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Abstract

Notwithstanding the success of the notion of construction, the computational tradition still lacks
a way to represent the semantic content of these linguistic entities. Here we present a simple
corpus-based model implementing the idea that the meaning of a syntactic construction is in-
timately related to the semantics of its typical verbs. It is a two-step process, that starts by
identifying the typical verbs occurring with a given syntactic construction and building their dis-
tributional vectors. We then calculated the weighted centroid of these vectors in order to derive
the distributional signature of a construction. In order to assess the goodness of our approach,
we replicated the priming effect described by Johnson and Golberg (2013) as a function of the
semantic distance between a construction and its prototypical verbs. Additional support for our
view comes from a regression analysis showing that our distributional information can be used
to model behavioral data collected with a crowdsourced elicitation experiment.

1 Introduction

In its traditional use, that can be traced back at least to the medieval Modistae school of grammarians
(Goldberg and Casenhiser, 2006), the linguistic notion of Construction (Cxn) can be characterized as the
association between a form and a (semantic or pragmatic) function. As a theoretical tool, linguists used
to resort to this notion in order to refer to quirky phenomena considered to be marginally relevant for
the description of the core properties of language, for instance idiomatic expressions. The prototypical
instantiation of this view is the generative approach (Chomsky, 2000).

The 1980s witnessed the emerging of a new linguistic paradigm that puts the notion of Cxn at the
heart of the study of language, which subsequently led to the evolution of a wide range of Constructionist
approaches (Hoffmann and Trousdale, 2013). Works belonging to this literature see Cxns as linguistic
patterns whose form or function cannot be predicted from their components or from other Cxns. Their
realization spans in size and complexity from fixed idiomatic sequences of words (e.g., a home from
home), to unusual semi-productive patterns (e.g. the Covariational-Conditional Cxn “The Xer the Yer”:
The more I talk, the more I turn into a vegetable), to common productive argument structures (e.g. the
Ditransitive Cxn “Subj V Obj1 Obj2”: She gave him a kiss).

One major breaking point between the Constructionist approaches and former formal linguistic tradi-
tion pertains to the pivotal role played by the main verb in the interpretation of the sentence. Traditionally,
indeed, sentences composed by nonsensical words, such as the example of Vogon poetry in sentence (1),
are expected to be completely meaningless, due to the idea that meaning comes from lexical items alone.

(1) As plurdled gabbleblotchits on a lurgid bee.

Another consequence of the idea that meaning comes solely from lexical items is re assumption that the
structural and semantic properties of a sentence are determined by the syntactic and semantic properties
projected from the main verb. According to this view, the syntactic configurations in the sentences in (2)
are projections of the main verb to slice:

This work is licenced under a Creative Commons Attribution 4.0 International License. License details: http://
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(2) a. He sliced the bread.
b. Pat sliced the carrots into the salad.
c. Pat sliced Chris a piece of pie.
d. Pat sliced the box open. (examples from Goldberg (2006))

This view has been criticized in the Constructionist tradition, following theoretical considerations as
well as psycholinguistics arguments (Goldberg, 1995; Goldberg, 2006). From the theoretical side, for
instance, it has been pointed out that, if argument structure is projected solely by the meaning of the
verb, than it is necessary to stipulate a different meaning for each occurrence of a given verb in various
argument structures. As for the sentences in (2), this view would lead to postulate special senses of this
verb roughly meaning (2a) to cut something with a sharp instrument; (2b) to cut something with a sharp
instrument so as to move it; (2c) to cut something for someone else with a sharp instrument; (2d) to cut
something with a sharp instrument so as to change its state. In a Constructionist perspective, the verb “to
slice” is always used with the intuitive meaning of to cut with a sharp instrument, the additional meaning
coming from the construction in which it occurs, whose semantics can be paraphrased as (2a) something
acting on something else; (2b) something causing something else to move; (2c) someone intending to
cause someone to receive something; (2d) someone causing something to change state (Goldberg, 1995).

