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Preface

Biomedical natural language processing has grown from its roots in clinical language processing and
bioinformatics into a thriving research field of its own. The search (“natural language processing”) OR
(“text mining”) performed in PubMed today returns 5,056 hits, versus 1,903 at the turn of the century and
3,485 in 2010. The papers appearing in this volume reflect the diversity of trends in biomedical natural
language processing today—movement from English-language texts to clinical texts in other languages;
exploration of social media in addition to clinical documents and traditional scientific publications; and
processing of full-text articles, versus abstracts only. In addition to reflecting the diversity of the field, the
papers in this volume also reflect the homogenisation of approaches that has characterised some recent
approaches, with 4 out of 15 papers involving some combination of neural networks and/or distributional
semantics. The organisers thank the authors for sharing their science with this community, and the
programme committee (listed elsewhere in this volume) for their contribution to maintaining the high
standards of the BioTxtM series of meetings.

Keynote Talk by Dr. Makoto Miwa

Learning for Information Extraction in Biomedical and General Domains

Information extraction (IE) has been widely studied in various domains since IE is a key to bridge the gap
between knowledge and texts. IE includes several core sub-problems, such as named entity recognition,
relation extraction, and event extraction, and these sub-problems have been tackled using machine
learning techniques. In this talk, I will give an overview of learning approaches for IE in biomedical
and general domain, especially on corpus-based classification and structured learning approaches. I will
then introduce recent deep learning approaches including our recent recurrent neural network (RNN)-
based approach, and discuss the limitations and future directions.

Speaker Biography
Makoto Miwa is an associate professor of Toyota Technological Institute (TTI). He received his Ph.D.
from the University of Tokyo in 2008. His research mainly focuses on information extraction from texts,
deep learning, and representation learning. His projects include AkaneRE, EventMine, PathText and
LSTM-ER.
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Cancer Hallmark Text Classification
Using Convolutional Neural Networks
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Abstract

Methods based on deep learning approaches have recently achieved state-of-the-art performance
in a range of machine learning tasks and are increasingly applied to natural language process-
ing (NLP). Despite strong results in various established NLP tasks involving general domain
texts, there is only limited work applying these models to biomedical NLP. In this paper, we
consider a Convolutional Neural Network (CNN) approach to biomedical text classification.
Evaluation using a recently introduced cancer domain dataset involving the categorization of
documents according to the well-established hallmarks of cancer shows that a basic CNN model
can achieve a level of performance competitive with a Support Vector Machine (SVM) trained
using complex manually engineered features optimized to the task. We further show that sim-
ple modifications to the CNN hyperparameters, initialization, and training process allow the
model to notably outperform the SVM, establishing a new state of the art result at this task.
We make all of the resources and tools introduced in this study available under open licenses
from https://cambridgeltl.github.io/cancer-hallmark-cnn/ .

1 Introduction

A major goal of cancer research is to understand the biological mechanisms involved in tumorous
growths starting in the body, being sustained, and turning malignant. Cancer is often described in the
biomedical literature by its hallmarks; a set of interrelated biological properties and behaviors that en-
able cancer to thrive in the body. The hallmarks of cancer were first introduced in the seminal paper
of Hanahan and Weinberg (2000), the most cited paper in the journal Cell. The paper introduces six
hallmarks, which were then extended in a follow-up paper (Hanahan and Weinberg, 2011) by another
four, forming the set of ten hallmarks that are known today. The current set of hallmarks distill our
knowledge of the disease into a fixed set of alterations in cell physiology that affect malignant growth,
such as self-sufficiency in growth signals, insensitivity to growth-inhibitors, evasion of programmed cell
death, limitless replicative potential, sustained angiogenesis, and tissue invasion.

In the context of biomedical text mining, the original six hallmarks of cancer were used as an orga-
nizing principle in the BioNLP Shared Task 2013 Cancer Genetics task (Pyysalo et al., 2013b), which
involved the extraction of events (biological processes) from cancer domain texts. The hallmarks have
also inspired other information extraction efforts and the development of tools such as OncoSearch (Lee,
2014) and OncoCL (Doland, 2014). In recent work, Baker et al. (2016) introduced a corpus comprised of
over 1,800 abstracts from biomedical publications annotated with the ten hallmarks of cancer. Baker et al.
also proposed a machine learning based method for classifying text according to the hallmarks. The ap-
proach utilizes a conventional NLP pipeline that extracts a feature-rich representation that is used to train
support vector machine (SVM) classifiers. The method achieves a respectable level of performance,
identifying hallmarks with an average F-score of 77%, but with the cost of involving a lengthy and
computationally demanding NLP pipeline.

This work is licensed under a Creative Commons Attribution 4.0 International Licence.
Licence details: http://creativecommons.org/licenses/by/4.0/
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In this work, our focus is on studying biomedical text classification using machine learning methods
that emphasize feature learning rather than manual feature engineering. We adopt the task setting and
dataset of Baker et al. (2016), but instead of SVMs, we focus on convolutional neural networks (CNN).
CNNs were first proposed for image processing (LeCun and Bengio, 1995) and have been recently shown
to achieve state-of-the-art performance in a range of NLP tasks, in particular in text classification (Zhang
et al., 2015; Severyn and Moschitti, 2015; Zhang and Wallace, 2015). While neural network-based
methods in general and “deep” networks in particular are increasingly popular for general domain NLP,
there has been comparatively little work applying this class of methods to biomedical text. One recent
study applying a CNN model to biomedical text classification task was presented by (Limsopatham and
Collier, 2016), who applied CNNs to the task of adverse drug reaction detection in social media messages
(Ginn et al., 2014). In addition to the specific subdomain of the source texts and the novel categories
represented by the hallmarks of cancer, one factor that sets apart the task here from this previous work
is the length of the texts: instead of sentences or brief social media messages, our task involves the
classification of publication abstracts typically consisting of hundreds of words.

2 Data

For training and evaluating our methods, we use the corpus of 1852 biomedical publication abstracts
annotated for the hallmarks of cancer by Baker et al. (2016). Each abstract in the dataset may be labeled
with zero or more of the ten hallmarks, i.e. the task is multi-label classification. The ten hallmarks are
summarized below:

Sustaining proliferative signaling: Healthy cells require molecules that act as signals for them to grow
and divide. Cancer cells, on the other hand, are able to grow without these external signals.
Evading growth suppressors: Cells have processes that halt growth and division. In cancer cells, these
processes are altered so that they don’t effectively prevent cell division.
Resisting cell death: Apoptosis is a mechanism by which cells are programmed to die in the event that
they become damaged. Cancer cells are able to bypass these mechanisms.
Enabling replicative immortality: Non-cancer cells die after a certain number of divisions. Cancer
cells, however, are capable of indefinite growth and division (immortality).
Inducing angiogenesis: Cancer cells are able to initiate angiogenesis, the process by which new blood
vessels are formed, thus ensuring the supply of oxygen and other nutrients.
Activating invasion & metastasis: Cancer cells can break away from their site of origin to invade
surrounding tissue and spread to distant body parts.
Genome instability & mutation: Cancer cells generally have severe chromosomal abnormalities, which
worsen as the disease progresses.
Tumor-promoting inflammation: Inflammation affects the microenvironment surrounding tumors, con-
tributing to the proliferation, survival and metastasis of cancer cells.
Deregulating cellular energetics: Most cancer cells use abnormal metabolic pathways to generate en-
ergy, e.g. exhibiting glucose fermentation even when enough oxygen is present to properly respire.
Avoiding immune destruction: Cancer cells are invisible to the immune system.

We divide the dataset into ten binary-labeled datasets (one per hallmark), where the positive examples in
each are the abstracts annotated with the hallmark, and negative examples are those that are not. While
we generally aim to follow the experimental setup of Baker et al., we chose to split the annotated data
into training, development and test subsets instead of applying the cross-validation setup of the study
introducing the dataset. Cross-validation setups using all available data fail to make a clear separation
between data used for method development and blind data held out for final testing only, and should
be avoided in studies involving experimentally driven model refinement (as we do here). Consequently,
we initially split the corpus in 70/10/20% proportion to train, development and test sets with a random
sampling strategy that aimed to roughly preserve the overall class distribution in each sample. The test set
was held out during development and only used in the final experiments. Table 1 shows the distribution
of positive and negative labels for each hallmark.
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Train Devel Test Total
Hallmark pos neg pos neg pos neg pos neg
Sustaining proliferative signaling 328 975 43 140 91 275 462 1390
Evading growth suppressors 172 1131 22 161 46 320 240 1612
Resisting cell death 303 1000 42 141 84 282 429 1423
Enabling replicative immortality 81 1222 11 172 23 343 115 1737
Inducing angiogenesis 99 1204 13 170 31 335 143 1709
Activating invasion and metastasis 208 1095 29 154 54 312 291 1561
Genomic instability and mutation 227 1076 38 145 68 298 333 1519
Tumor promoting inflammation 169 1134 24 159 47 319 240 1612
Cellular energetics 74 1229 10 173 21 345 105 1747
Avoiding immune destruction 77 1226 10 173 21 345 108 1744

Table 1: Annotation statistics

3 Methods

We implement and evaluate two SVM-based methods and two CNN variants, described in the following.
All of these machine learning methods are applied to the multi-label task by training ten binary classifiers,
one for each hallmark label.

3.1 SVM with Bag of Words Features

We implement a simple classifier using only Bag of Words (BoW) features as a basic SVM baseline. In
the BoW approach each document is represented by the set of words appearing in it, discarding word
order and frequency information. For training the model, we use the linear kernel SVM implemented
in the Scikit-learn (Pedregosa et al., 2011) toolkit. We fine-tune the regularization hyperparameter c
conventionally using evaluation on the development dataset with a search between 10−2 and 102 on a
log scale.

3.2 SVM with Rich Features

For our primary point of reference, we replicated the NLP pipeline and SVM model of Baker et al. (2016)
for hallmark classification. This model uses a rich set of features derived from the application of several
state-of-the-art systems for biomedical NLP, summarized briefly in the following.1

Lemmatized bag of words All non-stop words in the documents are lemmatized using BioLemmatizer
(Liu et al., 2012) and included as features using a BoW-style representation.
Noun bigrams Compound nouns (without lemmatization) are combined to generate bigram features.
Nouns pairs often represent specific, discriminative concepts such as “gene mutation”.
Grammatical relations triples The C&C Parser with a biomedical domain model (Rimell and Clark,
2009) is used to parse the documents, and the dobj (direct object), ncsubj (non-clausal subject) and iobj
(indirect object) relations, and their head and dependent words then represented as features.
Verb classes The hierarchical classification of 399 verbs of Sun and Korhonen (2009) is used to gen-
erate features for verbs, utilizing all three levels of abstraction by allocating three bits in the feature
representation for each concrete class, i.e. one bit for each level of the verb class hierarchy.
Named entities (NE) The ABNER NER tool (Settles, 2005) is used to identify five named entity types
that are particularly relevant to cancer research: proteins, DNA, RNA, cell lines and cell types. Features
are then created pairing each entity type and its associated words.
Medical subject headings (MeSH) The MeSH headings assigned to the documents in the biomedical
publication indexing process are included as features using a bag-of-headings representation.
Chemical lists Similarly to MeSH terms, many documents are indexed with chemical identifiers. These
identifiers are used analogously to the MeSH terms to generate features.

1We refer to Baker et al. (2016) for the further details on this feature representation.

3



Apply
Filters

Apply
Filters

P53

regulates

the

cell

cycle

max pool

max pool flatten

flatten

concat dense

Figure 1: Network architecture

All features are extracted from the training data and are then filtered by frequency to remove features that
are too common or too rare, leaving behind only the most discriminating features. We use a linear kernel
and fine-tune the regularization parameter c on the development dataset using the same process applied
for the BoW model. As there are significantly more negatively labelled documents than positives, we use
inverse class weighting in order to correct for the class imbalance when training the classifiers.

3.3 Convolutional Neural Network

We base our CNN architecture on the simple model of Kim (2014). In brief, this model consists of
an initial embedding layer that maps input texts into matrices, followed by convolutions of different
filter sizes and 1-max pooling, and finally a fully connected layer. The architecture is illustrated in
Figure 1. We implemented the neural network using Keras (Chollet, 2015). Model hyperparameters and
the training setup were initially based on those applied by Kim (2014), summarized in the following:

Parameter Value
Word vector size 300 (Google News vectors)
Filter sizes 3, 4, and 5
Number of filters 300 (100 of each size)
Dropout probability 0.5
Minibatch size 50

Table 2: Kim (2014) model parameters

Some of these parameters were further refined in experiments using only the training and development
portions of the data (see Section 4.1). In the final test set experiments, we evaluate the network using
both the set of parameters used by Kim (2014) as well as with those selected in our development set
experiments. We train the models for 20 epochs using categorical cross-entropy loss and the Adam
optimization method (Kingma and Ba, 2014).

For regularization, we only apply dropout (Srivastava et al., 2014) before the output layer. We also
considered L2 regularization but did not find a consistent improvement in preliminary experiments.

3.4 Word embeddings

The first layer of the CNN involves mapping words in the input to dense, low-dimensional vectors. These
word embeddings are critically important as they represent the “meaning” of the words in the model, e.g.
how similar one word is to another. Although it is possible to learn these embeddings from scratch (i.e.
random initialization) during the normal training process, recent studies have shown that it is effective
to use embeddings that have been separately induced on large, unannotated corpora (Collobert et al.,
2011; Kim, 2014). Work in biomedical NLP has further established that word embeddings are domain-
dependent: to get the maximal benefit from using pre-trained embeddings for biomedical NLP tasks, the
embeddings must be induced using biomedical texts (Stenetorp et al., 2012).

