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Abstract

This paper describes our system submission to the CogALex-2016 Shared Task on Corpus-Based
Identification of Semantic Relations. Our system won first place for Task-1 and second place
for Task-2. The evaluation results of our system on the test set is 88.1% (79.0% for TRUE
only) f-measure for Task-1 on detecting semantic similarity, and 76.0% (42.3% when excluding
RANDOM) for Task-2 on identifying finer-grained semantic relations. In our experiments, we
try word analogy, linear regression, and multi-task Convolutional Neural Networks (CNNs) with
word embeddings from publicly available word vectors. We found that linear regression performs
better in the binary classification (Task-1), while CNNs have better performance in the multi-class
semantic classification (Task-2). We assume that word analogy is more suited for deterministic
answers rather than handling the ambiguity of one-to-many and many-to-many relationships. We
also show that classifier performance could benefit from balancing the distribution of labels in
the training data.

1 Introduction

Finding semantic relatedness between words is of crucial importance for natural language processing
as it is essential for tasks like query expansion in information retrieval. So far, systems have relied
mainly on manually constructed semantic hierarchies, such as ontologies and knowledge graphs. With
the recent interest in neural networks and word embeddings, there are attempts to find semantic relations
automatically from texts in an arithmetic fashion by measuring the distance between words in the vector
space, assuming that words that are similar to each other will tend to have similar contextual embeddings.

This paper describes our system for the CogALex-V Shared Task on Corpus-Based Identification of
Semantic Relations. We evaluated three methods for semantic classification based on word embeddings:
word analogy, linear regression, and multi-task CNNs. In all these methods, we use publicly available
pre-trained English word vectors.

2 Related Work

Semantic relatedness between single words (excluding phrases, sentences and multilingual paral-
lel data) has been addressed in a number of shared tasks before, including relational similarity in
SemEval-2012 (Jurgens et al., 2012), word to sense matching in SemEval-2014 (Jurgens et al., 2014),
hyponym-hypernym relations in SemEval-2015 (Bordea et al., 2015), semantic taxonomy (hypernymy)
in SemEval-2016 (Bordea et al., 2016), and semantic association in CogALex-2014 (Rapp and Zock,
2014).

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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The idea of representing words as vectors has been studied for about three decades (Hinton et al.,
1986; Rumelhart et al., 1986; Elman, 1990; Bengio et al., 2003; Kann and Schiitze, 2008; Mikolov et
al., 2013b). The interest in word embeddings has intensified recently with the introduction of the new
log linear architecture of Mikolov et al. (2013a). This architecture provided an efficient and simplified
training methodology that minimizes computational complexity by doing away with the non-linear hid-
den layer, enabling training on much larger data than were previously possible. The public availability
of word embedding training programs such as word2vec (Mikolov et al., 2013a) and GloVe (Pennington
et al., 2014) allowed researchers to create models with different parameters and dimensionality sizes for
different purposes.

The evaluation data' used in the development of the Google Continuous Bag of Words (CBOW) and
skip-gram vectors (Mikolov et al., 2013a) focused on semantic similarities and coarse-grained semantic
relations in the form of deterministic answers by analogy. These relationships were one-to-one including,
for example, capitals (Athens: Greece - Baghdad: Iraq), currencies (India: rupee - Iran: rial), gender
(king: queen - man: woman), derivation (amazing: amazingly - safe: safely), and inflection (enhance:
enhancing - generate: generating). The evaluation data provided in the CogALex-V Shared Task includes
five different semantic relations within the same training and test data, where the relationship between
words is one-to-many. For example, while it is relatively easy to predict ‘queen’ as the answer to this
query x = king — man + woman, you cannot expect ‘contract’ as the answer to the query x = shoe —
boot + lease with the same level of confidence if the relationship is expected to be either synonymy,
antonymy, hyponymy, or hypernymy.

In this paper we try three different methods for handling semantic classification in the shared task:
word analogy, linear regression and multi-task CNN. Using word analogy for identifying semantic re-
lations has been discussed in a number of papers including (Levy et al., 2015; Gladkova et al., 2016;
Vylomova et al., 2015). The basic idea is to use vector-oriented reasoning based on the offsets between
words (Mikolov et al., 2013b) assuming that pairs of words that share a certain semantic relation will
have similar cosine distance.

Linear regression classifiers, including Naive Bayes, Logistic Regression and Support Vector Ma-
chines, have been used for the identification of semantic relations. For example, GuoDong et al. (2005)
used SVM to extract semantic relationships between entities relying on features extracted from lexical,
syntactic, and semantic knowledge. Hatzivassiloglou and McKeown (1997) used a log-linear regression
model to predict the similarity of conjoined adjectives. Snow et al. (2004) use a logistic regression clas-
sifier for hypernym pair identification. Costello (2007) used Naive Bayes to learn associations between
features extracted from WordNet and predict relation membership categories. In our work, we do not
use any lexical, syntactic or semantic features, other than the word embeddings and we score similarity
using the well known cosine similarity metric.