Psycholinguistic evidence, on the other side, mostly originates from research on language comprehen-
sion and language acquisition. As for the former, studies like Bencini and Goldberg (2000), Kaschak
and Glenberg (2000), Kako (2006), Goldwater and Markman (2009) and Johnson and Goldberg (2013)
support the idea that the construction of a sentence (rather than the verb only) plays a role in its in-
terpretation. In a sorting experiment, Bencini and Goldberg (2000) showed that, when asked to sort
sentences on the basis of their overall meaning, subjects were as likely to rely on the verb as on the con-
struction. Kaschak and Glenberg (2000) and Goldwater and Markman (2009) tapped into the semantic
content of different syntactic frames by using novel denominal verbs in a comprehension task. Likewise,
Kako (2006) investigated the meaning of six syntactic frames by collecting linguistic judgments over
phrases whose content words were replaced by nonsense words (a.k.a. “Jabberwocky”sentences like The
grack mecked the zarg). While all these works exploited off-line tasks or explicit judgments, Johnson
and Goldberg (2013) demonstrated that the constructional meaning is accessed quickly by asking their
participants to perform a speeded lexical decision task on a target verb, after being exposed to Jabber-
wocky prime sentences. From an acquisition perspective, studies supporting the so-called ‘Syntactic
Bootstrapping” hypothesis show that speakers use their knowledge about the meaning of syntactic pat-
tern in order to infer the semantics of a novel verb (Landau and Gleitman, 1985; Gleitman and Gillette,
1995; Gillette et al., 1999), thus endorsing the idea that argument structures have an abstract semantics
that dynamically interacts with the semantics of the main verb.

The fact that Cxns have independent semantic content raises the question of how their meaning is
acquired. Goldberg (2006) has argued that the learning of the semantic content of argument Cxn heavily
relies on the meaning of high frequency verbs used with them. For instance, the most frequent verb
occurring in an intransitive motion Cxn in a corpus of children’s early speech is to go, which roughly
corresponds to the meaning of this Cxn. The same goes for the ditransitive and the caused-motion Cxns
and their most frequent verbs, i.e. to give and to put, respectively (Goldberg, 1999). The skewed distri-
bution of verbs and Cxns, with a small number of “general purpose” verbs accounting for most of Cxn
tokens, is therefore argued to play a key role in the acquisition of construction meaning. Among the
others, Kidd et al. (2010) showed that 4- to 6-years old children were better able to recall finite sentential
complement Cxn instances when these contained high frequency verbs, as opposed to when they con-
tained low frequency verbs. Experimenting with artificial languages, Casenhiser and Goldberg (2005)
not only showed that 5- to 7-year-old children are able to associate an abstract meaning to a phrasal
form, but also that this process is facilitated when a verb occurs in a Cxn with a disproportionately high
frequency. Barak et al. (2013) provide further support by exploiting a probabilistic computational model
to investigate the acquisition of the English sentential complement Cxns. The obtained results suggest
that the learning of an argument Cxn is influenced by a series of distributional properties of the input,
among which verb frequency, co-occurrence frequency of a verb with the Cxn, and the frequency of each
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semantic verb class with the Cxn.
In this paper, we bring support to such hypothesis with a simple corpus-based method apt to infer the

semantic content of a syntactic Cxn. Our proposal transposes into distributional terms the idea that the
meaning of a Cxn is related to that of the verbs that most frequently appear in it. While traditionally the
meaning of a Cxn has always been described in intuitive terms (see Table 1), our representation allows
for the measurement of the semantic similiarity between a Cxn and other Cxns and/or lexical elements.

In the next section we will present a distributional semantic model to represent the semantic content
of syntactic Cxn. We validate this model on two test beds. In the first experiment, described in sec-
tion 3, we test the ability of our approach to model the Cxn-verb priming effect reported by Johnson and
Goldberg (2013). Section 4 reports a second study in which we investigated whether our distributional
model is able to account for behavioral data concerning the intimate semantic link between a Cxn and its
prototypical verbs. Final remarks and possible improvements are reported in section 5.

