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Abstract

This paper describes the Howard University
system for the language identification shared
task of the Second Workshop on Computa-
tional Approaches to Code Switching. Our
system is based on prior work on Swahili-
English token-level language identification.
Our system primarily uses character n-gram,
prefix and suffix features, letter case and spe-
cial character features along with previously
existing tools. These are then combined with
generated label probabilities of the immediate
context of the token for the final system.

1 Introduction & Prior Approaches

The internet and social media have led to the emer-
gence of new registers of written language (Taglia-
monte and Denis, 2008). One of the effects of this is
the emergence of written codeswitching as a com-
mon occurrence (Cárdenas-Claros and Isharyanti,
2009). The First Workshop on Computational Ap-
proaches to Codeswitching brought increased atten-
tion to this phenomenon. This paper is our sub-
mission for the shared task in token-level language
identification in codeswitched data for the second
such workshop. Our submission is for the Spanish-
English language pair.

Our approach was informed particularly by the
submissions to the previous shared task in language
identification in codeswitched data. Most, if not all,
of the previous approaches to word-level language
identification utilized character n-grams as one of
the primary features (Solorio et al., 2014). Nguyen
and Doğruöz (2013) and all but one of the systems

Train Dev Test
# Tweets 11,397 3,011 17,723
# Tokens 139,539 33,276 211,474
Avg. tokens/tweet 12.2 11.1 11.9
% English words 56.5% 50.5% 15.3%
% Spanish words 24.1% 26.0% 58.6%
% Mixed <0.1% <0.1% <0.1%
% Ambiguous 0.2% 0.2% <0.1%
% Named Entities 2.1% 2.2% 2.1%
% Foreign words <0.1% 0.0% <0.1%
% “Other” 16.9% 20.6% 23.9%
% “Unknown” 0.1% 0.4% <0.1%

Table 1: Data set statistics

submitted to the previous shared task used some
form of context, several of which used conditional
random fields. A number of other types of features
have been utilized as well, including capitalization,
text encoding, word embedding, dictionaries, named
entity gazetteer, among others (Solorio et al., 2014;
Volk and Clematide, 2014).

2 Data Description

Several thousand tweets were collected from Twit-
ter and labeled by human annotators. Each to-
ken was labeled as being English, Spanish, ambigu-
ous (words like no which are valid words in both
languages and can’t be disambiguated by context),
mixed (tokens with elements from both languages),
foreign (words from other languages), a named en-
tity, “unknown” (tokens like “asdfhg”) and “other”.
The “other” category includes numbers (unless they
represent a non-numerical word, like <2> used
for “to”), punctuation, Twitter @-mentions, URLs,
emojis and emoticons. These tweets were divided
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into train, development and test sets and released1

to the participants in the shared task. Basic statis-
tics about the train, development and test sets can be
seen in Table 2. As can be seen, the proportion of
English and Spanish is significantly different for the
test set compared to the other two sets.

Systems were evaluated at the tweet level as
well. For this purpose, tweets are considered as ei-
ther monolingual or codeswitched. A codeswitched
tweet must have tokens from at least two of the fol-
lowing categories: English, Spanish, mixed and/or
foreign. All other tweets are considered monolin-
gual.

3 Methodology

In another paper, also submitted to this confer-
ence, we experimented with a number of features
for token-level language identification on mixed
Swahili-English data (Piergallini et al., 2016). For
this shared task, we modified our approach in a few
ways due to the parameters of the task and also ex-
plored the use of a few new features. These are de-
scribed below:

1) Word

2) Character n-grams (1- to 4-grams)

3) Word prefixes and suffixes (length 1 to 4)

For features 1-3, we filtered out words, n-grams, pre-
fixes and suffixes that occurred less than 25 times for
training our model. N-grams, prefixes and suffixes
were also converted to lower-case at the three and
four character length to reduce sparsity.

4) English-Spanish dictionary

The dictionary feature checks the token against the
English and Spanish dictionaries used in the GNU
Aspell package2 and marked according to whether it
was in one or both of the English or Spanish dictio-
naries, or neither.

5) English POS tag
1Data was released by providing tweet ID numbers. Partic-

ipants scraped the text of the tweets themselves. Since Twitter
users may delete or restrict access to their tweets, not all partic-
ipants may have had the exact same subset of the full data.

2Available here: https://github.com/WojciechMula/aspell-
python

6) Spanish POS tag

The part-of-speech tags were generated by the Stan-
ford NLTK POS tagger (Toutanova et al., 2003). The
Spanish tags were truncated at three characters to re-
duce sparsity.