We consider a variety of word embeddings induced using models implemented in the popular
word2vec package (Mikolov et al., 2013a). First, we use the general-domain Google News vectors
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Source texts Vectors
Name domain size words dim OOV Reference
Google News General 100B 3M 300 31.0% (Mikolov et al., 2013b)
Pyysalo PM Bio 3B 2.3M 200 0.52% (Pyysalo et al., 2013a)
Pyysalo PMC Bio 2.5B 2.5M 200 0.51% (Pyysalo et al., 2013a)
Pyysalo PM+PMC Bio 5.5B 4M 200 0.49% (Pyysalo et al., 2013a)
Pyysalo Wiki+PM+PMC General and bio 7.5B 5.4M 200 0.53% (Pyysalo et al., 2013a)
Chiu win-2 Bio 2.7B 2.2M 200 0.49% (Chiu et al., 2016)
Chiu win-30 Bio 2.7B 2.2M 200 0.49% (Chiu et al., 2016)

Table 3: Word vectors

also applied by Kim (2014).2. Second, we evaluate three sets of word vectors induced on various com-
binations of PubMed (PM), PMC and Wikipedia texts by Pyysalo et al. (2013a).3 Finally, we consider
two variants of PubMed-based vectors introduced by Chiu et al. (2016).4 The properties of these word
vectors are detailed in Table 3. Note that unlike the other properties, the out-of-vocabulary rate (OOV) is
not a characteristic of the word vectors alone, but the ratio of words in the task training data that do not
appear in the work vectors. The high OOV rate for the Google News vectors is due primarily to removal
of stopwords, punctuation, and numbers (see also Section 4.1).

3.5 Experimental Setup
Classifier performance is evaluated using the standard precision, recall, and F-score metrics as well as
with the area under the receiver operating characteristic curve (AUC). Unlike precision and F-score,
AUC is invariant to the positive/negative class distribution. AUC is also more sensitive in summarizing
performance over all possible classification thresholds and eliminates the need to pick a specific threshold
for evaluation. AUC is therefore recommended for evaluating imbalanced datasets (Zhang and Wallace,
2015). As the dataset is comparatively small and the number of positive examples in particular is very
limited for many labels, the random factors in CNN initialization and training can have a substantial
effect on the resulting model. To address this issue, we systematically repeated each CNN experiment 10
times and report the mean of the evaluation results.5 To address overfitting in the CNN, we apply a form
of early stopping, testing only the model that achieved the highest results on the development set. In the
development experiments, we correspondingly report the highest f-score and AUC from any epoch.

4 Results

In the following, we first summarize results from adapting the basic CNN to the task using the develop-
ment data, and then present the comparative results on the test set.

4.1 Development results
We considered a range of modifications to the basic CNN model to better adapt it to biomedical domain
text classification in general and the specific task studied in this work in particular. Of these modifi-
cations, evaluation on the development set identified three that appeared to have beneficial effects on
performance: oversampling to address the class imbalance, using in-domain word vectors, and adjusting
the filter sizes to the task. We next briefly describe these modifications and the associated results.

Oversampling The dataset is highly biased, with negative examples outnumbering positives more than
10-fold for a number of the labels (Table 1). Standard training on such data is likely to result in models
with high precision, low recall, and thus comparatively low F-scores. Addressing this, we oversample
the positive examples in the training set with replacement so that their number matches that of the neg-
atives. This modification increased the average F-score on the development set from 85.3% to 86.1%.
As expected, the effect on the distribution-independent AUC metric was more limited, improving from
97.3% to 97.5% with oversampling.

2Available from https://code.google.com/archive/p/word2vec/
3Available from http://bio.nlplab.org/
4Available from https://github.com/cambridgeltl/BioNLP-2016
5As SVM optimization is convex, repetitions are unnecessary.
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Figure 2: Embedding performance (macro-averaged) on the development dataset

Word embeddings As discussed in Section 3.4, the word vectors used to initialize the embedding
layer of the network can have a significant effect on performance. We trained the models using each
of the word vectors shown in Table 3 with oversampling (see above) and evaluated development set
performance using the maximum F-score and AUC metrics. The results are summarized in Figure 2.
Surprisingly, we find that the general domain Google News vectors give very competitive performance
despite their high out-of-vocabulary rate (see Table 3), outperforming all in-domain vectors with the
exception of the window size 2 word vectors of Chiu et al. (2016). Even these biomedical word vectors
only show very modest advantage over the Google News vectors for AUC. In the last development set
experiments below and the final test set experiments, we apply the PubMed-based vectors induced with
window size 2 from Chiu et al. that were shown to give the best results here.
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Figure 3: Macro-average AUC with respect to a varying number of filter sizes. Each point on the graph
represents the maximum size of filter used (e.g. for 2 filter sizes, performance with filters of sizes 2 and
3 is plotted at 3).

Filter sizes We experiment with varying the number of filter sizes in the convolutions. The base model
of Kim (2014) uses three filter sizes (3,4,5); as part of our hyperparameter search, we investigated what
happens to the performance (AUC) with respect to varying filter sizes (1–10) and numbers of filter sizes
(1–5), while keeping the total number of filters constant at 300 and filter sizes are ordered consecutively.
Figure 3 shows that performance generally falls when increasing the filter size, and the best performance
is achieved using three filters of sizes (2,3,4). Another important observation is that the variation in
performance is not very substantial, implying that the model is fairly robust to the specific setting of this
parameter.
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4.2 Test results

SVM CNN
Hallmark BoW Rich Base Tuned
Sustaining proliferative signaling 70.0% 67.4% 66.3% 67.9%
Evading growth suppressors 53.5% 65.3% 66.7% 71.5%
Resisting cell death 75.9% 82.7% 86.9% 86.7%
Enabling replicative immortality 73.1% 90.9% 91.2% 91.5%
Inducing angiogenesis 73.9% 85.7% 74.8% 79.4%
Activating invasion and metastasis 72.5% 72.7% 82.0% 82.6%
Genomic instability and mutation 71.2% 69.2% 72.2% 81.7%
Tumor promoting inflammation 69.9% 76.6% 81.6% 84.2%
Cellular energetics 78.1% 85.7% 76.6% 88.3%
Avoiding immune destruction 54.3% 71.8% 67.7% 75.8%
Average 69.2% 76.8% 76.6% 81.0%

Table 4: Comparison of test results using F-score

SVM CNN
Hallmark BoW Rich Base Tuned
Sustaining proliferative signaling 88.6 88.9 92.1% 91.0%
Evading growth suppressors 87.9 91.7 94.8% 96.4%
Resisting cell death 92.4 95.5 97.1% 97.7%
Enabling replicative immortality 92.4 97.4 99.8% 99.5%
Inducing angiogenesis 94.7 98.4 97.9% 99.1%
Activating invasion and metastasis 96.0 94.0 97.8% 98.2%
Genomic instability and mutation 92.5 91.7 95.8% 97.0%
Tumor promoting inflammation 92.7 95.9 98.3% 98.1%
Cellular energetics 99.1 99.6 99.5% 99.6%
Avoiding immune destruction 94.6 96.1 97.8% 99.1%
Average 93.1 94.9 97.1% 97.6%

Table 5: Comparison of test results using AUC

The results of the evaluation on the test data are shown in Table 4 for F-score and 5 for AUC. Overall,
both metrics agree that the SVM with bag-of-words features has the lowest performance, and the CNN
tuned to the task the highest. As could be expected, the SVM with rich features outperforms the base
CNN in terms of F-score; however, the latter, generic model achieves a notably higher AUC than the
SVM, suggesting that the slight advantage of the former for F-score may be due in part to a better
position of the decision boundary.

The CNN tuned to the task achieves the highest performance on average by both metrics, and further
has the highest performance for 7/10 individual classification tasks in terms of both F-score and AUC,
outperforming the previous state-of-the-art on this dataset.

5 Discussion

Our evaluation contrasts methods separated by two methodological divides: discrete, interpretable, hand-
engineered features vs. continuous, opaque, automatically learned features for one, and convex optimiza-
tion vs. gradient descent in a complex landscape with many local minima for the other. The choice be-
tween the SVM representing the former choices and the CNN representing the latter is not necessarily
only a question of which performs better, but also of methodological fit, both to the broader machine
learning framework and for the practitioners applying the approach.

A key point of interest in neural methods is feature learning, i.e. their capacity to learn complex
models with minimal manual effort in feature engineering. As shown again in our experiments, a CNN
taking only document text and word embeddings induced from unlabeled text as input can outperform
an SVM with extensive manually engineered features derived from sources such as syntactic analysis
and named entity recognition. While the 3-4% point differences in AUC and F-score are positive results
in favor of the CNN, the relative simplicity and generality of the model is arguably a greater advantage
supporting the choice of the CNN over the feature-rich SVM — indeed, one might well argue that the
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most interesting of our results is that the basic general CNN without any task or domain adaptation only
narrowly loses to the SVM in F-score, and outperforms it in terms of AUC. The CNNs can be more
readily adapted to other tasks and carry much fewer technical requirements: while the SVM system of
Baker et al. (2016) requires running separate tools for lemmatization, parsing, and named entity tagging
in addition to the machine learning method, the CNN has no such external dependencies.

For practitioners familiar with SVMs and domain NLP tools, it should be noted that the potential shift
to neural methods is not without its own issues. As detailed by Zhang and Wallace (2015), even the
simple CNN model considered here comes with a potentially overwhelming number of hyperparameters
and related modeling and optimization choices, many of which have task-specific optima, and the cost
of training and evaluating large numbers of model variants can be prohibitive even on modern GPU-
based systems.6 For machine learning researchers used to working with convex optimization problems,
the random elements involved in training neural network models can also be a source of frustration,
and the need to account for variance from network initialization and training also imposes additional
computational costs.

Nevertheless, we believe that the simplicity, performance and rich potential for extension and further
development of CNNs are more than sufficient to motivate further research on this class of models also
in biomedical NLP and anticipate that many domain text classification tasks will see new state of the art
results through the use of this class of neural networks.

6 Conclusions

In this study, we have considered the application of convolutional neural networks to the biomedical do-
main text classification task of identifying the hallmarks of cancer associated with publication abstracts.

Using a recently introduced corpus, we demonstrated that a CNN model taking only the document text
and word representations induced from unannotated general-domain text as input can achieve competitive
performance with a previously proposed SVM-based state-of-the-art classifier with rich manually engi-
neered features including syntactic analyses and named entity recognition outputs. We further adapted
the CNN to the task by oversampling positive examples to counteract the class bias, using word vectors
induced on biomedical domain text, and optimizing the filter sizes through evaluation on the development
set. The adapted model was shown to outperform the SVM, establishing a new state-of-the-art result for
this dataset.

We make all of the resources involved in this study available under open source and open data licenses
from https://cambridgeltl.github.io/cancer-hallmark-cnn/ .
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Abstract

End-to-end neural network models for named entity recognition (NER) have shown to achieve
effective performances on general domain datasets (e.g. newswire), without requiring additional
hand-crafted features. However, in biomedical domain, recent studies have shown that hand-
engineered features (e.g. orthographic features) should be used to attain effective performance,
due to the complexity of biomedical terminology (e.g. the use of acronyms and complex gene
names). In this work, we propose a novel approach that allows a neural network model based on
a long short-term memory (LSTM) to automatically learn orthographic features and incorporate
them into a model for biomedical NER. Importantly, our bi-directional LSTM model learns and
leverages orthographic features on an end-to-end basis. We evaluate our approach by comparing
against existing neural network models for NER using three well-established biomedical datasets.
Our experimental results show that the proposed approach consistently outperforms these strong
baselines across all of the three datasets.

1 Introduction

Named entity recognition (NER) is one of the first and important stages in a natural language processing
(NLP) pipeline. In particular, an NER task is to identify mentions of entities (e.g. persons, locations and
organisations) within unstructured text. In biomedical domain, NER tasks are particularly difficult, since
the entities of interests are mainly genes, proteins, and chemical substances, which by nature (1) consist
of millions of entities, (2) are created continuously, and (3) are non-standardised and can be referred to
using different names (e.g. the use of acronyms and polysemy) (Kim et al., 2009; Kim et al., 2004; Smith
et al., 2008a).

Traditionally, most of the effective NER approaches are based on machine learning techniques, such
as conditional random field (CRF), support vector machine (SVM) and perceptrons (Lafferty et al., 2001;
McCallum and Li, 2003; Settles, 2004; Luo et al., 2015; Ju et al., 2011; Ratinov and Roth, 2009; Segura-
Bedmar et al., 2015). For instance, Ratinov and Roth (2009) effectively learned a perceptron model using
features, including word classes induced using Brown clustering (Liang, 2005), and gazetteer extracted
from Wikipedia. Campos et al. (2013) achieved effective performances for several biomedical NER
tasks by learning a CRF model using multiple sets of features, including orthographic, morphological,
linguistic-based, conjunctions and dictionary-based. However, these approaches rely heavily on feature
engineering and domain knowledge (e.g. gazetteers), which are costly to develop. Consequently, they
are difficult to be adapted to a new domain, since hand-engineered features are mostly specific to a target
domain.

Recent advances in word vector representation (i.e. word embeddings) (Mikolov et al., 2013; Penning-
ton et al., 2014), which represents a word in the form of a low-dimensional vector of real values, allow
machine learning approaches to exploit semantic and syntactic information from word vectors, induced

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http:
//creativecommons.org/licenses/by/4.0/
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from a large dataset, for several NLP tasks, such as NER, part-of-speech (POS) tagging, sentiment anal-
ysis and concept normalisation (Collobert et al., 2011; Turian et al., 2010; Limsopatham and Collier,
2016a; Limsopatham and Collier, 2016b; Limsopatham and Collier, 2015). For example, Collobert et
al. (2011) effectively used word embeddings as inputs of a feed-forward neural network for sequence
labelling tasks, such as NER and POS tagging. Turian et al. (2010) learned a CRF model using word
embeddings as input features for NER and chunking tasks. In the biomedical domain, Chiu et al. (2016)
investigated the the use of different word embeddings in a feed-forward neural network for biomedical
NER tasks. However, when using with word embedding features, traditional features (e.g. orthography
and gazetteers) have shown to further improve the performance of an NER system (Segura-Bedmar et
al., 2015; Turian et al., 2010; Huang et al., 2015).

In this work, we investigate a novel approach that allows an end-to-end neural network system for
biomedical NER to explicitly learn and leverage orthographic features. Our approach is based on bi-
directional long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997) that learns to identify
named entities in a sentence using both word and character embeddings as inputs. In particular, for
each input sentence, we propose to generate and feed an orthographic sentence into a bi-directional
LSTM to enable the model to explicitly learn orthographic features. We evaluate our proposed ap-
proach using three different well-established biomedical test collections, including the BioCreative II
Gene Mention task corpus (BC2) (Smith et al., 2008b), the BioNLP 2009 shared task on event extraction
(BioNLP09) (Kim et al., 2009) and the NCBI disease corpus (NCBI) (Doğan et al., 2014). Our experi-
mental results show that the proposed approach consistently outperforms existing effective baselines in
term of the f1-score measure.

