 Logistic Regression (LR)
We generate 10 classifiers by varying the C param-
eter of LR algorithm. These classifiers are LRi,
for i=0 to 9. The value of C is set to 7.2101 which
is chosen by running the algorithm with different
C values.

CLR
i = 7.2101 + i× 0.05 (3)

where CLR
i represents C parameter for LRi clas-

sifier.
The architecture of our proposed stacked

method is shown in Fig 2 where SVC, SGD and
LR have been used as base level classifiers. Here,
SVC is used as meta-level classifier.

Figure 2: Model ensemble using stacking

4 Features

In this section we describe the features that we use
for developing the models. To explain the fea-
tures, let us consider the following example sen-
tence: “BMP-6 inhibits growth of mature human
B cells; induction of Smad phosphorylation and
upregulation of Id1”. The sentence is tokenised
and features are extracted for every token. We use
token “upregulation” in the above example to ex-
plain the features.

4.1 Features for trigger detection and
classification

Here, we describe the set of features that we use
for event trigger detection and classification.

1. Surface Word, Stem, PoS, Chunk and
Named Entity: We use surface forms,
lemma, Part-of-Speech (PoS), chunk and
named entity (NE) as features for trigger de-
tection and classification. These information
were extracted from the GENIA tagger9. For
the token “upregulation”, the feature values
extracted are upregulation, upregulate, NN, I-
NP and O for the surface form, lemma, PoS,
Chunk and NE features, respectively. All
these information are very critical to identify
the trigger and its class.

2. Bag-of-Words: The bag-of-word (BoW)
feature plays a crucial role in many text min-
ing tasks. This particular feature is defined
in different ways. At first we extract BoWs
within the context of sizes 3 and 5 (i.e., ±1
and ±2). We also extract NEs from this con-
text, and use their counts as features. Entire
sentence is then considered as a context and
BoWs and NE features are extracted. For

9http://www.nactem.ac.uk/GENIA/tagger/58



example, BoW feature for the token “up-
regulation” are “and upregulation of” and
“phosphorylation and upregulation of Id1”
for window sizes 3 and 5, respectively.

3. Linear Features: Linear features are gen-
erated by marking token with a tag that de-
notes their relative positions in the linear or-
der. This feature is defined with respect to a
context window. If i is a position (i.e. index)
of the token under consideration, then the lin-
ear features are calculated from the words
with indices i-3 to i+3. In our experiment we
use the word along with its PoS tag to gener-
ate linear features.

4. upper case start, upper case middle,
has digits, has hyphen: These features
are defined based on the orthographic con-
structions: whether the token starts with an
uppercase character, or it has any uppercase
character in the middle, or has any digit(s)
or hyphen inside it.. These features are
important from the observations that there
are some trigger words in the dataset which
start with uppercase character or hyphen
inside it. For example, in the sentence
TGF-beta mediates RUNX induction and
FOXP3 is efficiently up-regulated by RUNX1
and RUNX3 in human CD4+ T cells., the
word up-regulated is Positive regulation
type rvent trigger which has hyphen inside it.

5. Bi-gram and Tri-gram Features: We use
the character bi-gram and tri-gram sequences
extracted from a token as features. For ex-
ample, for the token “upregulation”, the bi-
gram features will be up pr re eg gu ul la at
ti io on and tri-gram features will be upr pre
reg egu gul ula lat ati tio ion .

6. Dependency Path Features: There are are
some trigger words which ca not be detected
using context features or b-gram or tri-gram
features. So we depend on dependency rela-
tions inside sentence. Dependency features
are extracted from dependency graph gener-
ated by dependency parser(David McClosky
and Manning, 2011; David McClosky and
Johnson, 2006) . Figure 3 shows the de-
pendency graph for the sentence “BMP-6 in-
hibits growth of mature human B cells; in-
duction of Smad phosphorylation and upreg-

ulation of Id1”, generated by the Charniak-
McCloskey parser (David McClosky and
Johnson, 2006). In the graph, an edge label
represents the dependency relation between
two nodes. Each node in the graph is labelled
by a number which represents a word appear-
ing in that position (0-based index) of the sen-
tence. For example, node labelled with num-
ber 0 indicates the word BMP-6 and node la-
belled with number 1 indicates the word in-
hibits.

