
Proceedings of WLSI/OIAF4HLT,
pages 61–69, Osaka, Japan, December 12 2016.

An Ontology for Language Service Composability

Yohei Murakami
Unit of Design,

Kyoto University
yohei@i.kyoto-u.ac.jp

Donghui Lin
Department of Social Informatics

Kyoto University
lindh@i.kyoto-u.ac.jp

Takao Nakaguchi
Department of Social Informatics

Kyoto University
nakaguchi@i.kyoto-u.ac.jp

Toru Ishida
Department of Social Informatics

Kyoto University
ishida@i.kyoto-u.ac.jp

Abstract

Fragmentation and recombination is a key to create customized language environments for sup-
porting various intercultural activities. Fragmentation provides various language resource com-
ponents for the customized language environments and recombination builds each language en-
vironment according to user’s request by combining these components. To realize this fragmen-
tation and recombination process, existing language resources (both data and programs) should
be shared as language services and combined beyond mismatch of their service interfaces. To ad-
dress this issue, standardization is inevitable: standardized interfaces are necessary for language
services as well as data format required for language resources. Therefore, we have constructed
a hierarchy of language services based on inheritance of service interfaces, which is called lan-
guage service ontology. This ontology allows users to create a new customized language service
that is compatible with existing ones. Moreover, we have developed a dynamic service binding
technology that instantiates various executable customized services from an abstract workflow
according to user’s request. By using the ontology and service binding together, users can bind
the instantiated language service to another abstract workflow for a new customized one.

1 Introduction

Rapid internationalization accelerates expansion of multicultural society where local people and foreign-
ers coexist. As a result, intercultural and multilingual activities are often necessary in daily life, such as
questioning foreign patients in hospitals and teaching foreign students in schools, and so on. Although
there are many language resources (e.g. bilingual dictionaries, parallel corpora, machine translators,
morphological analyzers, and so on) on the Internet(Choukri, 2004), most intercultural collaboration ac-
tivities are still lacking multilingual support. This is because each activity requires a customized language
environment due to different purposes, domains, environments, and languages to be supported.

Many efforts have been put for combining language resources in some previous frameworks based
on web services. These efforts focus on wrapping the resources as services, and defining a standard
data format exchanged between language services and annotation vocabularies to be embedded in the
format. The format and vocabularies enable users to combine language services developed by different
providers. However, end users who need multilingual support in their intercultural fields have difficulties
in developing a reasonable logic flow to combine language services because they are not familiar with
the annotation vocabularies. Therefore, we aim at separating the logic flow from selecting language ser-
vices by introducing an abstract workflow into our platform. In our platform, web service professionals
develop an abstract workflow to combine language services, while users select language services to be

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

61

connected by the workflow in order to instantiate their customized language services from the abstract
workflow.

To realize this collaboration between web service professionals and end users, we addressed the fol-
lowing two issues.

Construct an ontology to define language services As web service professionals develop new lan-
guage services according to users’ request, it results in generating various service interfaces. To
invoke the new services from existing workflows while ensuring the diversity, we need an ontology
to verify composability of the new services.

Develop language service binding technology To instantiate various executable composite language
services from an abstract workflow, we need a technology that enables users to bind any language
services to the workflow when executing the workflow.

The remainder of this paper is organized as follows: in section 2 we will briefly discuss features of
the two approaches to combine language services. And then, our framework called Service Grid and our
proposed language service ontology will be presented in section 3 and 4. Moreover, we show how to
bridge our language services with ones in different frameworks in section 5. Finally, section 6 concludes
this paper.

2 Related Works

There are two types of frameworks supporting developers to combine language resources: pipeline pro-
cessing approach such as GATE(Cunningham et al., 2002) and UIMA(Ferrucci and Lally, 2004) (U-
compare(Kano et al., 2009) and DKPro(Eckart de Castilho and Gurevych, 2014)), and service composi-
tion approach such as PANACEA(Toral et al., 2011), LAPPS Grid(Ide et al., 2014), and the Language
Grid (Ishida, 2011). The former focuses on processing a huge amount of data at local with pipeline
technique. On the other hand, the latter aims to share language resources distributed on the Internet as a
web service and combine them in a workflow manner. As shown in Table 1, we summarized features of
these frameworks from view point of interfaces, data format, and type system.