The main contributions of this paper are three-folds:

1. We investigate the use of both word and character embeddings in bi-directional LSTM for biomed-
ical NER tasks.

2. We propose a novel approach that enables bi-directional LSTM to automatically learn and leverage
orthographic features without requiring feature engineering.

3. We thoroughly evaluate our proposed approach using three different standardised datasets for
biomedical NER.

The remainder of this paper is organised as follows. In Section 2, we discuss related work and position
our paper in the literature. In Section 3, we introduce our approach to learn and leverage orthographic
features in bi-directional LSTM for biomedical NER. In Sections 4 and 5, we describe our experimental
setup and empirically evaluate our approach, respectively. Section 6 provides concluding remarks.

2 Related Work

Biomedical NER, which aims to identify chunks of text mentioning specific entities of interest, is one
of the fundamental biomedical text mining tasks. Due to the rapid growth of the number of biomedical
documents, an automatic text mining system is needed to extract knowledge from the vast amount of
data. Different from a general domain (e.g. newswire) where entities of interest are mainly places,
persons and organisations (Tjong Kim Sang and De Meulder, 2003), entities that biomedical NER tasks
focus on are, for example, genes, proteins, DNA and RNA. Existing studies (e.g. (Zhou et al., 2004;
Fukuda et al., 1998; Liu et al., 2002)) showed that unique characteristics of biomedical text made NER
a challenging task, such that existing NER approaches used in a general domain might not be effective.
For example, Zhou et al. (2004) found that the names of many of biomedical entities were typically
long (i.e. containing at least four words). In addition, the use of non-standardised naming conventions
and abbreviation poses a significant challenge in biomedical NER (Smith et al., 2008a). For instance,
‘cholesterol’ can also be referred as ‘(3)-cholest-5-en-3-ol’, ‘(3beta)-cholest-5-en-3-ol’, ‘(3b)-cholest-5-
en-3-ol’, ‘5-Cholesten-3beta-ol’ or ‘5-Cholesten-3b-ol’.

Machine learning-based approaches for NER have shown to achieve state-of-the-art performances
for both general and biomedical domains. Conditional random field (CRF) is one of the most effective
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Figure 1: Our CNN architecture for learning word representation from character embeddings.

approaches used in NER tasks (Lafferty et al., 2001; McCallum and Li, 2003; Settles, 2004). Specifically,
CRF is based on an undirected statistical graphical model that aims to learn a latent structure of an input
sequence. Examples of effective biomedical NER tools that are based on CRF are ABNER (Settles,
2005), BANNER (Leaman et al., 2008) and Gimli (Campos et al., 2013). However, the performance
of these CRF-based tools heavily depend on hand-crafted features, such as orthographic and contextual
features (Bikel et al., 1999; Collier et al., 2000), which are task-specific and costly to develop. For
example, Segura-Bedmar et al. (2015) manually created orthographic features, such as upperInitial (i.e.
whether a given word begins with an upper-case character and then follows by any lower-case characters)
and allCaps (i.e. whether all characters in a given word are upper-case), when learning a CRF model for
drug name recognition. In this work, we investigate an automatic approach that could automatically
induce orthographic features for biomedical named entity recognition.

Recently, neural network-based approaches have been effectively used for NER tasks. For example,
Collobert et al. (2011) used a feed-forward neural network to effectively identify entities in a newswire
corpus (Tjong Kim Sang and De Meulder, 2003) by classifying each word using contexts within a fixed
number of surrounding words. Ma and Hovy (2016) and Lample et al. (2016) effectively used both char-
acter and word embeddings in a bi-directional LSTM for NER tasks, such as CoNLL03 (Tjong Kim Sang
and De Meulder, 2003). Huang et al. (2015) combined hand-crafted features with bi-directional LSTM
to further improve the performance. Chiu and Nichols (2016) achieved state-of-the-art performances by
modelling both character and word embeddings before combining with hand-crafted features. Neverthe-
less, the studies of neural network models for biomedical NER tasks are limited. For instance, Chiu et
al. (2016) investigated the use of the model of Collobert et al. (2011) with different word embeddings for
the BioCreative II Gene Mention task (Smith et al., 2008b) and the JNLPBA task (Kim et al., 2004). In
this work, we propose a novel end-to-end neural network model that can learn and leverage orthographic
features, which are traditional domain-knowledge features widely used for NER tasks, without requiring
any feature engineering.

3 Learning Orthographic Features in Bi-directional LSTM

In this section, we introduce our neural network architecture based on bi-directional LSTM for learning
and leveraging orthographic features. In particular, our bi-directional LSTM model is composed of (1)
character-based word representation, which induces a representation of a word from a character level
using a convolutional neural network (CNN) (Section 3.1), (2) word representation, where any pre-
trained word embeddings can be used (Section 3.2) and (3) bi-directional LSTM that learns to induce
and leverage orthographic features when identifying named entities (Section 3.3).
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Figure 2: Our bi-directional LSTM for named entity recognition.

3.1 Character-based Word Representation

To learn a word representation from a character level, we use CNN to extract important features from
character embeddings of a given word, as shown in Figure 1. In particular, we firstly represent a given
word of length l characters (padded where necessary) using a word matrix M ∈ Rd×l:

M =

 | | | |
x1 x2 x3 ... xl

| | | |

 (1)

where each column of M is the d-dimensional vector (i.e. character embedding) xi ∈ Rd of each char-
acter in the given word, which are initialised randomly.

Next, we apply a convolution operation using a filter w ∈ Rd×h to a window of h characters. The
filter w is convolved over the sequence of characters in the word matrix M to create a feature matrix C.
Indeed, each feature ci in C is extracted from a window of words xi:i+h−1, as follow:

ci = f(w · xi:i+h−1 + b) (2)

where f is an activation function (such as tanh) and b ∈ R is a bias. Note that multiple filters can be used
to extract multiple features. In this work, we use 200 filters, each of which has window size h = 3.

This convolution operation enables the learning of patterns of characters in words. In order to capture
the most important features, max pooling (Collobert et al., 2011) is applied to take the maximum value
of each row in the matrix C:

cmax =

max(C1,:)
...

max(Cd,:)

 (3)

The cmax vector will later be used as a character-based word representation in bi-directional LSTM,
since it captures important features of a given word.

3.2 Word Representation

We also use pre-trained word embeddings as inputs of bi-directional LSTM, since existing work
(e.g. (Mikolov et al., 2013; Pyysalo et al., 2013; Pennington et al., 2014)) has shown that these em-
beddings could capture semantic and syntactic information of words.
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Input Sentence Orthographic Sentence
interaction between CrkII and A-T2 ccccccccccc ccccccc CccCC ccc CpCn
Prognosis of asymptomatic multiple myeloma. Ccccccccc cc cccccccccccc cccccccc cccccccp
activation of 3-hydroxy-3-methylglutaryl cccccccccc cc npcccccccpnpccccccccccccc
Modification of dopamine D2 receptor activity Cccccccccccc cc cccccccc Cn cccccccc cccccccc
G alpha i2 and G alpha i2 C ccccc cn ccc C ccccc cn
TPA induction of FGF-BP gene CCC ccccccccc cc CCCpCC cccc
KAP-1 mediated repression in vivo CCCpn cccccccc cccccccccc cc cccc

Table 1: Examples of biomedical sentences and their corresponding orthographic sentence.

BC2 BioNLP09 NCBI
Target entities Genes Bio-molecular events Diseases
Type of data MEDLINE abstracts MEDLINE abstracts PubMed articles
Number of documents for training 201 1,436 8,662
Number of documents for development 488 995 2,872
Number of documents for testing 58 2,200 1,036

Table 2: The three datasets used to evaluate our proposed approach.

3.3 Bi-directional LSTM

We use bi-directional LSTM to learn to identify named entities in a sentence, because it can capture past
(from the previous words) and future (from the next words) information effectively (Huang et al., 2015;
Dyer et al., 2015). In addition, LSTM has shown to capture long-distance dependencies more effectively
than a vanilla recurrent neural networks (RNNs), since it can cope with the gradient vanishing/exploding
problems better (Dyer et al., 2015; Bengio et al., 1994).

To enable bi-directional LSTM to learn orthographic features, we create an orthographic pattern of
the input sentence (denoted, the orthographic sentence). Specifically, given an input sentence (e.g. ‘in-
teraction between CrkII and A-T2’), we generate an orthographic sentence (e.g. ‘ccccccccccc ccccccc
CccCC ccc CpCn’) by using a set of simple rules, where each of the upper-case characters, lower-case
characters, numbers and punctuations, are replaced with C, c, n and p, respectively. Examples of ortho-
graphic sentences are shown in Table 1. The orthographic sentence enables bi-directional LSTM to learn
orthographic features automatically.

Next, as shown in Figure 2, given an input sentence and its orthographic sentence, we firstly extract
both word embeddings (i.e. word representation) and character-based word representation corresponding
to each word in the input sentence and the orthographic sentence, by using the approaches described in
Sections 3.1 and 3.21. Then, we concatenate word representations associated to the same words and
sequentially feed them into bi-directional LSTM to model the contextual information of each word.
Finally, at the output layer, we follow Huang et al. (2015) and optimise the CRF log-likelihood, which
aims to maximise the likelihood of labelling the whole sentence correctly, by modelling the interactions
between two successive labels using the Viterbi algorithm.

4 Experimental Setup

4.1 Datasets

To evaluate our proposed approach, we use three different well-estabished biomedical NER datasets,
which are the BioCreative II Gene Mention task corpus (BC2) (Smith et al., 2008b), the BioNLP
2009 shared task on event extraction (BioNLP09) (Kim et al., 2009) and the NCBI disease corpus
(NCBI) (Doğan et al., 2014), respectively. Table 2 shows the information of the three datasets. Firstly,
the BC2 dataset consists of 20,000 sentences extracted from MEDLINE abstracts (15,000 sentences for

1Note that we use separated set of word and character embeddings for the input sentence and the orthographic sentence.
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training and 5,000 sentences for testing), where the task is to annotate the mentions of genes. In or-
der to create a development set, we randomly split the original 15,000 training sentences into 10,000
and 5,000 training and development sentences. Secondly, the BioNLP09 dataset is composed of 7,449,
1,450 and 2,447 sentences for training, development and testing, respectively. The target entities are
bio-molecular events. Thirdly, the NCBI dataset contains more than 6,000 sentences from 793 PubMed
articles (593, 100 and 100 articles for training, development and testing, respectively). The task aims to
identify mentions of diseases in a given sentence.

4.2 Evaluation Measures
We evaluate the performance on the three biomedical NER tasks in terms of f1-score, precision and recall
measures:

f1-score = 2 · precision · recall

precision + recall
, (4)

precision =
TP

TP + FP
, (5)

recall =
TP

TP + FN
, (6)

where TP (true positive) is the number of named entity chunks that are correctly identified, FP (false
positive) is the number of chunks that are mistakenly identified as entities, and FN (false negative) are
the number of named entity chunks that are not identified.

4.3 Embeddings
4.3.1 Word Embeddings
As discussed in Section 3.2, our approach uses word embeddings as inputs when learning an NER model.
We use pre-trained word embeddings of Moen et al. (2013), which are publicly available. In particular,
the embeddings consists of 200-dimensional vectors of 5.4 million unique words, which are induced
from a combined collection of PubMed, PMC and Wikipedia texts using the Skip-gram model from the
word2vec tool (Mikolov et al., 2013). For the words that do not exist in the pre-trained embeddings,

we use a vector of random values sampled from [−
√

3
dim , +

√
3

dim ] where dim is the dimension of
embeddings as suggested by He et al. (2015).

We use a separated word embeddings for words in the orthographic sentences. In particular, for each
word we use a 200-dimensional randomly generated vector, where each dimension is also uniformly

sampled from [−
√

3
dim , +

√
3

dim ].

4.3.2 Character Embeddings
For both input sentence (i.e. original sentence) and orthographic sentence, we use 30-dimensional char-
acter embeddings for representing each character when inducing the character-based word representation
(Equation (1) in Section 3.1). In particular, we initialise the character embeddings with uniform samples

from [−
√

3
dim , +

√
3

dim ]. Importantly, we have a separated embedding for each set of characters in the
input and orthographic sentences.

4.4 Parameter Optimisation
Parameter optimisation is done by mini-batch stochastic gradient descent (SGD) with batch size 50. In
particular, the stochastic gradient descent with back-propagation is performed using Adadelta update
rule (Zeiler, 2012). Note that we also fine-tune both word and character embeddings by allowing their
weights to be modified when performing gradient updates. To reduce the effects of gradient exploding,
we follow Pascanu et al. (2013) and use a gradient clipping of 5.0.

To mitigate overfitting, we apply L2 regularisation on the weight vectors, as well as applying
dropout (Srivastava et al., 2014) with dropout rate 0.5 for all of the layers in our model. In addition,
we use early stopping (Giles, 2001) based on the performance achieved on the development sets.
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Approach
BC2 BioNLP09 NCBI

F1-score Precision Recall F1-score Precision Recall F1-score Precision Recall
FeedForward 66.13 76.43 58.28 76.83 77.25 76.42 73.55 72.05 75.12
BiLSTM 69.54 74.25 65.39 80.49 85.64 75.93 75.37 77.53 73.33
CNN-BiLSTM (Char-only) 79.98 81.85 78.20 85.11 87.54 82.81 82.70 83.00 82.40
CNN-BiLSTM 80.25 80.75 79.76 86.54 88.90 84.31 84.19 84.33 84.06
ORTH-CNN-BiLSTM 80.58 83.01 78.28 87.06 88.91 85.29 84.26 86.67 81.98

Table 3: Performances in terms of f1-score, precision and recall of our proposed approach and the
baselines on the BC2, BioNLP09 and NCBI datasets.

4.5 Baselines
We compare our approach with four different baselines, which do not use any hand-engineered features:

1. FeedForward: A simple feed-forward neural network model similar to Collobert et al. (2011) with
the context window size of 5 and the pre-trained word embeddings described in Section 4.3.1.

2. BiLSTM: A bi-directional LSTM model similar to the proposed model in Section 3, excepting
that the orthographic sentence and the character-based word representation are discarded from the
model. This baseline is similar to the model of Huang et al. (2015) when hand-crafted features are
not taken into account.

3. CNN-BiLSTM (Char-only): A bi-directional LSTM model similar to the proposed model in Sec-
tion 3, excepting that the orthographic sentence and the word embeddings are discarded from the
model.

4. CNN-BiLSTM: A bi-directional LSTM model similar to the model in Section 3, excepting that the
orthographic sentence is not taken into account by the model.