Figure 3: Dependency graph for the example sen-
tence “BMP-6 inhibits growth of mature human B
cells; induction of Smad phosphorylation and up-
regulation of Id1”

.

In the graph, node 0 and 16 represent pro-
teins (i.e. NE) as specified in the training
dataset. In the feature value NE is denoted
by NAMED ENT.

Edges in a dependency graph are directed
arcs. Each edge connects two nodes. Nodes
represent words along with other information
like PoS tags of the words. A node can be
connected to two types of edges: one is in-
type (or incoming) edges which are incident
on the node and the other type is out-type
(or outgoing) edges which emanate from the
node.

Features for in-type edges:
For the in-type edges we consider the features
as defined below. For illustration purpose, we
consider node numbered 14 (upregulation) as
the target node and we present below the fea-
ture values generated for the in-type edge em-
anating from node 1 (inhibits) and incident on59



node numbered 14.

(a) Edge type (i.e. dependency relation) –
dep

(b) PoS of source node – VBZ
(c) Edge type combined with PoS –

dep VBZ
(d) Text of the source node – inhibits
(e) Edge type merged with PoS and token

of source node – dep VBZ inhibits
(f) Stem of the source node – inhibit
(g) Edge type combined with stem of the

source node – dep inhibit
(h) Stem of the current word combined with

edge-type and stem of the source node –
upregul dep inhibit

Features for out-type edges:
For out-type edges emanating from the target
word, in addition to the target word feature
we also take into consideration the features
belonging to the edge (i.e. the dependency
relation) and the destination node on which
the edge is incident.

The list of features considered for out-type
edges are listed below. For illustration, we
consider node 14 (upregulation) as the target
node and the corresponding feature values are
shown next to the out-type edge features for
the out-type edge emanating from node 14
(upregulation) and incident on node 16 (Id1).

(a) Edge type – prep of
(b) PoS of destination node – NN
(c) Edge-type combined with PoS of desti-

nation node – prep of NN
(d) Text of the destination node –

NAMED ENT
(e) Edge-type combined with the to-

ken text of the destination node –
prep of NAMED ENT

(f) Stem of the current word com-
bined with the edge-type and
stem of the destination node – up-
regul prep of NAMED ENT

7. Dependency chain: These features are syn-
tactic dependencies up to a certain depth
limit, starting from a token of interest. In
our case we consider the depth of limit three.
They are used to define the immediate con-
text of these words.

4.2 Features for argument extraction by edge
detection

To find out features for argument extraction, for
every sentence, we form a dependency graph con-
sisting of the triggers detected in trigger detection
step and proteins mentioned in the data set for that
sentence. Following features are extracted for ar-
gument extraction.

1. Token features: These are features of two
tokens connected by an edge. A token can
potentially be a protein (i.e NE) or a trig-
ger word detected during the trigger detection
phase. The token features are surface word,
stem, PoS, chunk and NE, BoW, prefix and
suffix, linear features, bi-gram and tri-gram
features. These have been discussed in de-
tails in Section 4.1.

2. Dependency Features: Dependency fea-
tures play important role to extract arguments
of triggers. The following dependency fea-
tures are extracted from dependency graph.

Single element feature: A path in depen-
dency graph has a starting token, ending to-
ken and some intermediate tokens. Token can
be considered as a node in the graph. A path
consists of a sequence of edges starting from
the initial node, followed by a set of interme-
diate nodes, and ending in a terminal node.

(a) For each pair of adjacent tokens, all the
dependency relations are considered.

(b) Lexical features of all the internal tokens
in the path are also considered. These
are surface word, stems, PoS, chunk,
NE, BoW, prefix, suffix, linear features,
bi-gram and tri-gram features.

(c) Dependency features that we use are
mentioned in Section 4.1.

N-gram feature: We compute the shortest
path from starting to the end token in the de-
pendency graph in figure-3. From this walk
we compute bi-grams from all the combina-
tions of two consecutive edges. In the same
way, we compute n-grams (n=3,4) by con-
sidering three and four consecutive edges, re-
spectively.