2.1 Pipeline Processing Approach
This approach employs a common interfaces and common data format exchanged between language
resources. The resources are combined into a pipeline to analyze documents. Each resource called
a processing resource or analysis engine annotates a document flowed in the pipeline in the stand-off
annotation manner. The document together with annotations is formed in a common data format, such
as GATE format and CAS (Common Analysis Structure). The annotations comply with pre-defined
annotation type system. GATE provides annotation schemas to define annotation type for each case,
while U-Compare and DKPro contain pre-defined annotation types based on UIMA type system.

2.2 Service Composition Approach
This approach wraps language resources as web services, called language services, and standardizes
the language service interfaces. LAPPS Grid provides a single common method same as the pipeline
processing approach, while PANACEA and Language Grid define the interfaces according to language
service types because the workflow can freely assign outputs of a service to inputs of another one. The
unique feature of this approach is to combine language services distributed in the Internet. This fea-
ture requires interoperability of language services on different frameworks. To satisfy this requirement,
LAPPS Grid and PANACEA present several format converters between different format and their own
formats like LIF (LAPPS Interchange Format)(Verhagen et al., 2016) and Travelling Object. More-
over, LAPPS Grid defines LAPPS Web Service Exchange Vocabulary(Ide et al., 2016), an ontology of
terms for a core of linguistic objects and features exchanged among language services that consume and
produce linguistically annotated data. It is used for service description and input/output interchange to
support service discovery and composition. On the other hand, Language Grid enforces service providers
to wrap their resources with the standardized interfaces that expose every annotation data type, in order

62

Table 1: Comparison among Frameworks
GATE U-Compare DKPro LAPPS Grid PANACEA Language Grid

Standardized Interface ✓ ✓ ✓ ✓ ✓ ✓
(common) (common) (common) (common) (each type) (each type)

Common Format ✓ ✓ ✓ ✓ ✓
(GATE format) (CAS) (CAS) (LIF) (Traveling Object)

Format Converter ✓ ✓

Type System (Vocabularies) ✓ ✓ ✓ ✓ ✓

to remove the needs of a common format and converters. To bridge other service-based frameworks
and Language Grid, we have developed adapters that adapt Heart of Gold and UIMA component to our
standardized interfaces(Bramantoro et al., 2008; Trang et al., 2014).

The existing frameworks except for the Language Grid combine instances of language services in
a pipeline and workflow. The pipeline and workflow that tightly couple language services need to be
modified when changing a language service according to user’s request. This becomes a barrier for
end users to create their customized services by themselves. Therefore, we have introduced an abstract
workflow that is composed of interfaces of components and their dependencies. The abstract workflow
separates binding language services from designing it so that users can reuse the workflow to instantiate
it with combination of language services they want. In this composition method that delays service
binding, it is significant to verify which language services are compatible with the designed workflows.
Therefore, we describe two ontologies that defines language service type and organizes a hierarchy of
language services in section 3 and 4.

3 Service Grid

Interoperability of language services requires standardization of service interfaces and metadata accord-
ing to their functionalities. To this end, our service grid provides a service grid ontology for operators
to organize services in their domain into several service classes (Murakami et al., 2012). As illustrated
in Figure 1, the service grid ontology is not just an ontology of data exchanged between services, but
an ontology to define service metadata and resource metadata. ServiceGrid class has more than one
Resource class and Service class that is provided from the corresponding Resource class. Resource and
Service class have more than one attribute to describe features of their instances. Also, Service class has
one service interface to allow users to access the service instances via several protocols. A service grid
operator can define his domain service grid ontology by inheriting ServiceGrid, Resource, and Service
class.

