
Proceedings of the Workshop on Structured Prediction for NLP, pages 63–71,
Austin, TX, November 5, 2016. c©2016 Association for Computational Linguistics

Unsupervised Neural Hidden Markov Models

Ke Tran2∗ Yonatan Bisk1 Ashish Vaswani3∗ Daniel Marcu1 Kevin Knight1
1Information Sciences Institute, University of Southern California

2Informatics Institute, University of Amsterdam
3Google Brain, Mountain View

m.k.tran@uva.nl, ybisk@isi.edu,
avaswani@google.com, marcu@isi.edu, knight@isi.edu

Abstract

In this work, we present the first results for
neuralizing an Unsupervised Hidden Markov
Model. We evaluate our approach on tag in-
duction. Our approach outperforms existing
generative models and is competitive with the
state-of-the-art though with a simpler model
easily extended to include additional context.

1 Introduction

Probabilistic graphical models are among the most
important tools available to the NLP community. In
particular, the ability to train generative models us-
ing Expectation-Maximization (EM), Variational In-
ference (VI), and sampling methods like MCMC has
enabled the development of unsupervised systems for
tag and grammar induction, alignment, topic models
and more. These latent variable models discover hid-
den structure in text which aligns to known linguis-
tic phenomena and whose clusters are easily identifi-
able.

Recently, much of supervised NLP has found great
success by augmenting or replacing context, features,
and word representations with embeddings derived
from Deep Neural Networks. These models allow for
learning highly expressive non-convex functions by
simply backpropagating prediction errors. Inspired
by Berg-Kirkpatrick et al. (2010), who bridged the
gap between supervised and unsupervised training
with features, we bring neural networks to unsuper-
vised learning by providing evidence that even in

∗This research was carried out while all authors were at the
Information Sciences Institute.

unsupervised settings, simple neural network mod-
els trained to maximize the marginal likelihood can
outperform more complicated models that use expen-
sive inference.

In this work, we show how a single latent variable
sequence model, Hidden Markov Models (HMMs),
can be implemented with neural networks by sim-
ply optimizing the incomplete data likelihood. The
key insight is to perform standard forward-backward
inference to compute posteriors of latent variables
and then backpropagate the posteriors through the
networks to maximize the likelihood of the data.

Using features in unsupervised learning has been
a fruitful enterprise (Das and Petrov, 2011; Berg-
Kirkpatrick and Klein, 2010; Cohen et al., 2011) and
attempts to combine HMMs and Neural Networks
date back to 1991 (Bengio et al., 1991). Addition-
ally, similarity metrics derived from word embed-
dings have also been shown to improve unsupervised
word alignment (Songyot and Chiang, 2014).

Interest in the interface of graphical models and
neural networks has grown recently as new infer-
ence procedures have been proposed (Kingma and
Welling, 2014; Johnson et al., 2016). Common to
this work and ours is the use of neural networks to
produce potentials. The approach presented here is
easily applied to other latent variable models where
inference is tractable and are typically trained with
EM. We believe there are three important strengths:

1. Using a neural network to produce model prob-
abilities allows for seamless integration of addi-
tional context not easily represented by condi-
tioning variables in a traditional model.

63

2. Gradient based training trivially allows for mul-
tiple objectives in the same loss function.

3. Rich model representations do not saturate as
quickly and can therefore utilize large quantities
of unlabeled text.

Our focus in this preliminary work is to present
a generative neural approach to HMMs and demon-
strate how this framework lends itself to modularity
(e.g. the easy inclusion of morphological informa-
tion via Convolutional Neural Networks §5), and the
addition of extra conditioning context (e.g. using an
RNN to model the sentence §6). Our approach will
be demonstrated and evaluated on the simple task of
part-of-speech tag induction. Future work, should
investigate the second and third proposed strengths.