Path edge feature: For each edge in the
path, we use the edge features. Edge feature
is defined as consisting of all the lexical-level
features of the nodes connected by an edge.60



5 Experimental Results and Analysis

We perform experiments on BioNLP-11 Genia
event dataset10. Statistics of BioNLP-11 dataset
for genia event extraction has been mentioned in
table 1.

Attributes Training Development Test
Abstracts+Full articles 908 (5) 259 (5) 347 (5)

Sentences 8,759 2,954 3,437
Proteins 11,625 4,690 5,301

Total events 10,287 3,243 4,457

Table 1: Statistics of BioNLP-ST 2011 Genia
Event dataset (training, development and test).
Value inside parentheses indicates the number of
full articles

The overall algorithm comprises of three basic
steps: trigger detection, edge detection and argu-
ment extraction. Trigger detection is performed
using the stacked generalization method. Experi-
mental results are shown in Table 2. From the ex-

Base/Meta classifier Classifiers Recall Precision F-score

Base level classifiers

SVC0 48.22 84.81 61.48
SVC1 74.42 67.58 70.84
SVC2 65.82 76.61 70.81
SVC3 71.46 70.42 70.94
SVC4 66.07 75.49 70.46
SVC5 70.25 71.20 70.72
SVC6 66.13 74.92 70.25
SVC7 69.57 71.81 70.67
SVC8 66.04 74.54 70.03
SVC9 68.89 72.08 70.45
LR0 64.69 76.08 69.92
LR1 64.95 76.28 70.16
LR2 65.22 76.37 70.36
LR3 65.91 76.46 70.80
LR4 65.72 77.33 71.05
LR5 65.91 77.43 71.21
LR6 65.16 78.67 71.28
LR7 66.13 78.10 71.62
LR8 65.47 78.57 71.43
LR9 64.97 79.66 71.57
SGD0 71.43 71.35 71.39
SGD1 71.38 71.34 71.36
SGD2 71.43 71.33 71.38
SGD3 71.34 71.36 71.35
SGD4 71.39 71.38 71.38
SGD5 71.42 71.39 71.41
SGD6 71.38 71.38 71.38
SGD7 71.41 71.36 71.38
SGD8 71.38 71.42 71.40
SGD9 71.38 71.37 71.37

Meta level classifier SVC 69.13 74.96 71.93

Table 2: Stacked generalization result in trigger
detection

perimental results of stacking mentioned in table
2, it is evident that performances of LR and SGD

10http://2011.bionlp-st.org/

algorithms are better than Linear SVC. SGD clas-
sifier is an implementation of SVM with stochastic
gradient descent (SGD) learning, whereas Linear
SVC is an implementation of SVM using liblinear
library. Linear SVC shows low performance, but
it is very fast. We recorded the results for each
class label (though, not shown in table) and we
see that linear SVC generates best result for Tran-
scription and Regulation type triggers. LR classi-
fier shows best result, but it takes more time than
the other two algorithms. This happens due to the
fact that each of these classifiers have their own
default parameter settings in sklearn tool. We have
tuned C parameter in SGD and Linear SVC. In
SGD classifier, we tune alpha parameter. Among
all the base-level classifiers, classifier LR7 using
Logistic Regression algorithm provides best re-
sult (F-score=71.62). Results show that stacked
model achieves better performance compared to
the best base-level classifier. Output of trigger de-
tection is fed to the input of edge detection step.
In this step we use multi-class SVM11 as a classi-
fication algorithm to find out theme and/or cause
relationships between triggers and proteins. Af-
ter finding the relationships we generate the event
expression. In Table 3 and Table 4, we show
the results of experiments on BioNLP-11 shared
task dataset on development and test set, respec-
tively. We achieve satisfactory F-score of 80.04%
on development dataset and 78.15% on test dataset
for Gene expression type event. System also per-
forms well for protein catebolism event with an F-
score of 91.30% on the development set. Results
of phosphorylation event is also satisfactory for
the test and development datasets (around 84% F-
score). The system suffers most for the relatively
complex regulatory events where it shows around
42% to 51% F-score.