Based on the service grid ontology, we constructed Language Grid Ontology shown in Figure 2. This

ServiceGrid	

Resource	 Service	

Interface	Thing	Thing	

hasInterface	hasServiceA6ribute	

hasService	hasResource	

hasResourceA6ribute	

providedFrom	 minCardinality=1	minCardinality=1	

cardinality=1	

minCardinality=0	
maxCardinality=1	

minCardinality=1	minCardinality=1	

Protocol	

hasProtocol	
minCardinality=1	

Figure 1: Service Grid Ontology

63

LanguageGrid	

Language	
Resource	

Language	
Service	

TextToSpeech	
Engine	

hasService	hasResource	

providedFrom	
minCardinality=1	minCardinality=1	

minCardinality=0	
maxCardinality=1	

ServiceGrid	

subClassOf	

TextToSpeech	

TranslaCon	

subClassOf	

…	

…	

AudioType	 VoiceType	

LanguagePair	

hasSupported	
AudioTypes	
minCardinality=1	

hasSupported	
VoiceTypes	
mingCardinality=1	

hasSupported	
LanguagePairs	
minCardinality=1	

Translator	

subClassOf	

providedFrom	

providedFrom	…	

…	

Resource	 Service	

hasService	hasResource	
minCardinality=1	minCardinality=1	

subClassOf	

Figure 2: Inheriting Service Grid Ontology

ontology defines LanguageGrid, LanguageResource, and LanguageService classes as subclasses of Ser-
viceGrid, Resource, and Service classes. Moreover, the LanguageResource and LanguageService classes
derive 14 types of language resource classes and 17 types of language service classes such as text to
speech engines, translator, and so on. Table 2 shows the language service classes. These service classes
are characterized with hasServiceAttribute property, indicating which objects a given service can pro-
cess and which methods the service can employ. The former is hasSupportedLanguages, hasSupported-
LanguagePairs, hasSupportedLanguagePaths, hasSupportedImageTypes, hasSupportedAudioTypes, and
hasSupportedVoiceTypes. They are used to specify languages, images, and audio files to be processed
by services. The latter is hasSupportedMatchingMethod. This is used to specify search functionalities
implemented on language data such as bilingual dictionaries, concept dictionaries, and so on.

Moreover, we defined a service interface for each service class. To standardize the interface, we ex-
tracted common parameters of language resources belonging to the same resource type. In case of mor-
phological analyzers, we have several morphological analysis services according to supported languages:
TreeTagger, MeCab, Juman, KLT, ICTCLAS. A source text and source language for input parameters
are common among all the existing morphological analyzers. On the other hand, we have many formats
of morphemes for output parameters. Every analyzer returns word, lemma, and part of speech tag except
for ICTCLAS. Therefore, we defined the output of morphological analysis service as an array of triples
consisting of word, lemma, and POS tag. Furthermore, we enumerated POS tags available in the output
of the analysis service. Since POS tags vary depending on languages, we selected a minimal set of POS
tags occurring in every language: noun, proper noun, pronoun, verb, adjective, adverb, unknown, and
other. Most morphological analyzers can be wrapped with this standard interface. A few morphological
analyzers not complying with this interface, such as ICTCLAS, return ”NULL” as unassigned param-
eters. This interface is designed for interoperability instead of completeness. As a result, information
generated by the original morphological analyzers can be lost.

Due to limitations of space, Table 2 shows only the operation name of Interface class except for input
and output parameters. Refer to http://langrid.org/service_manager/service-type
for the WSDL files and more information. The attributes and interfaces help service users to compose
services by searching services with the metadata and changing the services belonging to the same service
type.

