Statistical Script Learning with Recurrent Neural Networks

Karl Pichotta and Raymond J. Mooney
Department of Computer Science
The University of Texas at Austin
{pichotta, mooney}@cs.utexas.edu

Abstract

We describe some of our recent efforts in
learning statistical models of co-occurring
events from large text corpora using Recurrent
Neural Networks.

1 Introduction

Natural language scripts are structured models of
stereotypical sequences of events used for document
understanding. For example, a script model may en-
code the information that from Smith landed in Bei-
Jjing, one may presumably infer Smith flew in an air-
plane to Beijing, Smith got off the plane at the Bei-
Jjing airport, etc. The world knowledge encoded in
such event co-occurrence models is intuitively use-
ful for a number of semantic tasks, including Ques-
tion Answering, Coreference Resolution, Discourse
Parsing, and Semantic Role Labeling.

Script learning and inference date back to Al
research from the 1970s, in particular the semi-
nal work of Schank and Abelson (1977). In this
work, events are formalized as quite complex hand-
encoded structures, and the structures encoding
event co-occurrence are non-statistical and hand-
crafted based on appeals to the intuitions of the
knowledge engineer. Mooney and DeJong (1985)
give an early non-statistical method of automatically
inducing models of co-occurring events from docu-
ments, but their methods are non-statistical.

There is a growing body of more recent work
investigating methods of learning statistical mod-
els of event sequences from large corpora of raw
text. These methods admit scaling models up to be
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much larger than hand-engineered ones, while being
more robust to noise than automatically learned non-
statistical models. Chambers and Jurafsky (2008)
describe a statistical co-occurrence model of (verb,
dependency) pair events that is trained on a large
corpus of documents and can be used to infer im-
plicit events from text. A number of other sys-
tems following similar paradigm have also been pro-
posed (Chambers and Jurafsky, 2009; Jans et al.,
2012; Rudinger et al., 2015). These approaches
achieve generalizability and computational tractabil-
ity on large corpora, but do so at the expense of de-
creased representational complexity: in place of the
rich event structures found in Schank and Abelson
(1977), these systems model and infer structurally
simpler events.

In this extended abstract, we will briefly sum-
marize a number of statistical script-related systems
we have described in previous publications (Pichotta
and Mooney, 2016a; Pichotta and Mooney, 2016b),
place them within the broader context of related re-
search, and remark on future directions for research.

2 Methods and results

In Pichotta and Mooney (2016a), we present a sys-
tem that uses Long Short-Term Memory (LSTM)
Recurrent Neural Nets (RNNs) (Hochreiter and
Schmidhuber, 1997) to model sequences of events.
In this work, events are defined to be verbs with in-
formation about their syntactic arguments (either the
noun identity of the head of an NP phrase relating to
the verb, the entity identity according to a corefer-
ence resolution engine, or both). For example, the
sentence Smith got off the plane at the Beijing air-
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port would be represented as (get_off, smith, plane,
(at, airport)). This event representation was investi-
gated in Pichotta and Mooney (2014) in the context
of count-based co-occurrence models. Balasubra-
manian et al. (2013), Modi and Titov (2014), and
Granroth-Wilding and Clark (2016) describe sys-
tems for related tasks with similar event formula-
tions.

In Pichotta and Mooney (2016a), we train an
RNN sequence model by inputting one component
of an event tuple at each timestep, representing se-
quences of events as sequences of event compo-
nents. Standard methods for learning RNN sequence
models are applied to learning statistical models of
sequences of event components. To infer probable
unobserved events from documents, we input ob-
served document events in sequence, one event com-
ponent per timestep, and then search over the com-
ponents of a next event to be inferred using a beam
search. That is, the structured prediction problem of
event inference is reduced to searching over proba-
ble RNN output sequences. This is similar in spirit
to a number of recent systems using RNN models for
structured prediction (Vinyals et al., 2015; Luong et
al., 2016; Dong and Lapata, 2016).