2 Framework

Graphical models have been widely used in NLP.
Typically potential functions ψ(z,x) over a set of
latent variables, z, and observed variables, x, are
defined based on hand-crafted features. Moreover,
independence assumptions between variables are of-
ten made for the sake of tractability. Here, we pro-
pose using neural networks (NNs) to produce the po-
tentials since neural networks are universal approx-
imators. Neural networks can extract useful task-
specific abstract representations of data. Addition-
ally, Long Short-Term Memory (LSTM) (Hochre-
iter and Schmidhuber, 1997) based Recurrent Neural
Networks (RNNs), allow for modeling unbounded
context with far fewer parameters than naive one-hot
feature encodings. The reparameterization of poten-
tials with neural networks (NNs) is seamless:

ψ(z,x) = fNN(z,x | θ) (1)

The sequence of observed variables are denoted
as x = {x1, . . . , xn}. In unsupervised learning, we
aim to find model parameters θ that maximize the
evidence p(x | θ). We focus on cases when the pos-
terior is tractable and we can use Generalized EM
(Dempster et al., 1977) to estimate θ.

p(x) =
∑
z

p(x, z) (2)

= Eq(z)[ln p(x, z | θ)] + H[q(z)] (3)

+ KL (q(z) ‖ p(z |x, θ)) (4)

Text Pierre Vinken will join the board
PTB NNP NNP MD VB DT NN

Table 1: Example Part-of-Speech tagged text.

where q(z) is an arbitrary distribution, and H is the
entropy function. The E-step of EM estimates the
posterior p(z |x) based on the current parameters θ.
In the M-step, we choose q(z) to be the posterior
p(z |x), setting the KL-divergence to zero. Addition-
ally, the entropy term H[q(z)] is a constant and can
therefore be dropped. This means updating θ only
requires maximizing Ep(z |x)[ln p(x, z | θ)]. The gra-
dient is therefore defined in terms of the gradient of
the joint probability scaled by the posteriors:

J(θ) =
∑
z

p(z |x)
∂ ln p(x, z | θ)

∂θ
(5)

In order to perform the gradient update in Eq 5,
we need to compute the posterior p(z |x). This
can be done efficiently with the Message Passing al-
gorithm. Note that, in cases where the derivative
∂
∂θ ln p(x, z | θ) is easy to evaluate, we can perform
direct marginal likelihood optimization (Salakhutdi-
nov et al., 2003). We do not address here the question
of semi-supervised training, but believe the frame-
work we present lends itself naturally to the incorpo-
ration of constraints or labeled data. Next, we demon-
strate the application of this framework to HMMs in
the service of part-of-speech tag induction.

3 Part-of-Speech Induction

Part-of-speech tags encode morphosyntactic informa-
tion about a language and are a fundamental tool in
downstream NLP applications. In English, the Penn
Treebank (Marcus et al., 1994) distinguishes 36 cate-
gories and punctuation. Tag induction is the task of
taking raw text and both discovering these latent clus-
ters and assigning them to words in situ. Classes can
be very specific (e.g. six types of verbs in English)
to their syntactic role. Example tags are shown in Ta-
ble 1. In this example, board is labeled as a singular
noun while Pierre Vinken is a singular proper noun.

Two natural applications of induced tags are as
the basis for grammar induction (Spitkovsky et al.,
2011; Bisk et al., 2015) or to provide a syntactically
informed, though unsupervised, source of word em-
beddings.

64

z1 zt�1 zt+1 zTzt

xt xt+1xt�1x1 xT

Figure 1: Pictorial representation of a Hidden Markov Model.

Latent variable (zt) transitions depend on the previous value

(zt−1), and emit an observed word (xt) at each time step.

3.1 The Hidden Markov Model

A common model for this task, and our primary
workhorse, is the Hidden Markov Model trained with
the unsupervised message passing algorithm, Baum-
Welch (Welch, 2003).

Model HMMs model a sentence by assuming that
(a) every word token is generated by a latent class,
and (b) the current class at time t is conditioned on
the local history t−1. Formally, this gives us an emis-
sion p(xt | zt) and transition p(zt | zt−1) probability.
The graphical model is drawn pictorially in Figure 1,
where shaded circles denote observations and empty
ones are latent. The probability of a given sequence
of observations x and latent variables z is given by
multiplying transitions and emissions across all time
steps (Eq. 6). Finding the optimal sequence of latent
classes corresponds to computing an argmax over the
values of z.

p(x, z) =
n+1∏
t=1

p(zt | zt−1)
n∏
t=1

p(xt | zt) (6)

Because our task is unsupervised we do not have
a priori access to these distributions, but they can be
estimated via Baum-Welch. The algorithm’s outline
is provided in Algorithm 1.