64

Table 2: Language Service Classes
Service class hasServiceAttribute property Thing class Interface class

BackTranslation hasSupportedLanguagePaths LanguagePath backtranslate
BilingualDictionary hasSupportedLanguagePairs, LanguagePair, search

hasSupportedMatchingMethods MatchingMethod
BilingualDictionaryWith hasSupportedLanguagePairs, LanguagePair, search
LongestMatchSearch hasSupportedMatchingMethods MatchingMethod searchWithLongestMatch
ConceptDictionary hasSupportedLanguages, Language, searchConcepts,

hasSupportedMatchingMethods MatchingMethod getRelatedConcepts
DependencyParse hasSupportedLanguages Language parseDependency
DialogCorpus hasSupportedLanguages, Language, search

hasSupportedMatchingMethods MatchingMethod
LanguageIdentification hasSupportedEncodings, Encoding, identify

hasSupportedLanguages Language
MorphologicalAnalysis hasSupportedLanguages Language analyze
MultihopTranslation hasSupportedLanguagePaths LanguagePath translate

multihopTranslate
NamedEntityTagging hasSupportedLanguages Language tag
ParallelText hasSupportedLanguagePairs, LanguagePair, search

hasSupportedMatchingMethods MatchingMethod
Paraphrase hasSupportedLanguages Language paraphrase
PictogramDictionary hasSupportedLanguages, Language, search

hasSupportedMatchingMethods, MatchingMethod,
hasSupportedImageTypes ImageType

SimilarityCalculation hasSupportedLanguages Language calculate
SpeechRecognition hasSupportedLanguages, Language, recognize

hasSupportedAudioTypes, AudioType,
hasSupportedVoiceTypes VoiceType

TextToSpeech hasSupportedLanguages, Language, speak
hasSupportedAudioTypes, AudioType,
hasSupportedVoiceTypes VoiceType

Translation hasSupportedLanguagePairs LanguagePair translate
TranslationWith hasSupportedLanguagePairs LanguagePair translate
TemporalDictionary translateWithDict

4 Language Service Ontology

Service Grid ontology allows operators to add a new service type according to users’ requests. As
the number of service types increases, the reusability of workflows decreases because the service grid
may have many close but not the same interfaces for the common functionalities. For example, when
many service users need more detailed information of morphological analysis services, a new one may
be added. To increase the reusability of workflows, it is significant to verify which language services
are compatible with the existing workflows. In this section, we firstly describe semantic matching that
guarantees substitutability of language services in an abstract workflow. Based on the semantic matching,
we then construct a hierarchy of language services, and explain how to bind language services to the
workflow.

4.1 Semantic Matching

Semantic matching was introduced to discover a service whose capability satisfies user’s re-
quest(Paolucci et al., 2002). Since the goal of the previous research is to fulfill users’ request as much
as possible but not partially, the semantic matching prefers services that output a superclass of users’
required class. However, our goal is to find services whose capabilities are compatible with the existing
workflow. If a service that outputs a superclass of user’s required class is selected, the subsequent service
in a workflow may fail to run because the service has possibilities to receive an input different from its
expected input, such as a sibling class. This semantic matching causes a type-unsafety issue. Therefore,
we modify the semantic matching rules by considering type-safety in binding services to a workflow.

Firstly, we define notations relevant to an input-output of a service, and then modify the semantic
matching rules.

Definition 4.1 (Input-output of a service) A service s is defined as a tuple s = {Inputs, Outputs} ∈
S where Inputs is a set of inputs required to invoke s, Outputs is the set of outputs returned by s after
its execution, and S is the set of all services registered in a service grid. Each input and output is also a

65

Language	
Service	

Data	Service	 Analysis	
Service	

Transforma7on	
Service	

Transla7on	

Paraphrase	
Service	

Bilingual	
Dic7onary	

Pictogram	
Dic7onary	

Concept	
Dic7onary	

ParallelText	

DialogCorpus	

Dic7onary	
Service	

Corpus	
Service	

Parse	
Service	

Calcula7on	
Service	

Extrac7on	
Service	

Dependency	
Parse	

Back	
Transla7on	

Similarity	
Calcula7on	

Named	
En7ty	
Tagging	

Transla7on	
WithDictionary	

Bilingual	
Dic7onaryWith	
LongestMatch	

Search	

Morphological	
Analysis	

Class	

Abstract		
Class	

Iden7fica7on	
Service	

Language	
Iden7fica7on	

Mul7hop	
Transla7on	

Speech	
Service	

Speech	
Recogni7on	

TextTo	
Speech	

Figure 3: Language Service Ontology

class.