2 The distributional signature of a syntactic construction

Distributional Semantic Models (Sahlgren, 2006; Lenci, 2008; Turney and Pantel, 2010, DSMs) are
unsupervised corpus-based models of semantic representation realizing the so-called “Distributional Hy-
pothesis” (Harris, 1954; Miller and Charles, 1991), that takes the similarity of the contexts in which
two linguistic expressions occur as a proxy to their similarity in meaning. DSMs are typically built by
searching all the occurrences of a target expression in a corpus, identifying its contexts of occurrence and
representing the target-by-contexts frequencies as a matrix. Contexts can be words, syntactic relations,
lexicalized patterns, documents and so on, while the vectors composing the final matrix are assumed to
be the distributional representation of the semantics of the target elements. Distributional vectors can be
used to evaluate the semantic distance between lexical elements by means of geometric methods (Bulli-
naria and Levy, 2007; Bullinaria and Levy, 2012; Lapesa and Evert, 2014) or manipulated to represent
more complex linguistic entities (Baroni, 2013).

Our model implements the idea that the meaning of a syntactic Cxn is intimately related to the seman-
tics of its typical verbs. It is a two step process, that starts by identifying the typical verbs that occur in
our target syntactic Cxn and building their distributional−→v vectors. We calculated the weighted centroid
of these verb vectors in order to build a −−→CXN vector encoding the distributional properties of Cxn. The
notion of centroid is the generalization of the notion of mean to multidimensional spaces. In a DSM it
can be intuitively pictured as the prototype of a set of lexical elements, that is as a representation of the
characteristics that are common to the verbs associated with our target Cxn. A positive by-product of a
centroid-based representation is that it allows to soften the influence of the idiosyncratic or non-relevant
properties of the verbs, as well as the influence of the noise produced by verb polysemy. Given the role
of the skewed verb-Cxn frequency distribution, we weighted the salience of each verb in the calculation
of the centroid on the basis of its co-occurrence frequency with the target Cxn. Coherently, then, we
calculated our weighted centroids as:

−−→
CXN =

1
|V |

∑
v∈V

frel(v, CXN) · −→v (1)

where CXN is our target construction, V the set of its top-associated verbs v and frel(v, CXN) the relative
frequency of occurrence of a verb in a construction. For instance, given a Ditransitive target Cxn, whose
associated verbs are to give (frel = 0.75) and to hand (frel = 0.25), its distributional signature would
be estimated as:

−−−−−−−−−−→
DITRANSITIVE =

0.75 · −−→give+ 0.25 · −−−→hand

2
(2)

Our proposal shares a “family resemblance” with the “collostructional analysis” techniques that have
been extensively exploited to study the relationship between a verb and the constructions encoding argu-
ment structures, tense/aspect, mood and modality, both from a theoretical as well as from a psycholin-
guistic perspective (Stefanowitsch, 2013). The aim of our proposal is, however, radically different: while
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the collostructional paradigm has been developed to model the strength of association between a Cxn and
the grammatical structures it occurs in, our primary intent is to derive the meaning of argument Cxns from
the distributional semantic representations of the verbs co-occurring with them.

2.1 Implementing the model

We tested the psycholinguistic plausibility of our model by simulating the behavioral data reported by
Johnson and Goldberg (2013), further reviewed in the first part of section 3. The requirement for our
model is to account for the association between a Cxn and a target verb as a function of their geometric
distance in the distributional semantic space. Given the exploratory nature of the work presented in these
pages, we did not tune all the possible settings and hyperparameters of our DSM. Rather, whenever
possible we relied on what is the common practice in the literature or on our experience.