Event Class gold (match) answer (match) recall precision fscore
Gene expression 749 ( 582 ) 704 ( 581 ) 77.70 82.53 80.04
Transcription 158 ( 79 ) 93 ( 79 ) 50.00 84.95 62.95
Protein catabolism 23 ( 21 ) 23 ( 21 ) 91.30 91.30 91.30
Phosphorylation 111 ( 94 ) 111 ( 94 ) 84.68 84.68 84.68
Localization 67 ( 49 ) 58 ( 49 ) 73.13 84.48 78.40
=[SVT-TOTAL]= 1108 ( 825 ) 989 ( 824 ) 74.46 83.32 78.64
Binding 373 ( 171 ) 311 ( 171 ) 45.84 54.98 50.00
==[EVT-TOTAL]== 1481 ( 996 ) 1300 ( 995 ) 67.25 76.54 71.60
Regulation 292 ( 104 ) 182 ( 104 ) 35.62 57.14 43.88
Positive regulation 999 ( 376 ) 667 ( 376 ) 37.64 56.37 45.14
Negative regulation 471 ( 168 ) 264 ( 168 ) 35.67 63.64 45.71
==[REG-TOTAL]== 1762 ( 648 ) 1113 ( 648 ) 36.78 58.22 45.08
==[ALL-TOTAL]== 3243 ( 1644 ) 2413 ( 1643 ) 50.69 68.09 58.12

Table 3: Result on development data [Approxi-
mate Span/Approximate Recursive]

11https://www.cs.cornell.edu/people/tj/
svm_light/svm_multiclass.html61



Event Class gold (match) answer (match) recall precision fscore
Gene expression 1002 ( 728 ) 861 ( 728 ) 72.65 84.55 78.15
Transcription 174 ( 87 ) 123 ( 87 ) 50.00 70.73 58.59
Protein catabolism 15 ( 7 ) 9 ( 7 ) 46.67 77.78 58.33
Phosphorylation 185 ( 154 ) 184 ( 154 ) 83.24 83.70 83.47
Localization 191 ( 99 ) 116 ( 99 ) 51.83 85.34 64.50
=[SVT-TOTAL]= 1567 ( 1075 ) 1293 ( 1075 ) 68.60 83.14 75.17
Binding 491 ( 234 ) 408 ( 234 ) 47.66 57.35 52.06
==[EVT-TOTAL]== 2058 ( 1309 ) 1701 ( 1309 ) 63.61 76.95 69.65
Regulation 385 ( 120 ) 221 ( 120 ) 31.17 54.30 39.60
Positive regulation 1443 ( 549 ) 980 ( 549 ) 38.05 56.02 45.32
Negative regulation 571 ( 204 ) 381 ( 204 ) 35.73 53.54 42.86
==[REG-TOTAL]== 2399 ( 873 ) 1582 ( 873 ) 36.39 55.18 43.86
==[ALL-TOTAL]== 4457 ( 2182 ) 3283 ( 2182 ) 48.96 66.46 56.38

Table 4: Results on test data [Approximate
Span/Approximate Recursive]

5.1 Effectiveness of features

Finding importance of individual feature (e.g. root
words, n-gram features, linear features etc.) used
in our experiment is not an easy task. Transfor-
mation of textual features into numeric features
generates a lot of features. For example, in trig-
ger detection step we use 38 features, but when
these are converted to numerical data for machine
learning purpose, number of features increases to
5 lakhs. Finding the most relevant set of features
from this collection is a complex problem. We
keep a record of how the original 38 features (rep-
resented in text format) are mapped in higher di-
mensional space containing more than 5 lakh of
features. For example, if we use 0-based index
for feature, then in trigger detection 0-th feature
(from the 38 original features) is mapped to fea-
ture indices in the range of 0 to 11,036 and 1-st
feature (from 38 original features) is mapped to
feature indices in the range of 11,037 to 20,080
in higher dimensional space and so on. Using
Linear SVC classifier we select some of the top
features which are mapped to the original fea-
tures. We observe that the features for outgoing
edges from the dependency graph are most impor-
tant for Gene expression, Transcription, Localiza-
tion, Phosphorylation and Binding type event trig-
gers. For Positive regulation,Negative regulation
and Regulation type event triggers, the most im-
portant feature is the dependency chain features.