Exact An input is ∈ Inputs and an output os ∈ Outputs of a service s in a set of services S matches
an input iw ∈ Inputw and output ow ∈ Outputw of a service w in a workflow with a degree of
exact match if both of input and output classes are equivalent (is ≡ iw, os ≡ ow).

Plug-in An input is ∈ Inputs and an output os ∈ Outputs of a service s in a set of services S matches
an input iw ∈ Inputw and an outputow ∈ Outputw of a service w in a workflow with a degree of
plugin if is is a superclass of iw (is ⊒ iw) and os is a subclass of ow (os ⊑ ow).

Subsume An input is ∈ Inputs and an output os ∈ Outputs of a service s in a set of services S
matches an input iw ∈ Inputw and an output ow ∈ Outputw of a service w in a workflow with a
degree of subsume if either is is a subclass of iw (is ⊏ iw) or os is a superclass of ow (os ⊐ ow).

Fail When none of the previous matches are found, then both concepts are incompatible and the match
has a degree of fail.

Note that, in order to discover type safe services to satisfy data flow in a workflow execution, the only
two valid degrees of match are exact and plug-in. Based on the exact match, the Language Grid has
introduced inheritance of service interfaces, which guarantees that an inherited interface provides the
same methods as the superclass of a service. We construct a hierarchy of language services using the
inheritance of service interfaces in 4.2

4.2 Hierarchy of Language Services
When many service users need more additional detailed information, a new service class can be derived
by inheriting the service interface of the superclass, but not created from scratch. The inherited service
interface can add other interfaces while maintaining the consistency with the existing one. This inheri-
tance of service interfaces constructs a hierarchy of homogeneous services. This is similar to a OWL-S
profile hierarchy(Martin et al., 2007) and WSMO capability(Wang et al., 2012). However, they are used
to discover alternative services from property aspect but not interfaces like existing taxonomies of service
categories.

66

Language Service Ontology	

rdfs:subClassOf	

Forward	
Transla,on	

Backward	
Transla,on	

translate(sLang, tLang, source)	

translate(sLang, tLang, source)	

Abstract Workflow	

Bindable	

Back Translation 
backtranslate(sLang, iLang, source)	

 MultihopTranslation	
-translate(sLang, tLang, source)
-multihopTranslate(sLang, tLang,
iLang[], source)	

Translation 
-translate(sLang, tLang, source)	

 TranslationWithDictionary 
-translate(sLang, tLang, source)
-translateWithDict(sLang, tLang, source, dict)	

Transformation	
Service	

Figure 4: Service Binding with Language Service Ontology

Figure 3 illustrates our hierarchy of language services based on interface inheritance, called Language
Service Ontology. This ontology consists of abstract classes that have no interface and instance of ser-
vices and classes that have interfaces and instances. Firstly, LanguageService class is classified into
four abstract classes: SpeechService class that processes speech data, DataService class that deals with
linguistic data resources like lexical and corpus data, TransformationService class that transforms in-
put texts, and AnalysisService class that analyzes input data like parsing, calculating, extracting, and
identifying. By inheriting the abstract classes, we define 18 language service classes listed in Table 2.

Moreover, MultihopTranslation and TranslationWithDictionary class, and BilingualDictionaryWith-
LongestMatchSearch class are derived from Translation class and BilingualDictionary class, respectively.
Hence, they have the same interface as their superclass. For example, as shown in the left side of Fig-
ure 4, Translation class provides a translate method whose input parameters are source language, target
language, and source text (denoted by sLang, tLang, source, respectively). By extending this interface,
TranslationWithDictionary and MultihopTranslation class are defined as a subclass of Translation class.
The former introduces simple dictionary data into its input parameters in order to replace words in the
translated text with translated words in the dictionary. This aims at improving translation quality by
restricting context within the dictionary. Without the dictionary, this service returns a translated text like
Translation class. On the other hand, the latter introduces an array of intermediate languages to cascade
several translation services. Without intermediate languages, this service behaves like Translation class
by using default languages as intermediate languages.