To implement our proposal we need two kinds of information: the distributional signature of a set of
verbs and their relative frequency with a set of syntactic Cxns. We extracted the latter from VALEX (Ko-
rhonen et al., 2006), an automatically built subcategorization lexicon that encodes information for 6,397
English verbs. From this list we selected, for each of the four Cxns used by Johnson and Goldberg (2013)
reported in Table 1, the set of 75 top associated verbs.

To model the distributional behavior of our verbs we built a syntax-based DSM (Grefenstette, 1994;
Lin, 1998; Padó and Lapata, 2007; Baroni and Lenci, 2010), that is a space in which the linguistic ex-
pressions are characterized on the basis of the parsed text dependency paths in which they occur. For in-
stance, given the sentence The cat ate my homework, in a syntax-based model the distributional entry for
the verb

−→
eat is represented with the dependency:filler patterns subj:cat, obj:homework.

We extracted the raw co-occurrence statistics from the extended arcs of the American English section of
the Google Books Syntactic Ngrams corpus (Goldberg and Orwant, 2013), a 146.2B tokens corpus built
from 1.4M books. Verbs failing to reach the minimal threshold of 500 occurrences were discarded.

The raw co-occurrence matrix has been weighted with Positive Local Mutual Information (Evert, 2008,
PLMI) to calculate the strength of association between a verb and a syntactic pattern. PLMI is defined as
the log ratio between the joint probability of a target v and a context c and their marginal probabilities,
multiplied by their joint frequency, setting to zero all the negative results:

PLMI(c, v) = max

(
0, f(c, v) · log2

p(c, v)
p(c) · p(v)

)
(3)

PLMI corresponds to the Positive Pointwise Mutual Information score (Church and Hanks, 1991) be-
tween the verb and the context, weighted by their joint frequency, and differs from PPMI in avoiding the
bias towards low-frequency events. To ignore unwanted variance and to reduce the processing cost we
adopted the context selection strategy proposed by Polajnar and Clark (2014) and limited the distribu-
tional characterization of each verb to its 240 top-associated contexts. In the final step we fed equation
1 with all the previously collected statistics on each group of 75 top-associated verbs, thus obtaining the
distributional signature of our target Cxns that will be tested in the remaining of the paper.

3 Jabberwocky sentences prime associated verbs

The starting point of the reflections by Johnson and Goldberg (2013, henceforth JG) is the psycholinguis-
tic literature showing that speakers associate semantic knowledge to argument structures, independently
of the linguistic properties of the verb governing it. Moving further, these authors tested the possibility
that this knowledge is used automatically, that is quickly and instinctively, in sentence comprehension.

To this end, they submitted 40 speakers with a lexical decision task in which they were required to
read a Jabberwocky sentence (i.e,. a sentence whose content words have been replace by meaningless
strings) and then to judge as quickly as possible if a target verb was a real lexical element or a non-word.
Table 1 reports the four syntactic constructions investigated by JG, along with an informal representation
of their meaning and the Jabberwocky sentence.

Half of the target words seen by each participant were non-words, while the other half were the target
verbs reported in Table 2, that were further classified into three classes: “High Frequency associate”
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Construction Structure Meaning Jabberwocky Prime

Ditransitive Subj V Obj1 Obj2 X CAUSES Y TO RECEIVE Z he daxed the norp

Resultative Subj V Obj Pred X CAUSES Y TO BECOME Z she jorped it miggy

Caused-motion Subj V Obj Oblpath X CAUSES Y TO MOVE Z he lorked it on the molp

Removal Subj V Obj Oblsource X CAUSES Y TO MOVE FROM Z she vakoed it from her

Table 1: JG’s experimental constructions. Adapted from Johnson and Goldberg (2013, Tables 1,3).

Construction
High Frequency

associate
Low Frequency

associate
Semantically

Related nonassociate

Ditransitive Gave Handed Transferred

Resultative Made Turned Transformed

Caused-motion Put Placed Decorated

Removal construction Took Removed Ousted

Table 2: JG’s experimental target verbs. Adapted from Johnson and Goldberg (2013, Table 4).