7) Named entity tag

Tweets were labeled with the named entity recogni-
tion system described in Ritter et al. (2011). This
system was developed for use on Twitter data.

8) Brown cluster and cluster prefixes

Brown clustering groups word types into a binary
tree structure based on word context (Brown et al.,
1992). Clusters tend to correlate with syntactical and
semantic categories. They also correlate with lan-
guage, since words of one language tend to co-occur
with other words of the same language. To gen-
erate these clusters, we lower-cased all words and
replaced all Twitter user names with “@username”.
We used 400 clusters based on the size of the data
and the desire for some distinctions beyond basic
word classes. Words that occur infrequently tend to
be quite noisy in how they are clustered, so words
that occurred less than 10 times were not given a
cluster. To take advantage of the binary tree struc-
ture, we included features based on prefixes of the
cluster. For example, in our clusters, nodes begin-
ning with <0> were mostly Spanish words, while
nodes beginning with <11> were mostly English
words.

The remaining features are binary flags:

9) Is there a Latin alphabetic character?

10) Is there a Spanish-specific letter?

Spanish-specific characters are limited to accented
vowels, <ü> and <ñ>. These are strong indica-
tors of a word being Spanish, but they do not all oc-
cur equally frequently, so this feature reduces spar-
sity. For example, <ó> occurs approximately 40
times more frequently than <ü>. This is the most
language-specific feature we use. These characters
occur extremely infrequently in English text com-
pared to Spanish text. A language-independent con-
ceptualization of this would be whether the word
contains a member of the relative complement of
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the set of English letters in the set of Spanish let-
ters. Such a feature would not be useful in the other
direction since the 26 letters of the English alphabet
are all used in Spanish, particularly in online usage
(<w> and especially <k> are not limited to loan-
words in internet Spanish writing).

11) Is there a number character?

12) Is the token a numerical expression?

Feature 12 is true for tokens which consist entirely
of digits, mathematical symbols, and characters used
for expressions of time (“12:00”) or currency sym-
bols (<$>), etc.

13) Is there an emoji Unicode character?

Since all tokens composed of emojis are labeled as
“other”, this feature does not rely on a particular
emoji occurring in our training data to accurately
classify tokens in the test data.

14) Does the token begin a tweet/sentence?

15) Is the first letter capitalized?

16) Are all of the other letters upper case?

17) Are all of the other letters lower case?

The last four features consider capitalization. These
features was added particularly to account for named
entities and abbreviations, acronyms, etc. which
are typically capitalized or in all upper-case letters.
Since words at the beginning of sentences are fre-
quently capitalized, eliminating what is usually a
distinction between proper and common nouns, fea-
ture 14 should reduce the weight towards labeling a
word as a named entity.

Finally, we used logistic regression with L2-
regularization to generate label probabilities on to-
kens using the various combinations of the first 14
features. The label probabilities of the previous and
following tokens were then added to the feature vec-
tor for each token. Tokens at the beginning or end
of a tweet were given all zero probabilities for the
absent context. This was found to significantly im-
prove performance in our work on Swahili-English
codeswitching (Piergallini et al., 2016) and is sim-
pler than CRF3. A second logistic regression model
was then trained and applied to the final feature set.

3CRF using the same feature sets achieves improvements of
only 0.05-0.2% on accuracy but is also much slower.

3.1 Results & Discussion

The results of various feature combinations on the
development set are summarized in Table 3. Four
of the labels are excluded from the table. None of
our models ever predicted a token to be ambiguous,
mixed or foreign because these categories were all
very rare in the both the training and development
data. Conversely, the other category was very easily
predicted by even the baseline model and achieved
F1 scores of about 99.8% for all configurations.

There is not a high variation in the accuracy based
on the features used. What can be seen is that the
addition of the label probabilities for the previous
and following word consistently adds about 2% to
the overall accuracy and improves performance on
the English and Spanish categories. It seems that
part-of-speech tags and Brown clusters are not espe-
cially helpful. It is possible POS tags they could be
more useful with a coarser POS tag set, or that the
Brown clusters could be more useful with different
pre-processing. The use of the named entity recog-
nizer does improve performance on the named entity
category significantly, but it did not improve overall
accuracy much.