Based on this ontology, we can bind any subclasses to an abstract workflow including the superclass’s
interface. The right side of Figure 4 shows the case of backtranslation. This workflow connects two
translation interfaces to translate the translated text into the source language again. Therefore, we can
select JServer, an instance of Translation class, and DictTrans, an instance of TranslationWithDictionary,
as a forward translation and backward translation, respectively. To dynamically bind these services in
invoking the backtranslation service, we have introduced a hierarchical service composition description
using higher-order functions as below(Nakaguchi et al., 2016). This syntax allows users to nest binding
in order to invoke a workflow from another one.

syntax :== service "." method "(" (arg ("," arg)*)? ")"
service :== serviceId | serviceBinding
method :== symbol
serviceId :== symbol
serviceBinding :== "bind(" serviceId bindingInfo+ ")"
bindingInfo :== "," invocationId ":" service
invocationId :== symbol
arg :== "’" symbol "’"
symbol :== LETTER+

67

Using this language, we can describe the above service binding as below. After executing this lan-
guage, this description is translated into a SOAP request embedding the binding information into the
header.

bind(BackTranslation,
ForwardTranslation:JServer,
BackwardTranslation:bind(DictTrans,
MorphologicalAnalysis:TreeTagger,
BilingualDictionary:AgriDict,
Translation:GoogleTranslate

).backtranslate(’en’,’ja’,’Land preparation needs puddling and levee painting.’)

5 Discussion

Our language service ontology focuses on interoperability among homogeneous language services.
Meanwhile, it is also significant to enhance interoperability among heterogenous language services. We
have two approaches.

One is to construct central ontology as a hub, which was proposed by (Hayashi et al., 2008). The
ontology consists of a top-level ontology and sub-ontologies. The top-level ontology defines the relations
among language service class, language processing resource class, language data resource class, and
linguistic object class. A language service is provided by an instance of the language processing resource
class, whose input and output are instances of linguistic object class. A language data resource consists
of instances of the linguistic object class. On the other hand, each sub-ontology organizes classes for
language processing resources, language data resources, and linguistic annotations of linguistic objects,
respectively.

The other is to connect type systems in different frameworks each other. By mapping LAPPS exchange
vocabulary type hierarchy and type system in DKPro and U-Compare with input and output classes of
language service interfaces in our ontology, it would be possible to discover type safe services with plug-
in match as well as exact match. Logically, covariant return type of services, which return a subclass
of the output class, and contravariant argument type of services, which receive a superclass of the input
class can be bindable to an abstract workflow.

6 Conclusions

We have introduced an abstract workflow to separate designing a logic flow and selecting language
services. By this abstract workflow, we aim at realizing collaboration between web service professionals
who develop a workflow and end users who select their needed language services. To this end, we
have constructed language service ontology by inheriting service interfaces to verify composability of
language services. Moreover, we have applied higher-order function to develop hierarchical language
service binding. By using the ontology and binding technology, end users can instantiate an abstract
workflow with type-safe language services.

Acknowledgements

This work was supported by Grant-in-Aid for Scientific Research (S) (24220002) of Japan Society for
the Promotion of Science (JSPS).

References
Arif Bramantoro, Masahiro Tanaka, Yohei Murakami, Ulrich Schäfer, and Toru Ishida. 2008. A Hybrid Integrated

Architecture for Language Service Composition. In Proc. of the Sixth International Conference on Web Services
(ICWS’08), pages 345–352.

Khalid Choukri. 2004. European Language Resources Association History and Recent Developments. In SCALLA
Working Conference KC 14/20.

68

Hamish Cunningham, Diana Maynard, Kalina Bontcheva, and Valentin Tablan. 2002. GATE: An Architecture
for Development of Robust HLT Applications. In Proc. of the Fortieth Annual Meeting on Association for
Computational Linguistics (ACL’02), pages 168–175.