5 Experimental Results

In this section, we compare the performance of our approach for learning and leveraging orthographic
features in bi-directional LSTM for biomedical NER (denoted, ORTH-CNN-BiLSTM) against the four
baselines introduced in Section 4.5. Table 3 compares the performances of our proposed approach with
the baselines in terms of f1-score, precision and recall on the three datasets (i.e. BC2, BioNLP09 and
NCBI).

From Table 3, we firstly observe that FeedForward is the weakest baseline, especially in terms of
the f1-score. This is intuitive as feed-forward neural network is a simple model in comparison with
bi-directional LSTM that could learn long-distance dependencies from sequences of words. Next, we
compare the performance of BiLSTM and CNN-BiLSTM (Char-only). Both BiLSTM and CNN-BiLSTM
(Char-only) share a similar architecture for identifying named entities. The only difference is that BiL-
STM uses pre-trained word embeddings for representing words in a sentence; meanwhile, CNN-BiLSTM
(Char-only) learns word representation from character embeddings using a convolutional neural network.
We observe that CNN-BiLSTM (Char-only) achieves better performances than BiLSTM in terms of all the
three reported measures (i.e. f1-score, precision and recall), across the three datasets. This highlights the
importance of the character-based word representation that could help to deal with non-standardised and
continuously-growing biomedical vocabularies. Furthermore, we found that CNN-BiLSTM, which uses
both pre-trained word embeddings and character-based word representation in a bi-directional LSTM
model, further improves the f1-score and recall performances on all of the three datasets.

On the other hand, our approach, ORTH-CNN-BiLSTM, outperforms all of the baselines on the three
datasets. In particular, ORTH-CNN-BiLSTM performs better than CNN-BiLSTM, which is the most ef-
fective baseline, in terms of f1-score and precision for all of the BC2, BioNLP09 and NCBI datasets.
Importantly, we observe that our approach for automatically learning orthographic features could ef-
fectively boost the performance in term of precision. For example, for the BC2 and NCBI datasets,
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ORTH-CNN-BiLSTM achieved 83.01% and 86.67% precision, while CNN-BiLSTM attains 80.75% and
84.33% precision, respectively.

When analysing the performance of ORTH-CNN-BiLSTM, we observe that the induced orthographic
features could help to effectively identify complex biomedical entities, such as ‘CrkII-23’, ‘ch-IAP1’,
‘HC-toxin’, ‘E.coli manX equivalent’, ‘cathepsin K’, ‘IL-2’, and ‘A-T’, that do not appear in the training
set by learning from the orthographic patterns of words. This shows the importance of orthographic
features in biomedical NER tasks. Importantly, our approach shows a potential of enabling bi-directional
LSTM to capture these patterns without resorting to hand-engineered features.

6 Conclusions

We have discussed recent advances in neural networks that could enable a machine learning-based NER
system to performed effectively in a general domain, such as newswire, without requiring any hand-
crafted features. However, the complexity and the continuous growth of biomedical vocabularies make
biomedical NER a challenging task. Consequently, biomedical NER systems would require domain
knowledge, in the forms of hand-crafted features, to achieve an effective performance. In this work, we
investigate an approach that allows bi-directional LSTM to automatically learn and leverage orthographic
features, which is one of the key features for biomedical NER. We evaluate our approach by comparing
against existing effective end-to-end neural network models for NER. Our experimental results evaluated
on three different well-established biomedical NER datasets showed that our approach consistently out-
performed the baselines. Importantly, we found that our approach could help to identify named entities
that did not appear in the training data by learning the orthographic patterns from similar entities. For fu-
ture work, we aim to enable neural network models to automatically induce other hand-crafted features,
such as gazetteers.
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Abstract

This paper proposes several network construction methods for collections of scarce scientific
literature data. We define scarcity as lacking in value and in volume. Instead of using the paper’s
metadata to construct several kinds of scientific networks, we use the full texts of the articles and
automatically extract the entities needed to construct the networks. Specifically, we present seven
kinds of networks using the proposed construction methods: co-occurrence networks for author,
keyword, and biological entities, and citation networks for author, keyword, biological, and topic
entities. We show two case studies that applies our proposed methods: CADASIL, a rare yet
the most common form of hereditary stroke disorder, and Metformin, the first-line medication to
the type 2 diabetes treatment. We apply our proposed method to four different applications for
evaluation: finding prolific authors, finding important bio-entities, finding meaningful keywords,
and discovering influential topics. The results show that the co-occurrence and citation networks
constructed using the proposed method outperforms the traditional-based networks. We also
compare our proposed networks to traditional citation networks constructed using enough data
and infer that even with the same amount of enough data, our methods perform comparably or
better than the traditional methods.

1 Introduction

Large amounts of biomedical data can now be procured in the Internet. One of the more trustworthy
source of data is from the scientific community where they do research on specific topics and publish
them, which is then made available on the Internet. These vast amounts of data have been used success-
fully in a lot of areas in biomedicine (Margolis et al., 2014; Marx, 2013; Costa, 2014), from biocuration
(Howe et al., 2008) to entity extraction (Rindflesch et al., 2000). In this paper, we focus on the application
of the social and knowledge network construction to biomedical data.

One major yet unseen problem is the contradicting problem of scarce data. In this paper, we define
scarcity in two-folds: lack of value and lack of volume. Lacking in value means that it lacks the necessary
information to perform the method. In the case of constructing an author citation network, scarce data
may not have the author and citing author information in its metadata. Lacking in volume means that it
is not big enough to uncover important knowledge. In the case of constructing an author collaboration
network, scarce data may not have enough scale to detect meaningful communities.

Both of these problems in scarcity exist in rare diseases since there are still very few research regard-
ing these diseases. In this paper, we focus on a case study on the research area on Cerebral Autosomal
Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy, also known as CADASIL.
CADASIL (Chabriat et al., 2009) is the most common form of hereditary stroke disorder, yet is listed
as one of the many rare diseases1. As of the time of writing, searching for research articles regarding
CADASIL in Scopus2 gives approximately only 1100 documents compared to, for example, the approx-

This work is licenced under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

1http://globalgenes.org/rarelist
2http://www.ncbi.nlm.nih.gov/pmc/
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imately 321 thousand lung cancer-related documents. Using current traditional network construction
techniques on the CADASIL data may not work properly. Thus, it is necessary to create an alternative
method to handle these kinds of data.

This paper proposes alternative methods to constructing social and knowledge networks to handle
scarce data. Instead of using the metadata information, which may not be available, we use the full text
of the paper to construct networks. More specifically, instead of using the unavailable author and abstract
metadata information of the cited papers, we make use of the sentences where the in-text citations are
located (which in this paper we call in-text citation context). Aside from it being able to handle scarce
data, it also has some other advantages:

• It can discover larger communities, which can be subtopics of the subject at hand, or connections
to other subjects which are related to the subject at hand.

• In case of constructing entity co-occurrence networks, it defines a much clearer polarity on whether
the entities are more significant or less significant because the number of citations received by the
entity is also reflected.

• In case of constructing entity citation networks, it makes use of citation information extensively.
Only the part of the cited paper aimed to cite by the citing paper is included. This is an important
distinction because even though the communities become larger and may include other subjects,
only the related entities are extracted.

We apply our methods to four different tasks: finding influential authors, finding important biological
entities, finding meaningful keywords, and discovering trendy topics. We also present a comparative
experimental study on metformin, a drug for type 2 diabetes, which was used as a case study in Ding et
al. (2013). We note that these tasks are presented to show comparisons between our proposed methods
and the traditional methods in constructing networks. The novelty of the paper lies on the construction
of entity networks through content-driven approaches.

2 Related work

In this section, we describe related research works on traditional social and knowledge networks and on
methods that utilized in-text citation context.

After Newman (2001) introduced scientific collaboration networks, it has been used to analyze the
patterns (Newman, 2004) and structure (Hou et al., 2008) of scientific collaboration and coauthorship in-
side a research community. Hou et al. (2008) also used author collaboration networks to identify prolific
authors using the centrality measures. A more recent study by Song et al. (2014) used author collabo-
ration networks to detect communities within the field. Interestingly, citation graphs where authors are
the nodes are not used as much as compared to author collaboration networks. Author citation graphs
have been used to define a scientist’s weighting factor (Życzkowski, 2010) and to determine the cita-
tion strength of productive and highly cited authors (Ding, 2011). Entity-based networks, such as entity
co-occurrence and entity citation networks, have also been constructed manually (Callon et al., 1991;
Ding et al., 2001), using a dictionary (Pettigrew and McKechnie, 2001; Plake et al., 2006; Yan et al.,
2013), and using a machine learning technique (Ding et al., 2013; Hahm and Song, 2015) to describe
and measure the impact of the entity community or the entity itself and to detect the hidden knowledge
between two entities.

Since there were enough data to do proper network analysis, all of the past works above used only
meta information such as the paper’s authors and abstracts. Only a few research works used the citation
information, both the in-text citation context and the reference section of the paper (Yin et al., 2011;
Jeong et al., 2014). Yin et al. (2011) used the in-text citation contexts to model linkage information to
improve the retrieval of biomedical documents. Similar as ours, Jeong et al. (2014) takes the citation
information and constructs a content-based co-citation author network. They constructed an author co-
citation network that considers the two authors’ contents’ similarity when adding edges between the two
authors. In this paper, on the other hand, we propose a method to the construction of co-occurrence and
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Metadata

(a) Traditional methods

Full Text

(b) Full text-based methods

Figure 1: Entity extraction methods

citation networks for scarce data, where if the traditional methods are used to construct the network,
network analysis is not possible.

3 Network construction

3.1 Traditional-based methods

This section introduces our approach to network construction compared to the traditional approaches.
Figure 1a shows where the traditional methods extract the nodes or the entities used to construct the
network. More generally, traditional methods get their entities from the metadata information. Author-
based networks are constructed from the authors (highlighted orange in Figure 1a) of the paper and entity-
based networks are constructed from the abstract of the paper. For example, the traditional method in
constructing author collaboration networks creates edges between authors extracted from the author lists
of the papers. Also, the traditional method in constructing entity-entity citation networks creates edges
between entities (highlighted blue in Figure 1a) found in the two abstracts of the papers. The problem lies
within the volume and the availability of these metadata information in scarce data. Networks constructed
with little data cannot uncover important knowledge.

3.2 Full text-based methods

In this paper, we present a network construction method that uses the full texts instead of the available
metadata information. Figure 1b shows the location where the full text-based methods extract their
entities.

3.2.1 Co-occurrence networks
The full text-based method for constructing a co-occurrence network is similar to the traditional method.
The only difference is the location where the entities are extracted. In the case of the author collaboration
networks, instead of looking at the authors of the paper, we look at the reference section to extract the
authors (highlighted orange in Figure 1b) from the references. One reference citation has one list of
authors. A weighted edge is then created between two authors that belongs to one list. Note that if
the edge already exists in the graph and another edge between two authors is created, the weight of the
existing edge is increased by one. The main advantage of this method is that the constructed collaboration
network reflects the number of citations the authors received. This makes it possible to define a much
clearer polarity between prolific and non-prolific authors.

In the case of the entity co-occurrence networks, we look at the in-text citations to locate the chunks
of text that the citing paper referenced the cited paper. From these chunks of text, we then extract the
other entities such as the topic, the keywords, or the biological entities. After extraction, each chunk of
text has its list of entities. A weighted edge is then created between two authors that belongs to one list.
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3.2.2 Citation networks
The main disadvantage of the traditional method in constructing a citation network is the fact that it needs
the citation information between two papers as a metadata information. If the author and abstract infor-
mation of the cited papers are not available, citation networks cannot be constructed using the traditional
method.

Our method does not need the citation information as a metadata information. In the case of the
author citation networks, we create a directed weighted edge from each of the authors from the metadata
information (orange in Figure 1a) to each of the authors from the reference section of the paper (orange
in Figure 1b). In the case of the entity citation networks, we create a directed weighted edge from each
of the entities extracted from the abstract (blue in Figure 1a) of the paper to each of the entities extracted
from all the in-text citation contexts (blue in Figure 1b).

3.3 Entity extraction

The full text-based methods need to extract the entities to construct the networks. The authors are gath-
ered from the author metadata information and from the reference section of the full text paper. All the
other entities are extracted from the abstract and the in-text citation context.

3.3.1 Author extraction
In order to extract the authors from the reference section, it is necessary to take note of the many different
styles of citations. Thus, we use an automatic machine learning method to extract the authors from the
reference section. We sample a few reference section and manually tag the authors for each reference
citation. We then feed them as input for our machine learning model. We use ABNER (Settles, 2005) to
create a new linear-chain conditional random field (CRF) based entity extraction where the entity used
is only the author. After training, the f1-score of the model is 99.3% with precision of 99.31% and
recall of 99.29%. For papers with authors more than 11, we only extract the first 10 and the last author,
following the sequence-determines-credit (SDC) and the first-last-author-emphasis (FLAE) approach
to author credit contribution (Tscharntke et al., 2007). The author names are then formatted as FN
LASTNAME where FN contains the first name initials and LASTNAME is the last name of the author.

3.3.2 Bio-entity extraction
There are multiple types of biological entities from diseases and genes to chemicals and proteins. We
use PKDE4J (Song et al., 2015), a biological entity extraction text mining system that synthesized the
extraction of 127 types of biological entities obtained from the UMLS semantic groups. Out of the two
available methods, we make use of the machine learning-based entity extraction. Since the extracted
entities are not preprocessed, we do simple preprocessing techniques by removing the non-alphanumeric
symbols, removing multiple whitespaces, and lemmatizing the words using Stanford CoreNLP (Manning
et al., 2014).

3.3.3 Keyword extraction
We also extract keywords from the text automatically by using the rapid automatic keyword extraction
(RAKE) algorithm (Rose et al., 2010). RAKE is an unsupervised domain- and language-independent
method for extracting keywords by making use of a generated stoplist which makes it usable for different
domains and languages. In this paper, we use the SMART English stopword list provided by Salton et
al. (1975) as the stoplist. After the extraction, we use the same techniques in Section 3.3.2 to preprocess
the extracted keywords.