Training an HMM with EM is highly non-convex
and likely to get stuck in local optima (Johnson,
2007). Despite this, sophisticated Bayesian smooth-
ing leads to state-of-the-art performance (Blunsom
and Cohn, 2011). Blunsom and Cohn (2011) fur-
ther extend the HMM by augmenting its emission
distributions with character models to capture mor-
phological information and a tri-gram transition ma-
trix which conditions on the previous two states. Re-
cently, Lin et al. (2015) extended several models

Algorithm 1 Baum-Welch Algorithm
Randomly Initialize distributions (θ)
repeat

Compute forward messages: ∀i,t αi(t)
Compute backward messages: ∀i,t βi(t)
Compute posteriors:

p(zt = i |x, θ) ∝ αi(t)βi(t)
p(zt = i, zt+1 = j |x, θ)

∝ αi(t)p(zt+1 =j|zt= i)
×βj(t+ 1)p(xt+1|zt+1 =j)

Update θ
until Converged

including the HMM to include pre-trained word em-
beddings learned by different skip-gram models. Our
work will fully neuralize the HMM and learn embed-
dings during the training of our generative model.
There has also been recent work on by Rastogi et al.
(2016) on neuralizing Finite-State Transducers.

3.2 Additional Comparisons
While the main focus of our paper is the seamless
extension of an unsupervised generative latent vari-
able model with neural networks, for completeness
we will also include comparisons to other techniques
which do not adhere to the generative assumption.
We include Brown clusters (Brown et al., 1992) as
a baseline and two clustering techniques as state-
of-the-art comparisons: Christodoulopoulos et al.
(2011) and Yatbaz et al. (2012).

Of particular interest to us is the work of Brown
et al. (1992). Brown clusters group word types
through a greedy agglomerative clustering according
to their mutual information across the corpus based
on bigram probabilities. Brown clusters do not ac-
count for a word’s membership in multiple syntactic
classes, but are a very strong baseline for tag induc-
tion. It is possible our approach could be improved
by augmenting our objective function to include mu-
tual information computations or a bias towards a
harder clustering.

4 Neural HMM

The aforementioned training of an HMM assumes ac-
cess to two distributions: (1) Emissions with K × V
parameters, and (2) Transitions with K ×K parame-
ters. Here we assume there are K clusters and V

65

word types in our vocabulary. Our neural HMM
(NHMM) will replace these matrices with the out-
put of simple feed-forward neural networks. All con-
ditioning variables will be presented as input to the
network and its final softmax layer will provide prob-
abilities. This should replicate the behavior of the
standard HMM, but without an explicit representa-
tion of the necessary distributions.

4.1 Producing Probabilities

Producing emission and transition probabilities al-
lows for standard inference to take place in the
model.

Emission Architecture Let vk ∈ RD be vector
embedding of tag zk, wi ∈ RD and bi vector embed-
ding and bias of word i respectively. The emission
probability p(wi | zk) is given by

p(wi | zk) =
exp(v>k wi + bi)∑V
j=1 exp(v>k wj + bj)

(7)

The emission probability can be implemented by a
neural network where wi is the weight of unit i at
the output layer of the network. The tag embeddings
vk are obtained by a simple feed-forward neural net-
work consisting of a lookup table following by a non-
linear activation (ReLU). When using morphology
information (§5), we will first use another network
to produce the word embedddings wi.

Transition Architecture We produce the transi-
tion probability directly by using a linear layer of
D ×K2. More specifically, let q ∈ RD be a query
embedding. The unnormalized transition matrix T is
computed as

T = U>q + b (8)

where U ∈ RD×K2
and b ∈ RK2

. We then reshape
T to a K ×K matrix and apply a softmax layer per
row to produce valid transition probabilities.