Richard Eckart de Castilho and Iryna Gurevych. 2014. A Broad-Coverage Collection of Portable NLP Compo-
nents for Building Shareable Analysis Pipelines. In Proceedings of the Workshop on Open Infrastructures and
Analysis Frameworks for HLT, pages 1–11.

David Ferrucci and Adam Lally. 2004. UIMA: An Architectural Approach to Unstructured Information Processing
in the Corporate Research Environment. Journal of Natural Language Engineering, 10:327–348.

Yoshihiko Hayashi, Thierry Declerck, Paul Buitelaar, and Monica Monachini. 2008. Ontologies for a Global
Language Infrastructure. In Proc. of the First International Conference on Global Interoperability for Language
Resources (ICGL’08), pages 105–112.

Nancy Ide, James Pustejovsky, Christopher Cieri, Eric Nyberg, Di Wang, Keith Suderman, Marc Verhagen, and
Jonathan Wright. 2014. The Language Application Grid. In Proceedings of the Ninth International Conference
on Language Resources and Evaluation (LREC’14), pages 22–30.

Nancy Ide, Keith Suderman, Marc Verhagen, and James Pustejovsky. 2016. The Language Application Grid
Web Service Exchange Vocabulary. In Worldwide Language Service Infrastructure, pages 18–32. Springer
International Publishing.

Toru Ishida, editor. 2011. The Language Grid: Service-Oriented Collective Intelligence for Language Resource
Interoperability. Springer-Verlag.

Yoshinobu Kano, William Baumgartner, Luke McCrohon, Sophia Ananiadou, Kevin Cohen, Larry Hunter, and
Jun’ichi Tsujii. 2009. U-Compare: Share and Compare Text Mining Tools with UIMA. Bioinformatics,
25(15):1997–1998.

David Martin, Mark Burstein, Drew McDermott, Sheila McIlraith, Massimo Paolucci, Katia Sycara, Deborah L.
McGuinness, Evren Sirin, and Naveen Srinivasan. 2007. Bringing Semantics to Web Services with OWL-S.
World Wide Web, 10(3):243–277.

Yohei Murakami, Masahiro Tanaka, Donghui Lin, and Toru Ishida. 2012. Service Grid Federation Architecture
for Heterogeneous Domains. In Proc. of the IEEE International Conference on Services Computing (SCC-12),
pages 539–546.

Takao Nakaguchi, Yohei Murakami, Donghui Lin, and Toru Ishida. 2016. Higher-Order Functrions for Modeling
Hierarchical Service Bindings. In Proc. of the Twelfth International Conference on Web Services (ICWS’08),
pages 798–803.

Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, and Katia Sycara. 2002. Semantic Matching of Web
Services Capabilities. In Proc. of the First International Semantic Web Conference (ISWC’02), pages 333–347.

Antonio Toral, Pavel Pecina, Andy Way, and Marc Poch. 2011. Towards a User-Friendly Webservice Architecture
for Statistical Machine Translation in the PANACEA Project. In Proc. of the 15th Conference of the European
Association for Machine Translation (EAMT’11), pages 63–70.

Mai Xuan Trang, Yohei Murakami, Donghui Lin, and Toru Ishida. 2014. Integration of Workflow and Pipeline
for Language Service Composition. In Proc. of the 9th International Conference on Language Resources and
Evaluation Conference (LREC’14), pages 3829–3836.

Marc Verhagen, Keith Suderman, Di Wang, Nancy Ide, Chunqi Shi, Jonathan Wright, and James Pustejovsky.
2016. The LAPPS Interchange Format. In Worldwide Language Service Infrastructure, pages 33–47. Springer
International Publishing.

Hai H. Wang, Nick Gibbins, Terry R. Payne, and Domenico Redavid. 2012. A Formal Model of the Semantic
Web Service Ontology (WSMO). Information Systems, 37(1):33–60.

69