(HF), i.e. a verb that most frequently occurs in a given Cxn; “Low Frequency associates” (LF), i.e. a
verb that frequently occurs in a given Cxn, albeit significantly less than the relevant HF; “Semantically
Related nonassociate” (SR), i.e. a verb whose meaning is related to the semantics of the Cxn, but that
does not occurs in it. Frequencies were estimated from the 400M words COCA corpus (Davies, 2009).
Each target verb could be presented either in a congruent context, i.e. after a Jabberwocky sentence
instantiating the Cxn to which it is associated with (e.g., Gave preceded by a Ditransitive prime), or in an
incongruent condition (e.g., Gave preceded by a Removal prime). In order to simplify the experimental
design, the congruency-incongruency conditions were obtained by opposing either the Ditransitive and
the Removal Cxns, or the Caused-motion and the Resultative Cxns.

The extent of priming was computed for each target verb as the difference between the reaction times
in the congruent condition and the reaction time after the incongruent sentence. JG report a main effect
of congruency, according to which each verb was recognized faster after a related Cxn. HF and LF
associates were recognized faster in a congruent condition, both by-subject and by-item. SR verbs, on
the other side, were recognized faster only in a by-subject analysis, a fact that can be attributed to the
well-known weakness of semantic priming with respect to associative priming. Finally, the priming
effect was recorded for all classes of verbs but those associated with the Resultative Cxn, a null effect
that the authors ascribed to the plausibility of a metaphorical Caused-motion interpretation of these verbs
(??She made/turned/transformed into the room).

All in all, by recording a priming effect of the Jabberwocky sentences instantiating the Cxns in Ta-
ble 1 over their associated verbs, JG showed not only that argument structures have an inherent abstract
meaning independently of their main verb semantics, but also that this knowledge is accessed quickly
and implicitly in the process of sentence comprehension.

3.1 Modeling the priming effect

The effect reported by JG not only is a viable testing ground for our model. Replicating the same results
with distributional semantic methods allows us to draw conclusions concerning the psycholinguistic
plausibility of distributional representations, at the same time supporting the hypothesis that construction
meaning is the result of a usage-based process of abstraction from the meaning of co-occurring verbs.

In our DSM, verb and Cxn vectors lie in the same distributional space, that is, they are described by
means of the same contexts. This allows us to model the “semantic congruency” of a verb and a Cxn as a
measure of the geometric distance between the −−→CXN and the

−−→
verb vectors. Following a common practice

in the literature, we opted to calculate vectors similarity by measuring the cosine of the angle between
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Figure 1: Mean cosine similarity scores as a function of frequency class (High Frequency, Low Fre-
quency and Semantically Related) and experimental condition (congruent vs. incongruent). Vertical
capped lines atop bars indicate standard error of the mean.

them (Bullinaria and Levy, 2007; Lapesa and Evert, 2014).
JG see their priming effect as a proof of the fact that the constructions presented in Jabberwocky

sentences have a meaning strongly associated with the one of the congruent target verbs. Accordingly,
we expect higher similarity scores between the −−→CXN and the congruent

−−→
verb vectors, as opposed to the

similarity scores between the −−→CXN and the incongruent
−−→
verb vectors. A major difference between JG’s

analysis and ours, however, concerns the number of oppositions in the incongruent condition. While in
JG each Cxn the congruency-incongruency conditions were obtained by opposing either the Ditransitive
and the Removal Cxns, or the Caused-motion and the Resultative Cxns, we opted for a one-vs-all design,
in which an incongruent condition is simply a Cxn-verb pairing inconsistent with the pattern in Table 2.
We adopted this solution mainly in order to collect more data points for our analysis.

Coherently with JG, moreover, we expect an effect of the frequency class. That is, we expect higher
similarity scores between the −−→CXN and its High Frequency

−−→
verb vectors, as opposed to the similarity

scores between the −−→CXN and the Semantically Related
−−→
verb vectors, with the case of the Low Frequency−−→

verb vectors falling somehow in the middle.