For our predictions on the test data, we used fea-
tures 2-7 and 9-14 with label probabilities on the
word context. Results for our submitted predic-
tions are summarized in Table 3.1. According to
the released results, our system never correctly la-
beled a token as ambiguous or mixed. It also never
labeled a token as foreign at all. There are two
versions: one with the original test data, and one
which excludes tweets which contained URLs. We
overlooked URLs in designing our model since they
never occurred in the training or development data,
although our model likely would’ve labeled them
correctly had they occurred in training. Neverthe-
less, we achieve an overall accuracy in line with
other systems without correcting for this. When
tweets containing URLs are excluded, we achieve
the highest performance on several measures. Those
measures which were highest among submitted sys-
tems are noted in bold.

To improve on our model, adding a feature or
procedure for properly handling URLs would be the
obvious first change to make. However, this does
not account for all of the errors in our predictions.
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Features Used Baseline +Dict +Binary +Brown clusters +POS/NER tags +Brown/NER
fts 1-3 fts 1-4, 9-14 fts 2-4, 8-14 fts 2-7, 9-14 fts 2-4, 7-14

Label Prob. none w±1 none w±1 none w±1 none w±1 none w±1

English
P 93.1 95.7 93.4 96.1 93.4 96.1 94.0 96.1 93.5 96.4
R 97.0 97.9 97.2 98.1 97.3 98.1 96.8 97.9 97.3 98.1
F1 95.0 96.8 95.3 97.1 95.3 97.1 95.4 97.0 95.4 97.2

Spanish
P 91.6 94.0 92.7 94.4 92.7 94.4 91.7 94.2 92.8 94.5
R 90.6 96.1 91.0 96.7 91.0 96.7 91.9 96.4 91.0 96.8
F1 91.1 95.0 91.8 95.5 91.9 95.5 91.8 95.3 91.9 95.6

Named Entity
P 60.4 62.7 61.9 63.1 62.0 63.3 70.3 69.6 68.1 70.5
R 26.6 29.7 33.5 32.3 33.1 32.6 38.4 39.9 38.7 41.6
F1 37.0 40.3 43.5 42.7 43.2 43.0 49.7 50.7 49.3 52.3

Unknown
P 0 0 0 25.0 33.3 33.3 33.3 16.7 50.0 0
R 0 0 0 0.8 0.8 0.8 0.8 0.8 0.8 0
F1 – – – 1.5 1.5 1.5 1.5 1.4 1.5 –

Accuracy 93.8 95.7 94.1 96.0 94.1 96.0 94.3 96.0 94.3 96.2
Table 2: Word-level performance of language identification models on development set (given in percentages)

Token-level Test w/o URLs
Overall Accuracy 95.1% 97.3%

English
P 90.9% 93.6%
R 92.9% 94.1%
F1 91.9% 93.8%

Spanish
P 97.6% 98.4%
R 97.8% 98.4%
F1 97.7% 98.4%

Named Entity
P 48.9% 60.6%
R 59.6% 59.9%
F1 53.7% 60.3%

Other
P 99.9% 99.9%
R 92.9% 99.3%
F1 96.3% 99.6%

Unknown
P 1.3% 1.8%
R 7.0% 8.0%
F1 2.1% 2.9%

Tweet-level Test w/o URLs
Weighted F1 89.0% 91.3%

Table 3: Performance of the final system on the test data

Notably, our system does poorly with ambiguous,
mixed and foreign words. This is largely due to there
being very few instances of these categories. We
also suspect that dealing with them would require
some special approaches to account for their partic-
ular features. For example, a mixed language word
would be expected to have some n-grams found in
both English and Spanish, but logistic regression
can’t easily account for this type of pattern. A fea-
ture designed to represent the interaction between
the English- and Spanish-like features of a mixed

word would be required. It is also possible that
some tokens were mislabeled. In our examination,
it seemed that the ambiguous and mixed categories
were not consistently distinguished.

It is also evident that our system does much worse
on named entities than on other large categories. It
could be that the tool we used did not have a com-
prehensive list of named entities (we missed “Or-
ange Is the New Black”, for example). It was also
only trained on English. Our case features may also
be more powerful when combined rather than made
into separate binary features. There is an interac-
tion between whether the first letter or all letters are
upper or lower case and whether the word is at the
beginning of a sentence, and the algorithm we used
cannot capture that easily. This could potentially
slightly improve performance on named entities. We
would also note that English and Spanish do not con-
sider the same types of words to be proper nouns,
and this may be the cause for some inconsistencies
in the annotations that we noticed.

4 Conclusion

In this paper, we described our system for Spanish-
English token-level language identification. We
achieved the highest performance on several mea-
sures using only the token’s immediate context. We
also found that POS/NE tagging tools and Brown
clusters did not significantly improve overall accu-
racy over using simpler features, but it is possible
refinements could make them more useful.
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