5.2 Comparison with existing systems

For bio-molecular event extraction, the state-of-
the-art system is TEES (Björne, 2014), which
ranked first place in BioNLP-ST-200912. Along
with this we also compare our proposed system
with the other existing systems, which participated

12http://www.nactem.ac.uk/tsujii/GENIA/
SharedTask/

in BioNLP-2011 shared task (Jin-Dong Kim,
2011) . Our experimental results show recall,
precision and F-score values of 50.69%, 68.09%
and 58.12%, respectively on development dataset,
whereas official result attained by TEES (Björne,
2014) is 52.45%, 60.05% and 55.99% respec-
tively. As compared to the official scores of TEES
on the test set (recall: 49.56%, precision: 57.65%
and F-score: 53.30%), our system achieves recall,
precision and F-score values of 48.96%, 66.46%
and 56.38%, respectively. Hence, our system per-
forms better with more than 3 points. While we
compare our proposed model with the systems
presented in BioNLP-2011 (Jin-Dong Kim, 2011),
it shows that we achieve performance very close
to the best performing system, FAUST (Sebas-
tian Riedela and Manning, 2011)(recall:49.41%,
precision: 64.75% and F-score:56.04%) and better
than the second ranked system, UMass, (McCal-
lum, 2011) (recall:48.49%, precision:64.08% and
F-score:55.20% ). A recently developed system
named as EventMine (Makoto Miwa and Anani-
adou, 2013), which made use of coreference res-
olution obtains significant improvement with re-
call, precision and F-score of 51.25%, 64.92%
and 57.28%, respectively. The performance in
our model is very close to system, EventMine
(Makoto Miwa and Ananiadou, 2013).

5.3 Error Analysis

In order to gain more insights we analyse the out-
puts to find the errors and their possible causes.
We perform quantitative analysis in terms of con-
fusion matrix, and qualitative analysis by look-
ing at the outputs produced by the systems. For
trigger detection and classification we observe
that the system performs satisfactorily well for
gene expression and phosphorylation types. How-
ever, the classifier does not show convincing re-
sults for regulation type events which are, in gen-
eral, difficult to identify and classify. One of the
reasons may be the less number of training in-
stances of regulatory events. Classifier finds it
difficult to disambiguate the cases when any par-
ticular instance belongs to more than one type.
For example, token transfection originally be-
longs to both the types, Gene expression and Pos-
itive regulation, but our system is unable to detect
it even as a trigger word. On the other hand, the
word Overexpression is originally a non-trigger
word, but our system detects Overexpression as62



trigger word of types Gene expression and Posi-
tive regulation both.

In argument extraction step, arguments of the
triggers detected in trigger detection and classifi-
cation step are identified. Relation between a trig-
ger word and its argument is also found out in
this step. Possible arguments are proteins and/or
event trigger words. Possible relations are theme
and cause. From a closer analysis we see that our
system performs satisfactorily in detecting theme
argument, but for detecting cause argument clas-
sifier is not very robust. This may be due to the
fact that a cause expression could be both a pro-
tein (or, NE) or an event trigger expression. The
system suffers most for the regulatory events as
the errors might have propagated from the earlier
step, i.e. trigger detection and classification step.
For example trigger word phosphorylation in one
example sentence is originally a theme argument
of a regulatory event, but our system is unable to
detect the trigger word phosphorylation as an ar-
gument of that regulatory event.

6 Conclusion and Future Works

In this paper we propose a stacking approach for
event extraction. The idea of stacking is to per-
form cross-validation on the training data set using
some learning algorithms in order to create a meta-
level data set. Meta-level dataset is formed using
predictions generated by the learning algorithms
along with the actual output class. In edge detec-
tion step, we find out arguments of the triggers de-
tected in trigger detection step using SVM algo-
rithm. To find correct combination of arguments
we use rules of bio-molecular events and form an
event expression consisting of event trigger, its
class and arguments. Experiments on BioNLP-
2011 datasets show the efficacy of our proposed
model with significant performance improvement
over the state-of-the-art systems. This improve-
ment is due to application of stacking aproach
along with efficient features. In future we would
like to study whether coreference resolution could
improve the performance of the system.
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