4.2 Training the Neural Network

The probabilities can now be used to perform the
aforementioned forward and backward passes over
the data to compute posteriors. In this way, we per-
form the E-step as though we were training a vanilla
HMM. Traditionally, these values would simply

be re-normalized during the M-step to re-estimate
model parameters. Instead, we use them to re-scale
our gradients (following the discussion from §2).
Combining the HMM factorization of the joint proba-
bility p(x, z) from Eq. 6 with the gradient from Eq. 5,
yields the following update rule:

J(θ) =
∑
z

p(z |x)
∂ ln p(x, z | θ)

∂θ

=
∑
t

∑
zt

p(zt |x)
∂ ln p(xt | zt, θ)

∂θ

+ p(zt, zt−1 |x)
∂ ln p(zt | zt−1, θ)

∂θ
(9)

The posteriors p(zt |x) and p(zt, zt−1 |x) are ob-
tained by running Baum-Welch as shown in Algo-
rithm 1. Where traditional supervised training can
follow a clear gradient signal towards a specific
assignment, here we are propagating the model’s
(un)certainty instead. An additional complication in-
troduced by this paradigm is the question of how
many gradient steps to take on a given minibatch. In
incremental EM the posteriors are simply accumu-
lated and normalized. Here, we repeatedly recom-
pute gradients on a minibatch until reaching the max-
imum number of epochs or a convergence threshold
is met.

Finally, notice that the factorization of the HMM
allows us to evaluate the joint distribution p(x, z | θ)
easily. We therefore employ Direct Marginal Likeli-
hood (DML) (Salakhutdinov et al., 2003) to optimize
the model’s parameters. After trying both EM and
DML we found EM to be slower to converge and per-
form slightly weaker. For this reason, the presented
results will all be trained with DML.

4.3 HMM and Neural HMM Equivalence

An important result we see in Table 2 is that the Neu-
ral HMM (NHMM) performs almost identically to
the HMM. At this point, we have replaced the un-
derlying machinery, but the model still has the same
information bottlenecks as a standard HMM, which
limit the amount and type of information carried be-
tween words in the sentence. Additionally, both ap-
proaches are optimizing the same objective function,
data likelihood, via the computation of posteriors.
The equivalency is an important sanity check. The

66

Tag embeddings

ReLU

Linear

Softmax

Char-CNN

Figure 2: Computational graph of Char-CNN emission network.

A character convolutional neural network is used to compute the

weight of the linear layer for every minibatch.

following two sections will demonstrate the extensi-
bility of this approach.

5 Convolutions for Morphology

The first benefit of moving to neural networks is the
ease with which new information can be provided
to the model. The first experiment we will perform
is replacing words with embedding vectors derived
from a Convolutional Neural Network (CNN) (Kim
et al., 2016; Jozefowicz et al., 2016). We use a convo-
lutional kernel with widths from 1 to 7, which covers
up to 7 character n-grams (Figure 2). This allows the
model to automatically learn lexical representations
based on prefix, suffix, and stem information about a
word. No additional changes to learning are required
for extension.

Adding the convolution does not dramatically
slow down our model because the emission distribu-
tions can be computed for the whole batch in one
operation. We simply pass the whole vocabulary
through the convolution in a single operation.

6 Infinite Context with LSTMs

One of the most powerful strengths of neural net-
works is their ability to create compact representa-
tion of data. We will explore this here in the creation
of transition matrices. In particular, we chose to aug-
ment the transition matrix with all preceding words
in the sentence: p(zt | zt−1, w0, . . . , wt−1). Incorpo-
rating this amount of context in a traditional HMM is
intractable and impossible to estimate, as the number
of parameters grows exponentially.

For this reason, we use an stacked LSTM
to form a low dimensional representation of the
sentence (C0...t−1) which can be easily fed to
our network when producing a transition matrix:

xtxt�1x1 xT

Tt�1,t

Figure 3: A graphical representation of our LSTM transition

network. Transition matrix Tt−1,t from time step t − 1 to t is

computed based on the hidden state of the LSTM at time t− 1.

p(zt | zt−1, C0...t−1) in Figure 3. By having the
LSTM only consume up to the previous word, we do
not break any sequential generative model assump-
tions.1 In terms of model architecture, the query em-
bedding q will be replaced by a hidden state ht−1 of
the LSTM at time step t− 1.