3.3.4 Topic extraction
Topics are extracted using the latent Dirichlet allocation (LDA) topic model (Blei et al., 2003). LDA is
a topic modeling technique that infers each document its own topic given the words of each document
and two Dirichlet priors α and β. We set the number of topics to 500 and the number of iterations to
5000. We set the Dirichlet priors α = 1 and β = 0.01. The LDA topic model returns a document-topic
distribution. From this distribution, we get the two topics with highest probabilities for each abstract and
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Table 1: Dataset and network description

author bio-entity keyword topic
traditional nodes 4,707 3,493 17,033 -

co-occurrence edges 18,948 40,386 369,818 -
full text-based nodes 84,180 21,987 142,319 -
co-occurrence edges 295,066 89,298 846,269 -
full text-based nodes 87,719 24,522 150,895 498

citation edges 952,994 310,590 4,513,469 17,603

one topic for each citation context. We get two topics for the abstracts because the text is long and might
be dealing with multiple topics.

4 Experiments

4.1 Dataset

We gather our datasets from PubMed Central (PMC). We use the query term cadasil to get the papers’
author information and abstract from MEDLINE and PubMed Central IDs directly from PMC. Using the
PMCIDs, we obtain the full text, excluding the abstract and including the reference section. From the
full text, we extract the in-text citation context with the guidance from the reference section. The citation
context contains at most 60 tokens: from the in-text citation, thirty tokens to the left or until the end of
the paragraph, and thirty tokens to the right or until the end of the paragraph.

Multiple networks are then created using the methods described in Section 3. Table 1 shows the
statistics of the networks created. There are a total of 10 networks: three traditional co-occurrence
networks, three full text-based co-occurrence networks, and four full text-based citation networks. Since
the paper’s citation information is not available, citation networks using the traditional method is not
possible. The difference in the size of the traditional and the full text-based networks can be clearly seen.

PageRank (Page et al., 1999) is then calculated for each node for each network. We follow Chen et al.
(2007) in their use of δ = 0.5 for PageRank in scientific documents, from the assumption that readers of
scientific papers are more likely to jump randomly to a new document compared to web surfers.

We emphasize that the experiments below are shown to provide comparisons between the traditional-
based network construction methods and our proposed methods.

4.2 Finding prolific authors

Collaboration networks and citation networks can be used to find prolific authors (Chiang et al., 2013;
Garfield, 2006). Prolific authors are authors who stand out based on their research output and contribu-
tions (Hasselback et al., 2003). We compare the results of the three different author-based networks by
sorting the nodes of each network by their PageRank scores in descending order. We then calculate two
metrics to measure author prolificity based on the information on Scopus3 h-index, a widely used author-
level metric and the quotient of the total citations over the number of documents the author has (c/d
metric). The second metric reflects prolificity more; an author is still influential if it has little documents
with many citations. We then compute the average of the metrics of the first 10 authors for evaluation.

Table 2 shows the results of the experiments. It is shown clearly that the traditional co-occurrence
network is inferior compared to the two full text-based networks in terms of the average h-index and
the average c/d metric. In terms of the average h-index, the full text-based citation network is the more
superior network. This means that author citation graph is better in finding prolific authors if we need to
also consider productivity. In terms of the average c/d metric, the full text-based co-occurrence network
is the more superior network. This means that the full text-based author collaboration network is better
in finding prolific authors that emphasizes on the citation impact of the documents and does not consider
productivity.

3https://www.scopus.com/search/submit/authorFreeLookup.uri
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Table 2: Author collaboration and citation networks

(a) traditional co-occurrence

Author h c/d

HS MARK... 76 62.45
TR BARR... 29 38.09
AJ LAWR... 39 21.49
RG MORR... 61 46.19
M TRAYL... 10 19.31
C LAMBE... 8 14.38
P BENJA... 2 1.88
RL BROO... 7 9.64
S BEVAN... 22 40.41

B PATEL 8 9.45
average 26.2 26.33

(b) full text-based co-occurrence

Author h c/d

A JOUTEL 41 92.47
E TOURN... 57 59.28
MG BOUS... 87 58.19
H CHABR... 56 46.56
K VAHEDI 36 73.19

V DOMEN... 16 162.88
MM RUCH... 26 39.86

J WEISS... 112 154.07
E MAREC... 25 22.61
EA CABA... 23 13.64

average 47.9 72.27

(c) full text-based citation

Author h c/d

H CHABR... 56 46.56
A JOUTEL 41 92.47

MG BOUS... 87 58.19
M DICHG... 58 40.64
E TOURN... 57 59.28
K VAHEDI 36 73.19

HS MARK... 76 62.45
N PETERS 24 34.43
F FAZEK... 77 44.16

JM WARD... 71 34.00
average 58.3 54.54

Table 3: Extracted biological entities per method

traditional
co-occurrence

notch3, vascular dementia, stroke, hypertension, alzheimer’s disease,
migraine, disease, vascular lesion, ischemia, notch1, multiple sclerosis,
amyloid angiopathy, lacunar infarct, diabetes, single gene disorder, ge-
netic disorder, atherosclerosis, allele, vascular, cortex

full text-based
co-occurrence

notch3, notch1, notch2, stroke, alzheimer’s disease, hypertension, mul-
tiple sclerosis, vascular dementia, dll4, jag1, ischemic stroke, amy-
loid angiopathy, migraine, disease, dll1, fabry disease, human disease,
carasil, lacunar stroke, atherosclerosis

full text-based citation notch3, stroke, hypertension, caa, alzheimer’s disease, notch1, mi-
graine, atherosclerosis, vascular dementia, lacunar infarct, disease, vas-
cular lesion, cvd, diabetes, notch2, cortex, ischemia, dll4, skin, brain
atrophy

4.3 Finding important biological entities

We can also find important biological entities using co-occurrence and citation networks (Plake et al.,
2006; Ding et al., 2013). We compare the results of the three different bio-entity-based networks by
sorting the nodes of each network by their PageRank scores in descending order. We then remove all
the other bio-entities and leave only the genes and diseases. For evaluation, we compare the first 20
bio-entities to MalaCards (Rappaport et al., 2013), a disease database that records related genes and
diseases.

Table 3 shows the results of the experiments. The bold-faced entities are the important bio-entities.
The traditional co-occurrence network provides the least number of important bio-entities with only nine
entities found. Both the full text-based co-occurrence and the full text-based citation network found 12
important bio-entities. Interestingly, the co-occurrence network found one more gene (jag1) than the
citation network.

4.4 Finding meaningful keywords

The keywords automatically extracted by the RAKE algorithm (Rose et al., 2010) may be general key-
words and/or are not specific to our CADASIL dataset. The networks can be used to find the most
meaningful keywords among the extracted keywords. We compare the results of the three different
keyword-based networks by sorting the nodes of each network by their PageRank scores in descending
order. For evaluation, we compare the first 20 keywords to MalaCards (Rappaport et al., 2013), which
also contains other information regarding CADASIL.
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Table 4: Extracted keywords per method

traditional
co-occurrence

homonymous visual field defect, small vessel disease, vascular disease,
central retinal artery occlusion, intracranial pressure, optic disc edema,
ischemic optic neuropathy, homonymous hemianopia, external carotid
artery, ocular ischemic syndrome, visual loss, spontaneously, retinal is-
chemia, optic tract, retinal infarction, cerebral white matter, central ner-
vous system, clinical presentation, cerebral atrophy, blood flow

full text-based
co-occurrence

cadasil, subcortical infarct, notch signaling, risk factor, vascular de-
mentia, cognitive impairment, notch receptor, cerebral amyloid an-
giopathy, multiple sclerosis, alagille syndrome, endothelial cell, stroke,
notch pathway, notch, alzheimer disease, cognitive decline, risk, notch
signaling pathway, disease, small vessel disease

full text-based citation notch signaling, cognitive impairment, risk factor, endothelial cell, cog-
nitive decline, white matter, risk, alzheimer disease, notch receptor,
cognitive function, cadasil, cell, stroke, subcortical infarct, ischemic
stroke, evidence, notch, vascular risk factor, previously, notch signal-
ing pathway

Table 5: Influential topics using PageRank.

Topic 443
risk

factor
diabetes

hypertension
smoking
disease
stroke
study
age

mellitus

Topic 297
cell

notch
stem

signaling
differentiation

progenitor
fate

development
pathway

role

Topic 461
study

disease
research
approach

datum
treatment

review
result
patient

disorder

Topic 243
matter
disease

svd
lesion
wmh
stroke

lacunar
hyperintensity

vessel
mri

Topic 361
study
matter
brain

impairment
association

lesion
mri

volume
wmh
wml

Table 4 shows the results of the experiments. The bold-faced keywords are the meaningful extracted
keywords. It is distinctly clear that the traditional-based method did not produce a lot of meaningful
keywords, only extracting five. On the other hand, the full text-based co-occurrence network produced
14 meaningful keywords out of the 20 keywords extracted while the full text-based citation network
produced 13 meaningful keywords out of the 20 keywords extracted.

4.5 Discovering influential research topics

Using the full text-based topic citation network, we can discover the top influential topics (Lee et al.,
2016). Influential topics are topics that are frequently cited by other papers. In this paper, we present
the influential topics in CADASIL research. Table 5 contains the top five influential topics based on
PageRank. The most influential topic in CADASIL research is the research related to the cardiovascular
disease (CVD) risk factors, such as high blood pressure, cholesterol, obesity, smoking, lack of physical
ability and diabetes. The next most influential topic in CADASIL research is the research regarding
notch signaling and how it regulates the differentiation of neural stem cells. The next three influential
topics are case reports, research works on white matter hyperintensities (WMH) in small vessel diseases
(SVD), and research works on cognitive impairment.
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Table 6: Extracted genes per method

out-degree citation
(Ding et al., 2013)

insulin
large

impact
lep
tnf

renin
insulin receptor

set
mmp9
mmp2

traditional
co-occurrence

oglcnac
p78
p180

p202 ptp1b gene
trem1
slc2a4
dpp4

pparg
sglt2

ae

full text-based
co-occurrence

slc2a4
gene
sirt1

nfe2l2
met

glp1 ras
ppg
tp53

ae
pten

full text-based
citation
slc2a4
gene
sirt1

nfe2l2
ae

ppg
met
pten
tp53
sglt2

4.6 Metformin scarce data
In this section, we use Metformin as our data. Although Metformin is a widely research area in Medicine,
we only use the first 1000 documents searched from the PubMed Central website to recreate a Metformin
scarce data. We compare our methods to the traditional entity-entity citation network in Ding et al.
(2013). They constructed the network using all the data found in the PMC website and used the abstracts
of all the papers to extract the entities. Their results are then sorted using out-degree centrality. In this
comparison, we use only the genes as the entities of our graph.

Table 6 shows the results of the experiments. The results in Ding et al. (2013) produced four related
genes. It is clearly better compared to the traditional co-occurrence citation network with only two
produced related genes. This is mainly because of the scarce data problem. However, both full text-
based co-occurrence network and full text-based citation network produced five related genes, one more
than the entity-entity citation network in Ding et al. (2013). This infers that even in the same setting with
the same amount of data, the performance of the full text-based networks is comparable to or better than
the performance of the traditional-based networks.

5 Conclusion

In this paper, we proposed an alternative method to constructing co-occurrence and citation networks.
Instead of extracting entities from the given author and abstract metadata information, we proposed to
look at the full text’s reference section for the authors and the in-text citation context for the biological
entities, keywords and topic. We especially recommend in using this to scarce data, where there is a lack
in volume and in value. The advantages are three-fold: larger communities, clearer polarity, and citation
emphasis.

We applied this method to research on CADASIL, a rare disorder. We constructed three co-occurrence
networks (author, bio-entity, and keyword) and four citation networks (author, bio-entity, keyword, and
topic) using the said method. We used it to different kinds of applications: finding prolific authors,
finding important biological entities, finding meaningful keywords, and discovering influential topics.
Compared to the traditional methods, full text-based methods perform noticeably better in finding sig-
nificant entities. We also compared our method to the traditional-based entity-entity citation network in
(Ding et al., 2013) and found out that even with the same quantity of data, the proposed full text-based
network construction method is comparable to or better than the traditional-based network construction
methods.

It is to note that looking at the full text instead of just the metadata information provides a more
profound and defined analysis from the research articles. For future work, we can apply the methods
and create a system to extract different kinds of entities from the full text and automatically construct the
different kinds of networks given a set of research articles regarding a specific research area. This would
further the research in biomedicine especially on rare diseases, genes, or chemicals.
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Abstract

We propose an approach for named entity recognition in medical data, using a character-based
deep bidirectional recurrent neural network. Such models can learn features and patterns based
on the character sequence, and are not limited to a fixed vocabulary. This makes them very well
suited for the NER task in the medical domain. Our experimental evaluation shows promising
results, with a 60% improvement in F1 score over the baseline, and our system generalizes well
between different datasets.

1 Introduction

Named Entity Recognition (NER) is the task of finding mentions of named entities in a text. In non-
medical NER, entity classes are typically people, organizations, and locations. It is one of the fundamen-
tal Natural Language Processing (NLP) tasks and has been studied extensively.

Figure 1: A Swedish medical example text
with NER tags illustrated with colour.

In this paper, we approach the problem of finding med-
ical entities such as (1) disorders and findings, (2) phar-
maceutical drugs, and (3) body structure. Our proposed
method uses deep bidirectional character-based recurrent
neural networks (RNNs), trained in an end-to-end fash-
ion to perform both boundary detection and classification
at the same time.

There are a number of properties that make this prob-
lem especially challenging in biomedical text (Zhou et
al., 2004). Firstly, names composed of multiple words
are frequently used to describe an entity, highlighting the
requirement of good boundary detection on an NER sys-
tem. Secondly, one noun can be part of a mention of
several entities at the same time E.g: “91 and 84 kDa proteins” consists of two entity names: “91 kDa
proteins” and “84 kDa proteins”. Thirdly, it is common to write the same biomedical entity in different
ways, e.g: “N-acetylcysteine”, “N-acetyl-cysteine”, “NAcetylCysteine”. Lastly, ambiguous mentions
are common, including abbreviations that refer to different things in different contexts. (The examples
above are from Zhou et al. (2004)).

Our proposed method has a number of benefits over previous work: Firstly, the model can simulta-
neously recognize and classify entity mentions. Secondly, using an end-to-end neural network approach
eliminates the need for feature engineering. All features needed are learned by the model during train-
ing. Thirdly, because our model works on the raw character sequence, it does not suffer from out-of-
vocabulary terms, it can learn that different character patterns represent the same thing, and it can learn
the typical character-based features often used in traditional machine learning based solutions to NER.

We evaluate the model on Swedish health records in the Stockholm EPR corpus and obtain promising
results. We also note that the method generalizes well between different datasets.