While the count-based event co-occurrence sys-
tem we investigated in Pichotta and Mooney (2014)
treats events as atomic—for example, the plane flew
and the plane flew over land are unrelated events
with completely independent statistics—this method
decomposes events into components, and the two
occurrences of the verb flew in the above exam-
ples have the same representation. Further, a low-
dimensional embedding is learned for every event
component, so flew and soared can get similar rep-
resentations, allowing for generalization beyond the
lexical level. Given the combinatorial number of
event types,! decomposing structured events into
components, rather than treating them as atomic, is
crucial to scaling up the number of events a script
system is capable of inferring. In fact, the system
presented in Pichotta and Mooney (2014) does not
use noun information about event arguments for this
reason, instead using only coreference-based entity

'With a vocabulary of V verb types, N noun types, P
preposition types, and event tuples of arity k, there are about
VPN*! event types. For V.= N = 10000, P = 50, and
k =4, thisis 5 x 10'".
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information.
System | Recall at 25 | Human
Unigram | 0.101 -
Bigram | 0.124 2.21
LSTM 0.152 3.67

Table 1: Next event prediction results in Pichotta and Mooney
(2016a). Partial credit is out of 1, and human evaluations are
out of 5 (higher is better for both). More results can be found in

the paper.

Table 1 gives results comparing a naive baseline
(“Unigram,” which always deterministically guesses
the most common events), a co-occurrence based
baseline (“Bigram,” similar to the system of Pichotta
and Mooney (2014)) and the LSTM system. The
metric “Recall at 25" holds an event out from a test
document and judges a system by its recall of the
gold-standard event in its list of top 25 inferences.
The “Human” metric is average crowdsourced judg-
ments of inferences on a scale from O to 5, with
some post hoc quality-control filtering applied. The
LSTM system outperforms the other systems. More
results and details can be found in Pichotta and
Mooney (2016a).

These results indicate that RNN sequence mod-
els can be fruitfully applied to the task of predicting
held-out events from text, by modeling and inferring
events comprising a subset of the document’s syn-
tactic dependency structure. This naturally raises
the question of to what extent, within the current
regime of event-inferring systems trained on doc-
uments, explicit syntactic dependencies are neces-
sary as a mediating representation. In Pichotta and
Mooney (2016b), we compare event RNN models,
of the sort described above, with RNN models that
operate at the raw text level. In particular, we inves-
tigate the performance of a text-level sentence en-
coder/decoder similar to the skip-thought system of
Kiros et al. (2015) on the task. In this setup, dur-
ing inference, instead of encoding events and de-
coding events, we encode raw text, decode raw text,
and then parse inferred text to get its dependency
structure.> This system does not obviously encode
event co-occurrence structure in the way that the

2We use the Stanford dependency parser (Socher et al.,
2013).



previous one does, but can still in principle infer im-
plicit events from text, and does not require a parser
(and can be therefore be used for low-resource lan-

guages).

System Accuracy | BLEU | 1GP
Unigram 0.002 - -
Copy/paste - 1.88 22.6
Event LSTM | 0.023 0.34 19.9
Text LSTM | 0.020 5.20 30.9

Table 2: Prediction results in Pichotta and Mooney (2016b).

More results can be found in the paper.

Table 2 gives a subset of results from Pichotta and
Mooney (2016b), comparing an event LSTM with
a text LSTM. The “Copy/paste” baseline determin-
istically predicts a sentence as its own successor.
The “Accuracy” metric measures what percentage of
argmax inferences were equal to the gold-standard
held-out event. The “BLEU” column gives BLEU
scores (Papineni et al., 2002) for raw text inferred
by systems (either directly, or via an intermediate
text-generation step in the case of the Event LSTM
output). The “1G P” column gives unigram preci-
sion against the gold standard, which is one of the
components of BLEU. Figure 1, reproduced from
Pichotta and Mooney (2016b), gives some example
next-sentence predictions. Despite the fact that it is
very difficult to predict the next sentence in natural
text, the text-level encoder/decoder system is capa-
ble of learning learning some aspects of event co-
occurrence structure in documents.

These results indicate that modeling text directly
does not appear to appreciably harm the ability to
infer held-out events, and greatly helps in inferring
held-out text describing those events.

3 Related Work

There are a number of related lines of research inves-
tigating different approaches to statistically model-
ing event co-occurrence. There is, first of all, a body
of work investigating systems which infer events
from text (including the above work). Chambers and
Jurafsky (2008) give a method of modeling and in-
ferring simple (verb, dependency) pair-events. Jans
et al. (2012) describe a model of the same sorts of
events which gives superior performance on the task
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of held-out event prediction; Rudinger et al. (2015)
follow this line of inquiry, concluding that the task
of inferring held-out (verb, dependency) pairs from
documents is best handled as a language modeling
task.