7 Evaluation

Once a model is trained, the one best latent sequence
is extracted for every sentence and evaluated on three
metrics.

Many-to-One (M-1) Many-to-one computes the
most common true part-of-speech tag for each clus-
ter. It then computes tagging accuracy as if the clus-
ter were replaced with that tag. This metric is easily
gamed by introducing a large number of clusters.

One-to-One (1-1) One-to-One performs the same
computation as Many-to-One but only one cluster is
allowed to be assigned to a given tag. This prevents
the gaming of M-1.

V-Measure (VM) V-Measure is an F-measure
which trades off conditional entropy between the
clusters and gold tags. Christodoulopoulos et al.
(2010) found VM is to be the most informative and
consistent metric, in part because it is agnostic to the
number of induced tags.

8 Data and Parameters

To evaluate our approaches, we follow the existing
literature and train and test on the full WSJ corpus.

1This interpretation does not complicate the computation
of forward-backward messages when running Baum-Welch,
though it does, by design, break Markovian assumption about
knowledge of the past.

67

There are three components of our models which can
be tuned. Something we have to be careful of when
train and test are the same data. To avoid cheating,
no values were tuned in this work.

Architecture The first parameter is the number of
hidden units. We chose 512 because it was the largest
power of two we could fit in memory. When we ex-
tended our model to include the convolutional emis-
sion network, we only used 128 units, due to the
intensive computation of Char-CNN over the whole
vocabulary per minibatch.

The second design choice was the number of
LSTM layers. We used a three layer LSTM as it
worked well for (Tran et al., 2016), and we applied
dropout (Srivastava et al., 2014) over the vertical con-
nections of the LSTMs (Pham et al., 2014) with a rate
of 0.5.

Finally, the maximum number of inner loop up-
dates applied per batch is set to six. We train all the
models for five epochs and perform gradient clipping
whenever the gradient norm is greater than five. To
determine when to stop applying the gradient during
training we simply check when the log probability
has converged (new−old

old < 10−4) or if the maximum
number of inner loops has been reached. All opti-
mization was done using Adam (Kingma and Ba,
2015) with default hyper-parameters.

Initialization In addition to architectural choices
we have to initialize all of our parameters. Word em-
beddings (and character embeddings in the CNN) are
drawn from a Gaussian N (0, 1). The weights of all
linear layers in the model are drawn from a uniform
distribution with mean zero and a standard deviation
of

√
1/nin, where nin is the input dimension of the

linear layer.2 Additionally, weights for the LSTMs
are initialized using N (0, 1/2n), where n is the num-
ber of hidden units, and the bias of the forget gate
is set to 1, as suggested by Józefowicz et al. (2015).
We present some parameter and modeling ablation
analysis in §10.

It is worth emphasizing that parameters are shared
at the lower level of our network architectures (see
Figure 2 and Figure 3). Sharing parameters not
only allows the networks to share statistical strength,
but also reduces the computational cost of comput-

2This is the default parameter initialization in Torch.

System M-1 1-1 VM

B
as

e HMM 62.5 41.4 53.3
Brown 68.2 49.9 63.0

SO
TA

Clark (2003) 71.2 65.6
Christodoulopoulos (2011) 72.8 66.1
Blunsom (2011) 77.5 69.8
Yatbaz (2012) 80.2 72.1

O
ur

W
or

k NHMM 59.8 45.7 54.2
+ Conv 74.1 48.3 66.1
+ LSTM 65.1 52.4 60.4
+ Conv & LSTM 79.1 60.7 71.7

Table 2: English Penn Treebank results with 45 induced clusters.

We see significant gains from both morphology (+Conv) and ex-

tended context (+LSTM). The combination of these approaches

results in a very simple system which is competitive with the

best generative model in the literature.

ing sufficient statistics during training due to the
marginalization over latent variables.