3.2 Results and discussion
A two-ways ANOVA was conducted to compare the effect of the condition (congruent vs. incongruent)
and of the frequency class (HF, LF and SN) on the similarity between each verb and the centroid of its
class. Following JG, we expected weaker effects due to the relatively low number of items.

We found a significant main effect both for condition F (1, 42) = 15.91, p < .001, and frequency
class F (2, 42) = 4.86, p < .05. Overall, our verbs are more similar to their congruent construction
(m = 0.32, sd = 0.32) than to their incongruent construction (m = 0.13, sd = 0.09). Post-hoc analysis
using Tukey Honest Significant Differences indicated a significant overall difference only between HF
(m = 0.27, sd = 0.27) and SN (m = 0.11, sd = 0.11) cosines (p < .05), but no significant difference
involving the LF verbs (m = 0.16, sd = 0.12).

A significant interaction between the two conditions has been found as well F (2, 42) = 7.79, p < .01
(see Figure 1). Post-hoc analysis using Tukey Honest Significant Differences indicated a significant
difference between congruent (m = 0.6, sd = 0.41) and incongruent (m = 0.155, sd = 0.07) condition
for HF verbs (p < .001), between HF verbs and SN (m = 0.09, sd = 0.06) verbs in their congruent
conditions (p < .001), and between HF and LF (m = 0.28, sd = 0.19) verbs in their congruent
conditions (p < .05), but no other meaningful contrast reaches statistical significance.

A one-way ANOVA was conducted to compare the effect of the Cxn type on the cosine similarity
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between each verb and the centroid of its Cxn. We were interested in assessing whether there was a
significant difference in how similar each Cxn vector is to its 75 most associated verbs, i.e. in how dense
is the semantic space around each Cxn vector. The answer was affirmative: we found a significant main
effect of the Cxn on the cosine similarity for all the four conditions F (3, 277) = 0.0012, p < .01. Post-
hoc analysis using the Bonferroni correction for multiple comparisons indicated a significant (p < .01)
difference in the densities of the removal (m = 0.19, sd = 0.12) and of the resultative constructions
(m = 0.11, sd = 0.13), a significant (p < .05) difference in the difference in the densities of the
removal and of the ditransitive constructions (m = 0.13, sd = 0.12), and a marginally significant
(p < .1) difference in the densities of the removal and of the caused motion constructions (m = 0.14,
sd = 0.12). No significant difference in densities has been found for all the other comparisons. This is
coherent with the null effect on Resultative Cxn that puzzled JG. But while these ascribed it to a design
flaw, i.e. to the fact that Resultative verbs could have a metaphorical Caused-motion interpretation, our
results suggests a different interpretation. The fact that in our design we implemented all the possible
pairwise oppositions, indeed, suggests that the null effect on the Resultative Cxn is due to the low density
of this group of vectors. This is in turn related to the fact that the verbs co-ccurring with the Resultative
construction are less semantically homogenous. An in-depth study of the reasons behind the higher
distance between the prototypical Resultative verbs and the Cxn is left for further investigation.

All in all, we found a pattern that mirrors the priming effect reported by JG. In our DSM, the congru-
ency condition, that in JG leads to faster reaction times, is associated with significantly higher similarity
scores. Apart from being a further confirmation of the link between the meaning of a Cxn and that of its
typical verbs, these results confirm the psycholinguistic plausibility of our centroid-based approach.

4 Isn’t frequency enough? Analyzing crowdsourced production data

Works investigating the acquisition of Cxns usually stress the role played by the top-frequent verbs.
Psycholinguistic findings (Casenhiser and Goldberg, 2005; Kidd et al., 2010) as well as computational
simulations (Barak et al., 2013) stress the importance of many frequency-related characteristics, such as
the marginal frequency for the verb and the relative frequencies of the verb and of the verb semantic class.
Up to this point, one may wonder if the semantic resemblance between a Cxn and its most-associated
verbs may be explained simply as a function of frequency, rather than the distributional similarity be-
tween verb and Cxn vectors. We tested this hypothesis by collecting linguistic production data from
native speakers and assessing whether the inclusion of semantic similarity in a frequency-based model
would result in a significant increase in fit.