1. Equal contribution.
This work is licensed under a Creative Commons Attribution 4.0 International Licence.
Licence details: http://creativecommons.org/licenses/by/4.0/
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2 Background

A recurrent neural network (RNN) is a feedforward artificial neural network that can model a sequence
of arbitrary length, using weight sharing between each position in the sequence. In a language setting,
it is common to model sequences of words, in which case each input xt is the vector representation of a
word. In the basic RNN variant, the transition function is a linear transformation of the hidden state and
the input, followed by a pointwise nonlinearity:

ht = tanh(Wxt + Uht−1 + b),

where W and U are trainable weight matrices, b is a bias term, and tanh is the nonlinearity.
Basic RNNs struggle with learning long dependencies and suffer from the vanishing gradient problem.

This makes RNN models difficult to train (Hochreiter, 1998; Bengio et al., 1994), and provoked the
development of the Long Short Term Memory (LSTM) (Schmidhuber and Hochreiter, 1997), that to
some extent solves these shortcomings. An LSTM is an RNN where the cell at each step t contains an
internal memory vector ct, and three gates controlling what parts of the internal memory will be kept (the
forget gate ft), what parts of the input that will be stored in the internal memory (the input gate it), as
well as what will be included in the output (the output gate ot). In essence, this means that the following
expressions are evaluated at each step in the sequence, to compute the new internal memory ct and the
cell output ht. Here “�” represents element-wise multiplication.

it = σ(W (i)xt + U (i)ht−1 + b(i)),

ft = σ(W (f)xt + U (f)ht−1 + b(f)),

ot = σ(W (o)xt + U (o)ht−1 + b(o)),

ut = tanh(W (u)xt + U (u)ht−1 + b(u)),
ct = it � ut + ft � ct−1,

ht = ot � tanh(ct). (1)

Most RNN based models work on word level. Words are coded as a one-hot vector, and each word is
associated with an internally learned embedding vector. In this work, we propose a character-level model
that is able to learn features based on arbitrary parts of the character sequence.

LSTM networks have been used successfully for language modelling, sentiment analysis (Tang et al.,
2015), textual entailment (Rocktäschel et al., 2016), and machine translation (Sutskever et al., 2014).
In the following sections, we will see that the learned features are also suitable for recognizing and
classifying mentions of medical entities in health record data.

3 Named Entity Recognition with Character-Based Deep Bidirectional LSTMs

In this paper, we propose a character based RNN model with deep bidirectional LSTM cells (BiLSTM) to
do Named Entity Recognition in the medical domain (see Figure 2). The model is trained and evaluated
on medical texts in Swedish. It has a softmax output layer with four outputs corresponding to each
position in the input sequence, representing the three different entity labels, and a special label for all
non-entity characters.

The model is trained end-to-end using backpropagation and the Adam optimizer (Diederik Kingma,
2015) to perform entity classification on a character-by-character basis. A neural network learns to
internally represent data with representations that are useful for the task. This is an effect of using
backpropagation, and allows us to eliminate all manual feature engineering, enabling quick deployment
of our system.
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Figure 2: A deep bidirectional LSTM network. At each input xt, the model is trained to output a
prediction yt of the correct entity class. In this paper, each block is a deep LSTM cell (see Figure 3), and
the network is trained using backpropagation through time (BPTT).

3.1 Character classification

LSTM unit

LSTM unit

LSTM unit

LSTM cell

LSTM cell

LSTM cell

Figure 3: A deep LSTM
cell, consisting of 3 inter-
nally stacked LSTM cells.

Our model works on the raw character sequence of the input document.
This is an approach that has proven to work well in some other NLP appli-
cations, (see e.g. Luong and Manning (2016), ?)).

Compared to a word-based sequence model, this means that we can use
a much smaller vocabulary for the input tokens. Traditional (non-neural)
entity recognition systems typically rely heavily on hand-engineered
character-based features, such as capitalization, numerical characters,
word prefixes and suffixes (Ratinov and Roth, 2009). Having the capacity
of learning this kind of features automatically is what motivated us to use
this kind of model. A character-based model does not rely on words being
in its vocabulary: any word can be represented, as long as it is written with
the given alphabet.

The character sequence model computes one classification output per in-
put character. The label is one of: (1) disorders and findings, (2) pharma-
ceutical drugs, (3) body structure, (4) non-entity term. Using these labels
(including the special “non-entity” label), we can simultaneously recog-
nize and classify entity mentions by computing one label per character in
the input text. This means that we can interpret each connected subsequence with the same classification
as an entity mention.

However, there are some special cases: Firstly, to handle the situation when sporadic characters are
classified inconsistently, we treat the character classifications as a voting mechanism for each word, and
the majority class is chosen. Secondly, if a space between two tokens is classified consistently with the
two tokens, both tokens are interpreted as belonging to the same entity mention. If the space is classified
as a non-entity character, the two tokens are treated as two different entity mentions.

4 Experimental setup

This section explains the set-up of the empirical study of our model.

4.1 Model layout
We used a deep bidirectional recurrent neural network with LSTM cells. The depth of the LSTM cells
was set to 3, and we used 128 hidden units in the LSTM cells. The model was implemented using
Tensorflow. Learning rate: 0.002, decay rate: 0.975. Using drop-out on activations from the input
embedding layers as well as on the LSTM output activations were evaluated, but was left out in the final
version. See Section 4.4 for details on hyperparameters. The source code of our model is available on
Github1.

1https://github.com/withtwist/medical-ner/
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4.2 Seed-term collection
Seed-terms are used both to build the datasets (see Section 4.3), and to build up the representations for the
classification centroids in the BOW baseline method. Seed-terms were extracted from two taxonomies,
SweMeSH2, a taxonomy of Swedish medical terms and Snomed CT3, consisting of Swedish medical
concept terms. Using the hierarchical structure of the two taxonomies, all terms that was descendants
of each of our predefined categories was extracted and considered seed-terms. The following prede-
fined categories was used for the extraction: disorder & finding (sjukdom & symtom), pharmaceutical
drug (läkemedel) and body structure (kroppsdel). The choice of these main entity classes was aligned
with Skeppstedt et al. (2014).

4.3 Datasets
We use an approach similar to Mintz et al. (2009) to obtain the data needed for training and evaluation.
The datasets that we prepared for training, validating and testing our model are available for download
at https://github.com/olofmogren/biomedical-ner-data-swedish/.

The Läkartidningen corpus was originally presented by Kokkinakis and Gerdin (2010), and contains
articles from the Swedish journal for medical professionals. This was annotated for NER as a part of this
work. All occurrences of seed-terms were extracted (see Section 4.2), along with a context window of
60 characters (approximately ten words). The window is positioned so that the entity mention is located
randomly within the sequence. In addition, negative training examples were extracted in order to prevent
the model from learning that classified entities always occur in every sequence. All the characters in
these negative training examples had the same “non-entity” label. Neural models typically benefit from
large amounts of training data. To increase the amount of training data, each occurrence of seed-terms
were extracted three more times, where the window was shifted by a random number of steps. The
resulting data is a total of 775,000 of sequences with 60 characters each. 10% of the data is negative
data, where every character has the “non-entity” label.

Another dataset was built from medical articles on the Swedish Wikipedia. Firstly, an initial list of med-
ical domain articles were chosen manually and fetched. Secondly, articles were fetched that were linked
from the initial articles. Finally, the seed-terms list (see Section 4.2) was used to create the labels and
extract training examples of 60 character sequences, in the same way as was done with Läkartidningen.

1177 Vårdguiden iis a web site provided by the Swedish public health care authorities, containing
information, counselling, and other health-care services. The corpus consists of 15 annotated documents
downloaded during May 2016. This dataset was manually annotated with the seed-terms list as support
(see Section 4.2). The resulting dataset has 2740 annotations, out of which 1574 are disorder and finding,
546 are pharmaceutical drug, and 620 are body structure.

The Stockholm Electronic Patient Record (EPR) Clinical Entity Corpus (Dalianis et al., 2012) is a
dataset with health records of over two million patients at Karolinska University Hospital in Stockholm
encompassing the years 2006-2014. It consists of 7946 documents containing real-world anonymized
health records with annotations in 4 categories: disorder, finding, drug and body structure. Since we
have a category where “disorder” and “finding” are bundled together they were considered the same.

Läkartidningen, Swedish Wikipedia, and 1177 Vårdguiden are all datasets with rather high quality
text, most of it even professionally edited. This is in stark contrast to the text in Stockholm EPR where
misspellings are common, there are reduntant parts in many records, and writing style is highly di-
verse (Dalianis et al., 2009).

2http://mesh.kib.ki.se/swemesh/swemesh_se.cfm
3http://www.socialstyrelsen.se/nationellehalsa/snomed-ct
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4.4 Hyperparameter search

Figure 4: Validation loss.

A number of settings for hyperparameters were explored
during development. In the variations listed below, one hy-
perparameter at the time is varied and evaluated, and if we
saw an improvement, the change of setting was retained.
A more thorough hyperparameter investigatin is left for fu-
ture work. For the three first experiments, dropout was
used on the activations from the embedding layer, as well
as on the activations on the LSTM outputs. (See Sec-
tion 4.1 for details).

Deeper: A model using 4 stacked LSTM cells. Learning
rate: 0.05, decay rate: 0.975, drop probability: 0.5. Low
learning rate: LSTK depth: 3, learning rate: 0.002, decay
rate: 0.975. Lowering the learning rate proved useful and 0.002 became the default setting for learning
rate. Drop probability: 0.5. Smaller network: 64 hidden units in each LSTM cell. LSTM depth: 3:
learning rate: 0.002, decay rate: 0.975, drop probability: 0.5. No dropout: This model left all the settings
as default but removed dropout entirely. 128 hidden units in each LSTM cell, LSTM depth: 3, learning
rate: 0.002 and decay rate: 0.975. This setting proved to be the best, which meant that the default settings
subsequently never used dropout. Even lower learning rate: Learning rate: 0.0002 and decay rate: 0.975.
No drop-out.

See Figure 4 for the validation performance of the different settings. The resulting model used in
the final experiments reported in Section 5 had 3 stacked LSTM layers with 128 hidden units in each.
Learning rate: 0.002, decay rate 0.975, and no drop-out.

4.5 Baselines

Two baselines were implemented and used. The dictionary baseline simply consist of dictionary look-
ups of the encountered words in the list of seed-terms. The BOW (Bag-Of-Words) baseline is based
on Zhang and Elhadad (2013). The original version was developed for and evaluated on medical texts
in English. The approach considers each noun-phrase as an entity candidate, and represents each candi-
date using a weighted bag-of-words-vector for the context. The required preprocessing is tokenization,
sentence splitting, part-of-speech-tagging, and noun phrase chunking. The first steps was done using
GATE (Cunningham et al., 2011) and OpenNLP4, while noun phrase chunking was done using Swe-
SPARK (Aycock, 1998). An IDF threshold is used to filter out uncommon or unspecific noun phrases.
Then for each category the algorithm builds an average context vector representing the mentions in a
training corpus. We used a triangular window for the context vectors, giving the central words a weight
of 20, and context words the weight of 1/k, where k is the distance from the central word. Mentions with
a cosine similarity lower than 0.005 to any of the category vectors was discarded. Candidate mentions
that have a difference between the top two scoring categories that is lower than 0.7 are also discarded.

Zhang and Elhadad (2013) used one bag-of-words vector for the internal words of an entity mention,
and one for the context words of the mention. The two vectors were then concatenated, resulting in a
vector which is twice the size of their vocabulary. Since the bag-of-words-vectors are already sparse to
begin with, we added them together instead and made it possible to use a larger vocabulary size.

4.6 Training

Development and training were performed using text from Läkartidningen (Kokkinakis and Gerdin,
2010). Validation was done using the Medical Wikipedia dataset. Training was done using the Adam
optimizer (Diederik Kingma, 2015).

4http://opennlp.sourceforge.net/models-1.5/
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4.7 Evaluation

Evaluation of the proposed model was performed on two different datasets: Stockholm EPR cor-
pus (Dalianis et al., 2012), with anonymized health record data in Swedish, and 1177 Vårdguiden.

We report F1 scores for total named entity recognition, as well as only entity classification (given
correct boundary detection, we report scores of the entity classification performed by the system).

In the BOW baseline the entities are determined before hand while the Char-BiLSTM model recog-
nizes and classifies them as it traverses the document.

5 Results

This section presents the results of the experimental evaluation of the proposed model. Table 1 shows
the results of running the dictionary baseline model on Stockholm EPR corpus (Dalianis et al., 2012).
The baseline model achieves a precision of over 0.70 on disorder & Finding and body structure, but is
substantially lower for pharmaceutical drug. It has a higher precision than recall in general due to the
fact that if a match is found it is probably correct. The algorithm got a precision of 0.67, a recall of 0.12
and an F1 score of 0.20.

Category P R F1

Disorder & finding 0.76 0.12 0.20
Pharmaceutical drug 0.25 0.04 0.07
Body structure 0.70 0.29 0.41

Total 0.67 0.12 0.20

Table 1: Dictionary baseline performance on the Stockholm EPR corpus. Although total precision is
reasonably good (0.67), the precision (0.12) is not.

The evaluation of the Char-BiLSTM model was performed on 733 real-world examples of health
records from Stockholm EPR corpus (Dalianis et al., 2012). Since the data is very sensitive the evaluation
was not performed by ourselves but instead the holder of the data performed the evaluations.

Char-BiLSTM overall results: The results in Table 2 shows the results of the Char-BiLSTM model.
Both disorder & finding and body structure have a much higher precision than recall, while pharmaceu-
tical drug is better balanced.

Category P R F1

Disorder & findings 0.72 0.18 0.29
Pharmaceutical drugs 0.69 0.43 0.53
Body structure 0.46 0.28 0.35

Total 0.67 0.24 0.35

Table 2: Results for Char-BiLSTM on Stockholm EPR corpus. The model obtains a total precision that
matches the dictionary baseline (0.67), and a recall that is much higher than the baseline (0.24).

Char-BiLSTM results, classification only: Given the boundaries for the entities in Stockholm EPR
corpus, the performance of the Char-BiLSTM model (performing only classification of the given entities)
is given in Table 3. The table shows promising results for both the category disorder & finding and
pharmaceutical drug which has an F1 score of 0.81 and 0.74 respectively. body structure shows a weaker
F1 score of 0.47. The model got an overall F1 score of 0.75.