In all of our experiments, we use minibatch size of
256 and sentences of 40 words or less due to mem-
ory constraints. Evaluation was performed on all
sentence lengths. Additionally, we map all the digits
to 0, but do not lower-case the data or perform any
other preprocessing. All model code is available on-
line for extension and replication at
https://github.com/ketranm/neuralHMM.

9 Results

Our results are presented in Table 2 along with two
baseline systems, and the four top performing and
state-of-the-art approaches. As noted earlier, we are
happy to see that our NHMM performs almost iden-
tically with the standard HMM. Second, we find that
our approach, while simple and fast, is competitive
with Blunsom (2011). Their Hierarchical Pitman-Yor
Process for trigram HMMs with character modeling
is a very sophisticated Bayesian approach and the
most appropriate comparison to our work.

We see that both extended context (+LSTM) and
the addition of morphological information (+Conv)
provide substantial boosts to performance. Interest-
ingly, the gains are not completely complementary,
as we note that the six and twelve point gains of these
additions only combine to a total of sixteen points in

68

Configuration M-1 1-1 VM

Uniform initialization 65.5 50.1 61.7
1 LSTM layer, no dropout 69.3 52.7 63.6
1 LSTM layer, dropout 71.0 55.7 66.2
3 LSTM layers, no dropout 72.7 52.2 65.1

Best Model 79.1 60.7 71.7
Table 3: Exploring different configurations of NHMM

VM improvement. This might imply that at least
some of the syntactic context being captured by the
LSTM is mirrored in the morphology of the language.
This hypothesis is something future work should in-
vestigate with morphologically rich languages.

Finally, the newer work of Yatbaz et al. (2012)
outperforms our approach. It is possible our perfor-
mance could be improved by following their lead and
including knowledge of the future.

10 Parameter Ablation

Our model design decisions and weight initializa-
tions were chosen based on best practices set forth
in the supervised training literature. We are lucky
that these also behaved well in the unsupervised set-
ting. Within unsupervised structure prediction, to our
best knowledge, there has been no empirical study
on neural network architecture design and weight ini-
tialization. We therefore provide an initial overview
on the topic for several of our decisions.

Weight Initialization If we run our best model
(NHMM+Conv+LSTM) with all the weights initial-
ized from a uniform distribution U(−10−4, 10−4)3

we find a dramatic drop in V-Measure performance
(61.7 vs 71.7 in Table 3). This is consistent with
the common wisdom that unlike supervised learning
(Luong et al., 2015), weight initialization is impor-
tant to achieve good performance on unsupervised
tasks. It is possible that performance could be further
enhance via the popular technique of ensembling,
would would allow for combining models which con-
verged to different local optima.

LSTM Layers And Dropout We find that dropout
is important in training an unsupervised NHMM.

3We choose small standard derivation here for numerical sta-
bility when computing forward-backward messages.

Removing dropout causes performance to drop six
points. To avoid tuning the dropout rate, future work
might investigate the effect of variational dropout
(Kingma et al., 2015) in unsupervised learning. We
also observed that the number of LSTM layers has
an impact on V-Measure. Had we simply used a sin-
gle layer we would have lost nearly five points. It
is possible that more layers, perhaps coupled with
more data, would yield even greater gains.

11 Future Work

In addition to parameter tuning and multilingual eval-
uation, the biggest open questions for our approach
are the effects of additional data and augmenting the
loss function. Neural networks are notoriously data
hungry, indicating that while we achieve competitive
results, it is possible our model will scale well when
run with large corpora. This would likely require the
use of techniques like NCE (Gutmann and Hyväri-
nen, 2010) which have been shown to be highly ef-
fective in related tasks like neural language mod-
eling (Mnih and Teh, 2012; Vaswani et al., 2013).
Secondly, despite focusing on ways to augment an
HMM, Brown clustering and systems inspired by it
perform very well. They aim to maximize mutual
information rather than likelihood. It is possible that
augmenting or constraining our loss will yield addi-
tional performance gains.

Outside of simply maximizing performance on tag
induction, a more subtle, but powerful contribution
of this work may be its demonstration of the easy
and effective nature of using neural networks with
Bayesian models traditionally trained by EM. We
hope this approach scales well to many other do-
mains and tasks.