4.1 Data collection

Behavioral data were collected from English speakers by crowdsourcing our task through the Crowd-
flower marketplace. 40 Crowdflower certified “highest quality” contributors from the U.K., the U.S.A.
or Canada were recruited. Each participant was allowed to complete only a hit (i.e., a “Human Intelligent
Task”). In each hit the workers were required to generate, for each of the Jabberwocky prime tested by
JG (see Table 1), five verbs that could replace the nonsense main verb of the sentence. They received the
following instructions:

“In this task you will see English sentences containing invented words: e.g. He TREBBED the stig.
Imagine that these sentences were created by a machine that replaced real English words with invented ones.
The capitalized word is a verb. Your task is to guess this verb.
TASK: For each test sentence, write 5 English verbs that could replace the capitalized word.”

Workers were also required to complete, for each Jabberwocky sentence, a language comprehension
question of the form “is ghase an English word?”. Participants failing to provide 5 descriptions for all
the Cxns were not allowed to complete the hit, while participants that did not answer correctly to all the
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Model 1 Model 2 ∆ AIC ∆ BIC RSS F

intercept only frequency -7.19 -4.9 216.1 9.53 ∗∗

frequency frequency + similarity -4.34 -2.05 134 6.35 ∗

frequency + similarity frequency * similarity -9.8 -7.51 220.3 12.1 ∗∗∗

Table 3: Results of the production frequency models comparisons. AIC: Akaike Information Criterion;
BIC: Bayesian Information Criterion; RSS: reduction of residual sum of squares; F: F-test statistics and
significance values (∗ = p < .05; ∗∗ = p < .01; ∗∗∗ = p < .001).

Estimate SE t

(intercept) 7.06 5.85 1.21

frequency -0.73 0.99 -0.74

similarity -64.44 21.39 -3.01 ∗∗

frequency:similarity 10.97 3.15 3.48 ∗∗∗

Table 4: Parameters included in the final model and relevant statistics (∗∗ = p < .01; ∗∗∗ = p < .001).

test questions were rejected. On the average, workers needed approximately 6 minutes (m = 364.075”,
sd = 256.23”) to complete a valid hit. The data collection process took approximately 18 hours.

The workers accepted by the system submitted a total of 800 Cxn-verb pairings, that were subsequently
manually filtered and formatted. This processing phase lead to the removal of the verbs submitted by
one scammer and to the identification of 376 unique Cxn-verb pairings.

4.2 Modeling production frequency

We ran a linear regression analysis on the crowdflower-collected data with production frequency as de-
pendent variable and the joint frequency f(verb, CXN) estimated from VALEX and the verb-Cxn cosine
similarity calculated with our model as predictors. We were interested in assessing whether the frequency
of production of a verb-Cxn in our crowdsourced data could be modeled on the basis of its relative fre-
quency alone or whether the semantic similarity between the Cxn and the verb plays a role as well.

In a preprocessing phase we removed from the crowd-sourced data all those data points corresponding
to verb-Cxn pairings that occurred in VALEX less than 100 times. This reduced our dataset to 73 Cxn-
verb pairings. Moreover, the raw frequency extracted from VALEX were log-transformed to approximate
a normal distribution. Collinearity in the data matrix was evaluated by calculating the Variance Inflaction
Factors (V IF = 1.27) and the Condition Number (κ = 20.76). While a V IF < 5 value is undoubtedly
reassuring, the κ value may be cause for concerns, even if it well below the critical threshold of 30 that
is commonly taken as an indication of the risk of high collinearity (Cohen et al., 2003; Baayen, 2008).