CNNSs have also been applied to the task. Zeng et al. (2014) use a convolutional deep neural network
(DNN) to extract lexical features learned from word embeddings and then fed into a softmax classifier
to predict the relationship between words. Similar approaches have been applied in (Santos et al., 2015)
and (Xu et al., 2015).

3 Data Description

3.1 Shared Task Data

The shared task organizers provide a training set of 3,054 word pairs for 318 target words. In Task-1,
we are given a pair of words and we need to determine if the words are semantically related or not.
Some examples of Task-1 are shown in 1. In Task-2 participants are required to detect the type of the
relationship: HYPER, PART_OF, SYN, ANT, or RANDOM.

3.2 Pre-Trained Word Vectors

In our experiments we experimented with three large-scale, publicly available pre-trained word vectors:

'http://www.fit.vutbr.cz/ imikolov/rnnlm/word-test.v1.txt
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Word 1 | Word 2 | Task-1: | Task-2:
Related? | Which Relation?
lease contract | TRUE HYPER

brain head TRUE PART_OF

cheat deceive | TRUE SYN

move rest TRUE ANT

bright mature | FALSE | RANDOM Table 2: Word Analogy results

Task Prec. | Rec. F1
Task-1 | 75.3 | 61.1 | 63.0
Task-2 | 68.1 | 34.0 | 42.6

Table 1: Training data for Task-1 and Task-2.

Google News”. This is built with the word2vec architecture from a news corpus of 100B words (3M
vocabulary entries) with 300 dimensions, negative sampling, using continuous bag of words and window
size of 5.

Common Crawler®. This is built with the GloVe architecture from a corpus of 840B words (2.2M
vocabulary entries) with 300 dimensions, and applying the adaptive gradient algorithm (AdaGrad) (Duchi
etal., 2011).

Wikipedia + Gigaword 5*. This is built with the GloVe architecture from a corpus of 6B words (400K
vocabulary entries) with 300 dimensions, and applying AdaGrad with context size of 20.

4 Experiments and Results

In this section we outline the experiments and report the results for the three approaches we tested: word
analogy, linear regression and multi-task CNN. The results reported in this section are on the training set
for all labels including “FALSE” for Task-1 and “RANDOM?” for Task-2. Results on the test set of our
selected systems are reported in Section 5.

4.1 Word Analogy

In word analogy, similar to Levy et al. (2014), we query the word vector directly to obtain the
closest match to the given example using the formula: predicted_word = example_wordl —
example_word2 + target_word. We iterate the query over all the examples in the training set and
limit the search scope to the vocabulary items within the set (a set is the target word and all potentially
related words). Then we take the average of the responses. The results in Table 2 show that this approach
does not work as well for this current task. As we will show, the scores are much lower than those of the
other approaches we explored here.

4.2 Linear Regression

We extract similarity distance between words from word vectors, then we use a number of ML classifiers
to detect labels based only on the numerical value of the similarity distance. In the initial stage, Table
3, we compare ML algorithms (using 10-fold cross validation) trained on the similarity cosine distance
extracted from Google News vectors as the only feature.

We notice from Table 3 that Simple Logistic and Multi-task CNNs have the best score for Task-1
and Task-2 respectively. Now we compare the performance on the three word vector resources: Google
News, Common Crawler and Wikipedia + Gigaword 5. Table 4 shows that the best results are obtained by
Common-Crawler for Task-2, and by combining the similarity scores from two models of Google News
and Wiki+Gigaword for Task-1. We combined them by feeding into the classifier the cosine distance
from each word embedding as a feature.

We observe that the classes in the training data are highly imbalanced, where 27% of the pairs are
related, while 73% are unrelated. We assume that this disproportion could bias the classifier to prefer

Zhttps://drive.google.com/file/d/0B7XkCwpISKDYNINUTTISS21pQmM/
3http://nlp.stanford.edu/data/glove.6B.zip
*http://nlp.stanford.edu/data/glove.840B.300d.zip

88



Classifier (Word Vect Task-1 | Task-2
Classifier Task-1 | Task-2 lassifier (Word Vectors) | Tas as
Logistic Regression 77.2 56.6 Simple Logistic (G) 89.0 701
o8 gre : : Simple Logistic (WG) 86.6 | 755
Simple Logistic 89.0 70.1 .
Decision T 148 877 615 Simple (CC) 89.0 76.0
Ne.m];’n rees (148) ses | 774 Simple Logistic (G+WG) 894 | 772
LawiBliyes 235 | 740 NaiveBayes (CC) 869 | 766
LaZyK S os | 701 NaiveBayes (G+WG) 887 | 77.8
ngyl talr( NN oo | e Multi-task CNN (G) 832 | 774
e N oxo | o7y | | Multitask CNN (WG) 85.1 | 78,0
ulti-tas : : Multi-task CNN (CC) 86.0 | 784

Table 3: FI1 Score (%) comparison of ML clas-

) Table 4: Comparison of word vectors (G=Google News,
sifiers.