Acknowledgments

This work was supported by Contracts W911NF-15-
1-0543 and HR0011-15-C-0115 with the US Defense
Advanced Research Projects Agency (DARPA) and
the Army Research Office (ARO). Additional thanks
to Christos Christodoulopoulos.

References

Yoshua Bengio, Renato De Mori, Flammia Giovanni, and
Ralf Kompe. 1991. Global optimization of a neural

69

network - hidden markov model hybrid. In Proceed-
ings of the International Joint Conference on Neural
Networks, Seattle, WA.

Taylor Berg-Kirkpatrick and Dan Klein. 2010. Phyloge-
netic grammar induction. In Proceedings of the 48th
Annual Meeting of the Association for Computational
Linguistics, pages 1288–1297, Uppsala, Sweden, July.

Taylor Berg-Kirkpatrick, Alexandre Bouchard-Côté, John
DeNero, and Dan Klein. 2010. Painless unsupervised
learning with features. In Human Language Technolo-
gies: The 2010 Annual Conference of the North Ameri-
can Chapter of the Association for Computational Lin-
guistics, pages 582–590.

Yonatan Bisk, Christos Christodoulopoulos, and Julia
Hockenmaier. 2015. Labeled grammar induction
with minimal supervision. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 2: Short Pa-
pers), pages 870–876, Beijing, China, July.

Phil Blunsom and Trevor Cohn. 2011. A Hierarchical
Pitman-Yor Process HMM for Unsupervised Part of
Speech Induction. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguis-
tics: Human Language Technologies, pages 865–874,
Portland, Oregon, USA, June.

Peter F Brown, Peter V deSouza, Robert L Mercer, Vin-
cent J Della Pietra, and Jenifer C Lai. 1992. Class-
Based n-gram Models of Natural Language. Computa-
tional Linguistics, 18.

Christos Christodoulopoulos, Sharon Goldwater, and
Mark Steedman. 2010. Two Decades of Unsupervised
POS induction: How far have we come? In Proceed-
ings of the 2010 Conference on Empirical Methods in
Natural Language Processing, Cambridge, MA, Octo-
ber.

Christos Christodoulopoulos, Sharon Goldwater, and
Mark Steedman. 2011. A Bayesian Mixture Model
for Part-of-Speech Induction Using Multiple Features.
In Proceedings of the 2011 Conference on Empirical
Methods in Natural Language Processing, Edinburgh,
Scotland, UK., July.

Shay B. Cohen, Dipanjan Das, and Noah A. Smith.
2011. Unsupervised structure prediction with non-
parallel multilingual guidance. In Proceedings of
the 2011 Conference on Empirical Methods in Natural
Language Processing, pages 50–61, Edinburgh, Scot-
land, UK., July.

Dipanjan Das and Slav Petrov. 2011. Unsupervised
part-of-speech tagging with bilingual graph-based pro-
jections. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 600–609, Portland,
Oregon, USA, June.

A Dempster, N Laird, and D Rubin. 1977. Maxi-
mum likelihood from incomplete data via the EM algo-
rithm. Journal of the Royal Statistical Society. Series
B (Methodological), January.

Michael Gutmann and Aapo Hyvärinen. 2010. Noise-
contrastive estimation: A new estimation principle for
unnormalized statistical models. In International Con-
ference on Artificial Intelligence and Statistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation, 9(8):1735–
1780, November.

Matthew J Johnson, David Duvenaud, Alexander B
Wiltschko, Sandeep R Datta, and Ryan P Adams. 2016.
Composing graphical models with neural networks for
structured representations and fast inference. ArXiv
e-prints, March.

Mark Johnson. 2007. Why doesn’t EM find good HMM
POS-taggers. In Proceedings of the 2007 Joint Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and Computational Natural Language Learn-
ing (EMNLP-CoNLL), January.

Rafal Józefowicz, Wojciech Zaremba, and Ilya Sutskever.
2015. An empirical exploration of recurrent network
architectures. In Proceedings of the 32nd International
Conference on Machine Learning, ICML 2015, Lille,
France, 6-11 July 2015, pages 2342–2350.