Second, there is a body of work focusing on au-
tomatically inducing structured collections of events
(Chambers, 2013; Cheung et al., 2013; Nguyen et
al., 2015; Ferraro and Van Durme, 2016), typically
motivated by Information Extraction tasks.

Third, there is a body of work investigating high-
precision models of situations as they occur in the
world (as opposed to how they are described in text)
from smaller corpora of event sequences (Regneri et
al.,, 2010; Li et al., 2012; Frermann et al., 2014; Orr
et al., 2014).

Fourth, there is a recent body of work investi-
gating the automatic induction of event structure in
different modalities. Kim and Xing (2014) give a
method of modeling sequences of images from or-
dered photo collections on the web, allowing them to
perform, among other things, sequential image pre-
diction. Huang et al. (2016) describe a new dataset
of photos in temporal sequence scraped from web
albums, along with crowdsourced story-like descrip-
tions of the sequences (and methods for automati-
cally generating the latter from the former). Bosse-
lut et al. (2016) describe a system which learns a
model of prototypical event co-occurrence from on-
line photo albums with their natural language cap-
tions. Incorporating learned event co-occurrence
structure from large-scale natural datasets of differ-
ent modalities could be an exciting line of future re-
search.

Finally, there are a number of alternative ways
of evaluating learned script models that have been
proposed. Motivated by the shortcomings of eval-
uation via held-out event inference, Mostafazadeh
et al. (2016) recently introduced a corpus of crowd-
sourced short stories with plausible “impostor” end-
ings alongside the real endings; script systems
can be evaluated on this corpus by their ability
to discriminate the real ending from the impostor
one. This corpus is not large enough to train a
script system, but can be used to evaluate a pre-
trained one. Hard coreference resolution problems
(so-called “Winograd schema challenge” problems
(Rahman and Ng, 2012)) provide another possible



Input: As of October 1, 2008 , (OOV) changed its company name to Panasonic Corporation.

Gold: (OOV) products that were branded “National” in Japan are currently marketed under
the “Panasonic” brand.

Predicted: The company’s name is now (OOV).

Input: White died two days after Curly Bill shot him.

Gold: Before dying, White testified that he thought the pistol had accidentally discharged
and that he did not believe that Curly Bill shot him on purpose.

Predicted: He was buried at (OOV) Cemetery.

Input: The foundation stone was laid in 1867.

Gold: The members of the predominantly Irish working class parish managed to save £700
towards construction, a large sum at the time.

Predicted: The (OOV) was founded in the early 20th century.

Input: Soldiers arrive to tell him that (OOV) has been seen in camp and they call for his
capture and death.

Gold: (OOV) agrees .

Predicted: (OOV) is killed by the (OOV).

Figure 1: Examples of next-sentence text predictions, reproduced from Pichotta and Mooney (2016b). (OOV) is the out-of-

vocabulary pseudo-token, which frequently replaces proper names.

alternative evaluation for script systems.

4 Future Work and Conclusion

The methods described above were motivated by the
utility of event inferences based on world knowl-
edge, but, in order to leverage large text corpora,
actually model documents rather than scenarios in
the world per se. That is, this work operates un-
der the assumption that modeling event sequences
in documents is a useful proxy for modeling event
sequences in the world. As mentioned in Section 3,
incorporating information from multiple modalities
is one possible approach to bridging this gap. In-
corporating learned script systems into other useful
extrinsic evaluations, for example coreference reso-
lution or question-answering, is another.

For the task of inferring verbs and arguments ex-
plicitly present in documents, as presented above,
we have described some evidence that, in the con-
text of standard RNN training setups, modeling raw
text yields fairly comparable performance to explic-
itly modeling syntactically mediated events. The ex-
tent to which this is true for other extrinsic tasks
is an empirical issue that we are currently explor-
ing. Further, the extent to which representations
of more complex event properties (such as those
hand-encoded in Schank and Abelson (1977)) can
be learned automatically (or happen to be encoded
in the learned embeddings and dynamics of neural
script models) is an open question.
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