WG=Wikipedia+Gigaword and CC=Common Crawler).

Limit | TRUE | FALSE | Average | Diff
1 91.8 79.5 88.3 | 12.3
2 89.1 86.5 88.1 2.6 Method Task-1 | Task-2
3 86.6 89.1 88.0 | 2.5 SimpleLogistic 79.0 28.7
4 83.6 90.1 875 | 6.5 Multi-task CNN 71.0 42.3
5 82.2 914 88.2 | 9.2
No limit 793 93.1 804 | 13.8 Table 6: Final F1 Scores (%) on the test set.

Table 5: Results for different limits of unrelated pairs.

the majority labels over the minority ones. We try to correct this imbalanced distribution by reducing the
number of unrelated pairs and see if this can improve the performance of the classifiers. We conduct our
experiments using our best model so far for Task-1 (SimpleLogistic) over different limits of the unrelated
words (1, 2, 3,4, 5 and all) as shown in Table 5. We choose limit 3 as our best model as it has the smallest
difference between the f-score for TRUE and FALSE. For Task-2, reduction of unrelated words did not
lead to any improvement in the system, so we apply it only to Task-1.

4.3 Multi-task Convolution Neural Network (CNN)

The CNN architecture is similar to the one used by Collobert and Weston (2008). We first feed the pair
of input words to the embedding layer, which is initialized with the pre-trained embeddings discussed in
Section 3.2. Next in the model is a stack of convolution modules with 500 filters each for filter sizes 1 and
2. We then apply 1-MaxPooling operation, after which we have a Dense layer with 32 neurons. Finally,
we have two softmax classifiers since our system uses a multitask approach to jointly learn both tasks.
More precisely, the loss function L combines the loss for Task-1 and Task-2, as defined in Equation 1.
Here, ylaskl, ylask2 glaskl and jlash2 represent the labels and prediction probabilities for Task-1 and
Task-2 respectively. Multitask architectures are preferred over single task ones as the constituent tasks
can act as regularizers (Ian Goodfellow and Courville, 2016). There are dropouts after Embedding,

Convolution and Dense layers to regularize the network.

I (X, Y) _ Z (yfaskl In yAfaskl) _ Z (y§ask2 In Q§ask2) (D)

? J

Parameter tuning: We used 20% of the training data as parameter tuning dataset and used it to tune var-
ious hyper-parameters like dropout ranges, filters and filter sizes of CNN modules and learning rate. We
then use the best model’s parameters to perform 10-fold cross-validation experiments with the training
data. The results are shown in Table 3 and 4. Additionally, we also experimented with models specific to
either Task-1 or Task-2. The results show that the multi-task setting yields better performance than the
single task setting.
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Label | Precision | Recall | F-Score

Label | RND | SYN | ANT | HYP | PRT
RND 87.4 91.1 89.2

RND | 2787 85 78 78 31
SYN 20.9 20.0 20.4

SYN 86 47 50 41 11
ANT 47.8 422 44.8

ANT 132 39 152 26 11
HYP 50.6 47.6 49.1

HYP 112 42 27 182 19
PRT 57.6 43.8 49.7 PRT 70 12 1 3 08
All 75.6 76.7 76.0

. Table 8: Confusion Matrix for Task-2.
Table 7: Detailed results for Task-2 labels.

5 Final Results

In order to preserve the integrity of the test data, we do not apply any fine-tuning or measure performance
improvement by iterating on the test set. We apply only our best performing systems on the training data,
which are Simple Logistic trained on Google News and Wikipedia + Gigaword 5 for Task-1, and CNN
for Task-2. The results are reported by the shared task evaluation script for the related pairs only (i.e.
excluding ‘FALSE’ and ‘RANDOM’) and are shown in Table 6. We achieve 79.0% and 42.3% F-score
For Task-1 and Task-2 respectively. Tables 7 and 8 present the detailed performance per label in Task-2
and the confusion matrix. We notice that synonyms are the hardest to distinguish among all other labels.
This is reminiscent of the philosophical question of the non-existence of exact synonyms (Carstairs-
McCarthy, 1994). By contrast, the system performs best in detecting hypernym and part-of relations.

6 Conclusion

In this paper we have presented our systems for identifying and classifying semantic relations between
single words. We used linear regression trained only on the cosine distance between word embedding
representations. This method gives better results for Task-1. For task2, multi-task CNN method performs
better. Our system performs relatively well for the binary classification of similarity between pairs of
words, but the performance significantly decreases for the multi-class classification of four semantic
relations. This is probably due to the ambiguity in one-to-many and many-to-many relationships.
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