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam
Shazeer, and Yonghui Wu. 2016. Exploring the Limits
of Language Modeling. ArXiv e-prints, February.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M Rush. 2016. Character-aware neural language
models. AAAI.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. The International
Conference on Learning Representations (ICLR).

Diederik P Kingma and Max Welling. 2014. Auto-
encoding variational bayes. The International Confer-
ence on Learning Representations (ICLR).

Diederik P Kingma, Tim Salimans, and Max Welling.
2015. Variational dropout and the local reparameteriza-
tion trick. In Advances in Neural Information Process-
ing Systems 28, pages 2575–2583. Curran Associates,
Inc.

Chu-Cheng Lin, Waleed Ammar, Chris Dyer, and Lori
Levin. 2015. Unsupervised pos induction with word
embeddings. In Proceedings of the 2015 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 1311–1316, Denver, Colorado, May–
June.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the

70

2015 Conference on Empirical Methods in Natural
Language Processing, pages 1412–1421, Lisbon, Por-
tugal, September.

Mitchell P Marcus, Grace Kim, Mary Ann Marcinkiewicz,
Robert MacIntyre, Ann Bies, Mark Ferguson, Karen
Katz, and Britta Schasberger. 1994. The Penn Tree-
bank: Annotating Predicate Argument Structure. In
ARPA Human Language Technology Workshop.

Andriy Mnih and Yee Whye Teh. 2012. A fast and sim-
ple algorithm for training neural probabilistic language
models. In Proceedings of the 29th International Con-
ference on Machine Learning (ICML-12), pages 1751–
1758, New York, NY, USA, July.

Vu Pham, Christopher Bluche, Théodore Kermorvant, and
Jérôme Louradour. 2014. Dropout improves recurrent
neural networks for handwriting recognition. In In-
ternational Conference on Frontiers in Handwriting
Recognition (ICFHR), pages 285–290, Sept.

Pushpendre Rastogi, Ryan Cotterell, and Jason Eisner.
2016. Weighting finite-state transductions with neural
context. In Proceedings of the 2016 Conference of the
North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies,
pages 623–633, San Diego, California, June.

Ruslan Salakhutdinov, Sam Roweis, and Zoubin Ghahra-
mani. 2003. Optimization with em and expectation-
conjugate-gradient. In Proceedings, Intl. Conf. on
Machine Learning (ICML, pages 672–679.

Theerawat Songyot and David Chiang. 2014. Improving
word alignment using word similarity. In Proceedings
of the 2014 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), pages 1840–1845,
Doha, Qatar, October.

Valentin I. Spitkovsky, Hiyan Alshawi, Angel X. Chang,
and Daniel Jurafsky. 2011. Unsupervised dependency
parsing without gold part-of-speech tags. In Proceed-
ings of the 2011 Conference on Empirical Methods in
Natural Language Processing, pages 1281–1290, Ed-
inburgh, Scotland, UK., July.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. 2014. Dropout:
A simple way to prevent neural networks from overfit-
ting. JMLR, (1):1929–1958, January.

Ke Tran, Arianna Bisazza, and Christof Monz. 2016. Re-
current memory networks for language modeling. In
Proceedings of the 2016 Conference of the North Amer-
ican Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pages 321–
331, San Diego, California, June.

Ashish Vaswani, Yinggong Zhao, Victoria Fossum, and
David Chiang. 2013. Decoding with large-scale neu-
ral language models improves translation. In Proceed-
ings of the 2013 Conference on Empirical Methods in

Natural Language Processing, pages 1387–1392, Seat-
tle, Washington, USA, October.

Lloyd R Welch. 2003. Hidden Markov Models and the
Baum-Welch Algorithm. IEEE Information Theory
Society Newsletter, 53(4):1–24, December.

Mehmet Ali Yatbaz, Enis Sert, and Deniz Yuret. 2012.
Learning Syntactic Categories Using Paradigmatic
Representations of Word Context. In Proceedings of
the 2012 Joint Conference on Empirical Methods in
Natural Language Processing and Computational Nat-
ural Language Learning, pages 940–951, Jeju Island,
Korea, July.

71