We compare our system with the two baselines using the 1177 Vårdguiden corpus. Since the BOW
baseline detects boundaries using whole noun phrases, we re-ran the experiments, adjusting the evalua-
tion data, so that the boundaries were complete noun-phrases.
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Category P R F1

Disorder & findings 0.92 0.73 0.81
Pharmaceutical drugs 0.64 0.87 0.74
Body structure 0.36 0.68 0.47

Total 0.75 0.75 0.75

Table 3: Entity classification results of Char-BiLSTM on Stockholm EPR corpus. Given the entity
boundaries, we can see that the classification of entities work very well, obtaining a total F1 score of
0.75.

Comparing the results of the models in Table 4, we see that the BOW baseline does not perform well
due to the wider boundaries that it detects. This can clearly be seen in the experiments with adjusted data,
where it performs around 47% better. All models have around 0.50 in precision, except for the adjusted
BOW baseline which comes in at 0.32. Recall is much lower (between 0.08 and 0.17), except for the
BiLSTM model which has a recall of 0.21. This is the main reason why the BiLSTM model has the
highest F1 score with 0.29. At the second place comes the adjusted BOW baseline at 0.22, followed by
the dictionary baseline model at 0.22 and lastly the BOW baseline with 0.15. Even though the dictionary
baseline model and the adjusted BOW baseline have similar performance scores, we can see that their
precision and recall are vastly different. The dictionary baseline model has a high precision and a low
recall, while the adjusted BOW baseline is more balanced between precision and recall.

Model P R F1

Dictionary 0.54 0.14 0.22
BOW 0.55 0.09 0.15
BOW (adj.) 0.32 0.17 0.22
Char-BiLSTM 0.48 0.21 0.29

Table 4: Comparison of the results between each model on 1177 Vårdguiden.

6 Related work

Supervised NER has been thoroughly explored in the past. Finkel et al. (2005) used Conditional Random
Fields (CRF), a technique often used for NER. Zhou et al. (2004) used Hidden Markov Models (HMMs)
along with extensive feature engineering to perform NER on medical texts. State-of-the-art in the medical
domain have been achieved by Wang and Patrick (2009) with a combination of CRF, Support Vector
Machines (SVM) and Maximum Entropy (ME) to recognize and classify entities.

Skeppstedt et al. (2014) currently holds the state-of-the-art in Swedish for the medical domain, based
on CRF.

Recently, a number of papers have proposed using RNNs for sequence labelling tasks. Cı́cero
Nogueira dos Santos (2015) presented a model that learns word embeddings along with character embed-
dings from a convolutional layer, which are used in a window-based fixed feed forward neural network.
Huang et al. (2015) proposed a bidirectional LSTM model, but it used traditional feature engineering,
and the classification was performed using a CRF layer in the network. In contrast, our proposed model
learns all its features, and can be trained efficiently with simple backpropagation and stochastic gradient
descent. Ma and Hovy (2016) presented a model that uses a convolutional network to compute repre-
sentations for parts of words. Then the representations are combined with some character-level features
and fed into a bidirectional LSTM network, and finally a CRF performs the labelling. Chiu and Nichols
(2016) presented a similar model but with a softmax output instead of the CRF layer. Like our system,
the models are trained end-to-end and obtains good results on standard NER evaluations, however our
system is conceptually simpler, and learns all of its features directly from the character stream. Lam-
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ple et al. (2016) presented two different architechtures, one using LSTMs and CRFs, and one using a
shift-reduce approach. Gillick et al. (2016) presented a character-based model with LSTM units similar
to a translation model, but instead of decoding into a different language, the state from the encoder is
decoded into a sequence of tags.

Learning representations for text is important for many other tasks within natural language processing.
A common way of representing sequences of words is to use some form of word embeddings (Mikolov
et al., 2013; Pennington et al., 2014; Collobert and Weston, 2008), and for each word in the sequence,
do an element-wise addition (Mitchell and Lapata, 2010). This approach works well for many applica-
tions, such as phrase similarity, multi-document summarization (Mogren et al., 2015), and word sense
induction (Kågebäck et al., 2015), even though it disregards the order of the words. In contrast, RNNs
and LSTMs (Hochreiter and Schmidhuber, 1997) learn representations for text that takes the order into
account. They have been successfully been applied to sentiment analysis (Tang et al., 2015), question
answering systems (Hagstedt P Suorra and Mogren, 2016), and machine translation (Sutskever et al.,
2014).

Character-based neural sequence models have recently been presented to tackle the problem of out-of-
vocabulary terms in neural machine translation (Luong and Manning, 2016; Chung et al., 2016) and for
language modelling (Kim et al., 2016).

7 Discussion

The results of the empirical evaluation of the proposed system show some interesting points, suggesting
that this approach should be researched further.

We have evaluated our model on the Stockholm EPR corpus of Swedish health records, but we did
not compare our scores with other approaches that was evaluated on the same dataset. The reason is that
we were unable to do a fair comparison since our model was trained on other data. We believe that our
scores are competitive, and indicates that the model is promising. While systems that were trained on
data from the same corpus show better performance in the evaluation on Stockholm EPR (Skeppstedt et
al., 2014), we note that our solution can be trained on a dataset that is quite diferent from the test set.
This can be explained in part with the documented robustness of character-based recurrent neural models
to misspellings and out-of-vocabulary terms.

We are convinced that our solution would be able to obtain even better scores if able to train on the
same data.

8 Conclusions

In this paper, we have proposed a character-based deep bidirectional LSTM model (Char-BiLSTM) to
perform named entity recognition in Swedish health records. We beat two different baseline methods on
the task, and show that this is a promising research direction. The proposed model obtains an F1 score
of 0.35 which is about 60% better than the BOW baseline (Zhang and Elhadad, 2013). Our model learns
all the features it needs, and therefore eliminates the need for feature engineering. We have seen that
a character-based neural model adapts well to this domain, and in fact that it is able to generalize from
relatively well-written training data to test-data with lesser quality text.
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38



Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami, and Chris Dyer. 2016. Neural
architectures for named entity recognition. In Proceedings of the 2016 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 260–270,
San Diego, California, June. Association for Computational Linguistics.

Minh-Thang Luong and Christopher D. Manning. 2016. Achieving open vocabulary neural machine translation
with hybrid word-character models. In Proceedings of the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pages 1054–1063, Berlin, Germany, August. Association for
Computational Linguistics.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end sequence labeling via bi-directional lstm-cnns-crf. In Proceed-
ings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 1064–1074, Berlin, Germany, August. Association for Computational Linguistics.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient estimation of word representations in
vector space. In ICLR.

Mike Mintz, Steven Bills, Rion Snow, and Dan Jurafsky. 2009. Distant supervision for relation extraction without
labeled data. In Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th
International Joint Conference on Natural Language Processing of the AFNLP: Volume 2-Volume 2, pages
1003–1011. Association for Computational Linguistics.

Jeff Mitchell and Mirella Lapata. 2010. Composition in distributional models of semantics. Cognitive science,
34(8):1388–1429.
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Abstract

The increasing amount of biomedical information that is available for researchers and clinicians
makes it harder to quickly find the right information. Automatic summarization of multiple texts
can provide summaries specific to the user’s information needs. In this paper we look into the
use named-entity recognition for graph-based summarization. We extend the LexRank algorithm
with information about named entities and present EntityRank, a multi-document graph-based
summarization algorithm that is solely based on named entities. We evaluate our system on a
datasets of 1009 human written summaries provided by BioASQ and on 1974 gene summaries,
fetched from the Entrez Gene database. The results show that the addition of named-entity infor-
mation increases the performance of graph-based summarizers and that the EntityRank signifi-
cantly outperforms the other methods with regard to the ROUGE measures.

1 Introduction

There is an overload of textual information, also in the biomedical domain, where new research articles
are published daily. Text summarization can support to deal with this textual data deluge by providing
automatically generated summaries on certain topics, e.g., a gene or a disease, as well as supporting
answers returned by question answering (QA) systems.

However, the adoption of these technologies in the biomedical domain is not straightforward. The do-
main specific language has different requirements for information extraction compared to news articles,
where who, when, what, and where elements are often the most important. Additionally, there are less
resources available in biomedicine for text summarization, such as benchmarking corpora or knowledge
bases. Finally, requirements for summaries, such completeness or correctness, are even more important
in this domain when compared to others, as important decision might be taken based on them. Therefore,
text summarization for biomedicine raises new challenges that still need to be addressed.

Searching for specific information in biomedical publications is a hard task that involves screening
many entries in PubMed 1, the most popular search engine in biomedicine. PubMed contains over 24
million records and is growing exponentially (Lu, 2011). Two thirds of all queries to PubMed return
more than 20 results, which is probably the reason why 47% of all queries get followed by a subsequent
query without accessing any abstract or article of the search result (Dogan et al., 2009). In average, users
read four documents to find the information they search for. Text summarization can support this task by
providing summaries of many publications for a certain query or topic. Automatic text summarization
has also the potential to support database curation by automatically generating short summaries about a
topic, such as the ones manually created for the Entrez Gene database.

In this work, we propose two graph-based summarization algorithms based on named entities for im-
proving automatic multi-document summarization for the biomedical domain. While the first approach

This work is licenced under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

1https://www.ncbi.nlm.nih.gov/pubmed
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extends the lexical PageRank (Erkan and Radev, 2004) with information from the NER, the second ap-
proach is solely based on named-entity recognition (NER). Additionally, we show how to adapt these
algorithms for particular uses cases in biomedicine by including a bonus score. We evaluate our meth-
ods in two uses cases: generation of ideal answers for question answering (QA) systems and for gene
summaries.

The remainder of this paper is structured as follows: next section presents related work on text suma-
rization. Section 3.2 introduces our summarization algorithms, followed by an evaluation of these in
section 4. Finally, we present a discussion on the results, identify the limitations of our work, and pro-
pose future work in section 5.

2 Related work

Automatic text summarization has been studied since the late 1950s (Luhn, 1958) and has been applied
to many domains such as news or social media, with some remarkable success (Chen et al., 2015). More
recently, graph-based ranking algorithms like Google’s PageRank (Page et al., 1999) and the HITS
algorithm (Kleinberg et al., 1999) have been also successfully used for summarization. Essentially,
these algorithms aim at deciding the importance of a vertex within a graph.

Mihalcea and Tarau introduced the TextRank (Mihalcea and Tarau, 2004) model, which essentially
provides a general instruction for extracting lexical or semantical graphs from documents. In parallel
and independent of the TextRank, Erkan and Radev introduced the LexicalPageRank (Erkan and Radev,
2004). One of the main changes that they proposed is the creation of multi-document summaries, by
building a single sentence graph from multiple documents.

There are some previous work on summarization for biomedicine, such as (Kogilavani and Bala-
subramanie, 2009) that relied on ontologies to suport document retrieval and documents clustering.
Researchers have also connected a graph-based extractive summarization algorithm with the domain
knowledge of an ontology, for instance, for single document summarization (Morales et al., 2008). Their
approach was similar to (Verma et al., 2007), but used a graph-based algorithm instead. Some researchers
explored other non-traditional methods to generate automatic summaries. For example, generating not
only summaries, but also a table of relevant data for extracting medical events and date times from doc-
uments (Aramaki et al., 2009). Another work proposed a system that uses patient data to provide a
summarization of relevant information (Elhadad and McKeown, 2001).

Regarding summaries to support QA systems, some works focused on answering one special ques-
tion type (e.g., ”What is the best drug treatment for X?”) (Demner-Fushman and Lin, 2006). Further,
the general-purpose BioSquash system BIOSQUASH (Shi et al., 2007) was extended with biomedical
domain knowledge from UMLS. The BioASQ challenge (Tsatsaronis et al., 2015; Krithara et al., 2016)
was an important step to boost summarization solutions for biomedical QA systems, such as using ma-
chine learning approach based on Inductive Logic Programming (ILP) with different sets of features
(Malakasiotis et al., 2015).

One of the first systems for automatic generation of gene summaries was proposed by (Ling et al.,
2006). A different approach, that has some similarities to our work, was proposed by Jin et al. (Jin et al.,
2009). They also use LexRank and extend it with two domain specific steps: identification of signature
terms and calculation the similarity between each sentence based on the Gene Ontology (GO) terms.
This approach is similar to our redundancy reduction step (cf. Section3.2). Finally, a similar approach to
ours is the work of (Shang et al., 2014) which makes uses of TextRank based on frequency of words and
LDA for topic relevance.

3 Methods and Materials

In this section, we introduce the data that we used and describe our methods for automatically generating
summaries from scientific biomedical abstracts.
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3.1 Data

Since we have two different use cases, we will also use two different datasets. However, both datasets
rely on PubMed as source for the documents.

PubMed. PubMed 2 is a free search engine, that not only offers access to the MEDLINE database,
but also to life science journals and online books. PubMed contains over 26 million records from over
26.000 journals.

Domain dictionaries. Our dictionaries combine data from the Unified Medical Language System3

(UMLS), a collection of various health and biomedical vocabularies, and from SNOMED, a suite of
standards from the U.S. Federal Government for the electronic exchange of health information. We
specified a default name and a list of aliases and variations for each entity. Furthermore, entities were
grouped by types, e.g., genes or diseases.

EntrezGene. EntrezGene4 is a database for genes from various species. Each entry in EntrezGene is
provided with a rich range of information5, such as official symbol, corresponding organism and a short
manually created summary.

3.2 Methods

In this section, we will describe the details of our summarization system and the algorithms that we have
implemented.

Document retrieval. We fetched from PubMed the documents that we used for the generation of the
summaries. We used the Entrez Programming Utilities 6, a set of public APIs that provide access to the
data in PubMed. It allows users to get a full record by its PubMed identifier (PMID), as well as to retrieve
documents which match some given keywords. Overall, we fetched 68.083 abstracts, which were used
to generate summaries. We rely only on the abstracts, not on the full text, due to the following reasons:
(a) most of the records in PubMed contain only an abstract; (b) sentences in an abstract are more suitable
for a summary, since they are a summarization of an article and contains the most relevant information;
(c) the BioASQ dataset (cf. section 4.1) are based on the abstracts, not on the full text.

Document pre-processing. We extracted linguistic and semantic annotations for the documents using
the built-in text analysis functionality of an in-memory database (SAP HANA). Therefore, we created
two full-text indexes (FTI), i.e., a a full indexing of all documents, one for linguistic annotations, i.e.,
part-of-speech (POS) tags and stems, and one for semantic annotations, i.e., named entities for genes,
diseases, etc. The name-entity recognition (NER) was based on the custom dictionaries derived from
various terminologies from UMLS, as previously described in our question answering system (Schulze
et al., 2016). Dictionary matching to the documents was performed inside the database based on an
approximated matching of the dictionaries with the documents. We mapped the words in the linguistic
index to the entities in the NER index only for entities composed of a single word.