We defined the simplest model as the one in which the only predictor is the log-transformed joint
frequency estimated from the corpus. As shown by Table 3, this model looks significantly better that the
intercept-only model. We then enriched this model by adding the cosine similarity between each verb and
the construction centroid, obtaining significant improvement in the goodness-of-fit. Finally, we added
the interaction between corpus frequency and cosine similarity, thus obtaining our best fitting model
(F (3, 69) = 10.45, p < .001, R2 = 0.312, R2

adj = 0.282). The low R2 values were not unexpected
due to the fact that crucial sources of variance has not been controlled or taken into consideration for the
present study, such as the socio-cultural background of the speakers, the different varieties of the English
language they were proficient in, the time spent in completing the micro-task and so forth. In this
model the significant predictors are the semantic similarity and its interaction with the joint frequency,
as reported in the Table 4.

Figure 2 shows the partial effects of the corpus frequency at different levels of semantic similarity
(top row) and those of the semantic similarity at different levels of corpus frequency (bottom row). At
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Figure 2: Effect displays for the interaction of (log transformed) corpus frequency and semantic similar-
ity. A 95% confidence interval is drawn around the estimated effects.

high levels of similarity and frequency the interaction between these two variables is synergistic, i.e.
their joint effect is superior than the sum of their effects in isolation, while becoming antagonistic at low
levels of similarity and/or frequency.

All in all, we interpret these results as proving that the distributional information encoded in the
distributional semantic representation of Cxns we have tested in this paper is able to model the linguistic
behavior of adult native speaker over and above the variance that can be explained by the joint frequency
of the single verbs in a given Cxn. The analysis of its possible theoretical implications are outside the
scope of this paper, but we take this result as an additional confirmation of the goodness of our proposal.

5 Conclusion

We proposed a simple unsupervised corpus-based model that represents the meaning of a syntactic con-
struction as the weighted centroid of the vectors encoding the distributional behavior of its prototypical
verbs. Given the exploratory nature of this work, we did not explore the full parameter space of our
model, an issue that follow-up studies could investigate, e.g. by comparing the alternative DSM imple-
mentations ability to model the priming effect magnitude (Ettinger and Linzen, 2016).

Our model and experimental results show that distributional semantics is able to provide a usage-based
representation of the semantic content of argument constructions, which is consistent with the available
evidence concerning the psycholinguistic reality of construction semantics (Bencini and Goldberg, 2000;
Kaschak and Glenberg, 2000; Kako, 2006; Goldwater and Markman, 2009; Johnson and Goldberg,
2013) and how this knowledge is acquired (Goldberg, 1999; Casenhiser and Goldberg, 2005; Kidd et al.,
2010). At the same time, the increment in descriptive and explanatory power obtained by moving from a
simple frequency-based measurement to a more complex frequency-based approach like ours shows the
importance of developing a more articulate account of the relationship between a syntactic construction
and its prototypical verbs.
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Sebastian Padó and Mirella Lapata. 2007. Dependency-Based Construction of Semantic Space Models. Compu-
tational Linguistics, 33(2):161–199.

Tamara Polajnar and Stephen Clark. 2014. Improving Distributional Semantic Vectors through Context Selection
and Normalisation. In Proceedings of the 14th Conference of the European Chapter of the Association for
Computational Linguistics (ACL 2014), pages 230–238.

Magnus Sahlgren. 2006. The word-space model: Using distributional analysis to represent syntagmatic and
paradigmatic relations between words in highdimensional vector spaces. Phd thesis, Stockholm University.

Anatol Stefanowitsch. 2013. Collostructional Analysis. In Thomas Hoffmann and Graeme Trousdale, editors,
The Oxford Handbook of Construction Grammar, pages 290–306. Oxford University Press, Oxford, UK.

Peter D. Turney and Patrick Pantel. 2010. From Frequency to Meaning: Vector Space Models of Semantics.
Journal of Artificial Intelligence Research, 37:141–188.

18