Extended LexRank. We extended the LexRank graph-based algorithm (Erkan and Radev, 2004) with
information from the NER step. LexRank finds the most central sentences by building a sentence graph,
based on the idf-modified cosine similarity, and calculates the PageRank on the resulting graph. We
relied on the pre-processing step to normalize each sentence, based on the stemming and the named
entities. After running the LexRank on these normalized sentences, we remove redundant sentences and
extract the best sentences for a summary.

LexRank is based on the assumption that similar sentences contain the exact same words. However,
two sentences can express the same content using different forms of the same word or even their syn-

2http://www.ncbi.nlm.nih.gov/pubmed
3http://www.nlm.nih.gov/research/umls/
4http://www.ncbi.nlm.nih.gov/gene
5e.g.,humangeneHNF1A,http://www.ncbi.nlm.nih.gov/gene/6927
6http://www.ncbi.nlm.nih.gov/books/NBK25501/
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onyms. We rely on stems, from the linguistic FTI, and on the named entities from the semantic FTI to
normalize different but related words and to reduce the dimension of the vector space.

After merging both indices, we unify the resulting index by choosing a single form from one of the
available ones. For instance, only 61% of the words were recognized as named entities. Therefore, we
choose one form in this order: named entity, stem, normalized form or token text. Since the named enti-
ties not only include different forms of the same word but also synonyms and typical spelling mistakes,
we chose this as the preferred form, followed by the stemmed form, that could also include different word
classes and conjugations. The so-called normalized form only accounts for capitalization and mutated
vowels, while the token text is the original word as it appears in the text. The unified index was used as
input for the LexRank algorithm and for the calculation of the idf values.

After using LexRank to rank the sentences according to their centrality, we need additional post-
processing steps to generate the summaries. Firstly, we extracted the sentences that are most suitable
for a summary using the following process: (1) we initialized two sets: an empty set A and a set B that
contains all extracted sentences; (2) we ordered the sentences in set B by descending order according
to their score; (3) we moved the top sentence si from set B to set A. Then penalized all sentences sj

similar to si by calculating their new score according to the equation 1 below, where sim(si, sj) is the
similarity between two sentences, t = 0.3 is a threshold and w = 0.5 is a penalty factor; (4) we repeated
steps 2 and 3 until enough sentences were in set A.

score(sj) =

{
w × score(sj), if sim(si, sj) ≥ t

score(sj), otherwise
(1)

At the end of this procedure, we obtained the most central sentences that are also as distinct as possible
to each other. We concatenated these sentences to create a summary with the most relevant information.

EntityRank. We developed a second ranking approach inspired by the LexRank. Similar to LexRank,
EntityRank also uses the similarity between the sentences to generate a sentence graph, but based on the
named entities. Additionally, it also includes the possibility to adapt the calculation to the specific use
cases.

Since the EntityRank is a graph-based algorithm, like LexRank and PageRank, we built a graph from
the documents that we want to summarize. In order to represent the text as a graph, we created a similarity
matrix by comparing every two sentences to each other, with no distinction between sentences that came
from the same or from different documents. We experimented with two graph approaches, namely,
weighted and non-weighted edges, and we implemented three approaches.

Our first approach used a non-weighted graph, like in LexRank, by adding non-weighted edges be-
tween the vertices that have a similarity greater than a certain threshold. The value of this threshold
directly influences the density of the resulting graph, since a lower threshold results in more connections.
After evaluating various values, we decided for 0.2. For the second approach, we created a weighted
sentence graph. Compared to the unweighted graph, this method has no loss of information, since we
add an edge between every two vertices whose corresponding sentences have a similarity greater than
zero. This usually resulted in a much larger and dense graph, but it also contained much more infor-
mation. We calculated the similarity between two sentences based on the cosine similarity and on the
named entities. Our third hybrid approach combined the threshold used in the first method with the use
of weighted edges from the second method. We add a weighted edge between every two sentences whose
similarity score is larger than a certain threshold. We decided for a value of 0.1 for the threshold based
on our experiments.

After creating the sentence graph, we calculated a score that represents the centrality of the sentence
based on PageRank (Page et al., 1999), which is a round-based algorithm. We recalculated the score of
every vertex in each round by using the results from the previous round until convergence of the scores,
using the equation below:
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score(si) =
d

N
+ (1− d)

∑
sj∈adj[si]

score(sj)
deg(sj)

(2)

where N is the total number of vertices in the graph, adj[s] are all adjacent vertices of the vertex s,
deg(sj) is the degree of vertex sj , and d is a ’damping factor’, which is typically set between 0.1 and 0.2
as proposed by (Page et al., 1999).

Since this formula is only defined on non-weighted graphs, we did not use it on weighted graphs.
Instead, we modified it to distribute the score of each vertex, depending on the weights of its edges. The
resulting equation is a modified version of the EntityRank for weighted graphs:

score(si) =
d

N
+ (1− d)

∑
sj∈adj[si]

cosine(si, sj)∑
sy∈adj[sj ]

cosine(sy, sj)
score(si) (3)

where cosine(s1, s2) is the cosine similarity between two sentences. With this formula, we calculated
the non-weighted EntityRank and the weighted EntityRank using the same weight for every edge.

Similar to the PageRank, that gives more importance for certain Web sites, we introduced a score to
describe the relevance of a sentence for a use case. This score was used to change the distribution of
EntityRank and to give an higher weight to the sentences that have a greater relevance for the use case.
We changed the equation accordingly:

score(si) = E(si)
d

N
+ (1− d)

∑
sj∈adj[si]

cosine(si, sj)∑
sy∈adj[sj ]

cosine(sy, sj)
score(si) (4)

where E(si) is the relevance of the sentence si for the current use case. The average of this factor over
all vertices is 1, in order to keep the average of all scores converging to 1.

EntityRank for question answering. Given that summaries for QA systems should focus on the ques-
tion, we changed EntityRank to provide a bonus score for sentences that are related to the question. The
bonus score was calculated based on the similarity of each sentence with the question, more specifically,
on the common named entities. But before we can use the similarity, we need to normalize it, so that its
average over all sentences is 1, by using the following equation:

E(si) = sim(si)
|S|∑

j∈S

sim(sj)
(5)

where S is the set of sentences and sim(si) the similarity of the sentence si to the question. We will
use this normalized bonus score in the equation 4 to positively influence the summarization.

EntityRank for gene summaries. Since there is lot of information about most of the genes, the al-
gorithm needs additional guidance on the right information for the summary. When analyzing human
summaries from the Entrez Gene database, we noticed that they all cover similar topics, such as encoded
protein, mutations, location or relation with certain diseases.

We created a bonus score that reflects how suited a sentence is for belonging to a gene summary. We
relied on 9553 manually written summaries from EntrezGene to identify the most frequent named enti-
ties. The 15 most used terms were the following: ”Proteins”, ”Genes”, ”protein location”, ”encoding”,
”variant”, ”family”, ”last name”, ”variant”, ”receptor”, ”receptor cells”, ”mutation”, ”numerous”, ”func-
tion”, ”enzymes”, and ”DNA”. We created an artificial sentence from these most used terms, then we
compared the artificial sentences to the sentences in the dataset. This similarity score was used to create
the bonus score using equation 5 that was later applied in equation 4.
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4 Evaluation

Unlike other domains, there are not gold-standard dataset for the evaluation of text summarization for
biomedicine. Most papers introduce their own evaluation datasets, based either on abstracts from docu-
ments or on manual evaluation by experts. In this section, we evaluate our algorithms on the test collec-
tion provided by BioASQ and on a set of human summaries from the EntrezGene database. Tuning of
parameters in our methods were solely based on the training sets.

4.1 Datatsets

BioASQ We used 1009 questions and the corresponding data provided by the BioASQ challenge 7,
an EU-funded project that aims to evaluate biomedical QA. These questions correspond to the datasets
used in phase B of the tasks 1b (2013), 2b (2014) and 3b (2015). The BiOASQ dataset includes not only
the questions, but also the relevant documents (PMIDs from PubMed), passages and concepts, as well
as exact answer and ideal answers (summaries). We relied on the these relevant documents (but not the
passages) to generate our summaries. These datasets may include more than one ideal answer for each
question, which we use for the evaluation of our system.

EntrezGene summaries We automatically collected manual summaries from EntrezGene. The re-
sulting summaries include some noise, therefore, we removed all summaries that were shorter than 100
characters and those which were equal for multiple genes. We then split this set randomly into a training
set of 9553 summaries, that was used for generating the bonus score, and a test set of 1974 summaries.
The quality of this dataset is very low, when compared to the BioASQ data. Further, the summaries have
different lengths and some might be outdated. In the document retrieval step, we relied on the PubMed
API to search for the official symbol, official full name and the whole name of the gene. We considered
the top 20 abstracts for each gene as source for the summary.

4.2 Results

We compared our summarization algorithms to LexRank. Further, we also evaluated the performance
of EntityRank for our two use cases. We used the Java implementation of ROUGE-N from the Dragon
Toolkit (Zhou et al., 2003), which was developed by (Zhou et al., 2007). It implements ROUGE-1 and
ROUGE-2 with additional stop word removal. Since ROUGE is a recall-based measure, the length has no
influence on the score. Therefore, we calculated the ROUGE scores on summaries of similar length.

Comparison to LexRank. We use the BioASQ dataset for comparison to LexRank, given its better
quality. As recommended by BioASQ, we created summaries with a fixed length of 200 words and
compared them to the reference summaries using both ROUGE-2 and ROUGE-1. Additionally, we also
compared the algorithms for shorter summaries of only 100 words. Therefore, we extracted sentences
until the next sentence would not fit in the limit of words.

Our comparison to LexRank is displayed in Figure 1. We compared LexRank to the extended
LexRank, the non-weighted and the weighted EntityRank, without considering any bonus scores. In
these diagrams, the blue bar shows the average score of all summaries, which adds up to 1009 sum-
maries, while the green bar shows the average score only for summaries which were created from more
than 20 documents, which adds up to 197 summaries. Results for ROUGE-2 (results not shown) had a
similar correlation among the various systems, though lower results.

Our extended LexRank achieved a slightly better score, compared to the original LexRank. This was
expected, since the algorithm is essentially the same. In contrast, the non-weighted and weighted variants
of the EntityRank produced very different results. The overall score of the non-weighted EntityRank is
far lower, compared to the weighted EntityRank. This can be explained by the loss of information that
occurs when ignoring the similarity between the sentences. Finally, we got better ROUGE scores for the
summaries that were created with the weighted EntityRank.

7www.bioasq.org
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Figure 1: ROUGE-1 scores for 100-words summaries (left) and 200-words summaries (right).

Question Answering. We evaluated the influence of the bonus factor by comparing the adapted ver-
sion of the weighted EntityRank with the general version. Therefore we generated 100- and 200-words
summaries and compared them according to the number of abstracts that were used for the generation
(cf. Figure 2). The bonus score slightly improved the results of the EntityRank, especially for summaries
that were generated from fewer abstracts. While the 100-words summaries benefited from the bonus
score, regarding summaries that were generated from less than 10 abstracts, 200-words summaries were
improved or were similar for each number of abstracts. Although the overall improvement is only 2%, it
shows that the bonus score did help guiding the EntityRank on the right sentences.

Figure 2: Comparison of ROUGE-1 scores for 100-words summaries (left) and 200-words summaries
(right) of the weighted EntityRank (with and without the bonus score).

We also compared our systems to participants of the BioASQ challenge during the current fourth
edition of the challenge (Schulze et al., 2016). We participated with the basic EntityRank and generated
summaries with a length of five sentences instead of 200 words, which was the best version of our system
that was ready at the time of the challenge (Spring/2016). As reported in (Schulze et al., 2016), we got a
first position in one of the batches and good scores in the other batches.

Gene Summarization. We also evaluated whether our bonus score could improve the generation of
gene summaries. We evaluated the same algorithms used earlier in the comparison to LexRank, as well
as weighted and unweighted EntityRank with the bonus score (cf. Figure 3). The overall scores are
significantly lower compared to the ROUGE-1 scores of the BioASQ dataset. This is due to the fact that
the gene summaries is not a query-focused task and it can include many different topics related to the
gene, while the summaries for QA should be related to the query (question). The weighted EntityRank
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obtained the highest scores among all systems. Thus, we can confirm the positive influence of the bonus
score, which increased the scores of unweighted, as well as the weighted, EntityRank by roughly 2%.

Figure 3: Comparison of ROUGE-1 scores for 200-words gene summaries.

5 Discussion and Future Work

Considering that summaries need dense sentences with much information, we chose to use only the
abstracts of the PubMed articles. But especially for a focused summary, there could be information
in the full paper that is not contained in the abstract. Therefore, in future work, we plan to evaluate
the performance of our algorithms on full text, specially regarding the gene summaries, as information
contained on these are not restricted to the abstracts.

The ordering of the sentences and the readability are important issue to create a fluent and natural
summaries similar to human-written ones (Jurafsky and Martin, 2009). Further, it has a large impact
on the comprehensiveness of a summary. For example, the information of a sentence could require
knowledge of another sentence.

Further, we did not evaluate the performance of our NER approach for the detection of biomedical
terms. The reason for not recognizing a term could not only be a failure of the NER step but could
also be due to misspelling of words or missing terms in our dictionaries. Especially the latter could
possibly occur more often during real use, if new documents contain words that is still not available in
our dictionaries. Since our algorithms are heavily dependent on the named-entities, we need to check
whether there is still room for improvement on the NER step, either regarding adding new terminologies
or using machine learning approaches.

Not only false negatives are an issue, but also false positives. False positives can be either due to the
NER algorithm or an error in the dictionaries. This is a problem specially for acronyms which often
match common English words, such as conjunctions, when using an approximate and lowercase-based
matching. A stopwords filtering step could remove some of these false positives.

Finally, one issue could raise from merging the linguistic and semantic indices. Set of words that have
the same stem and a related meaning could have been handled as the same. But this was not the case if
one of them was recognized as a named-entity. However, we anticipate that these were indeed rare cases.

6 Conclusions

Automatic text summarization has the potential to support many domains. It enable researchers to
quickly get an overview of a specific topic, without investing too much time for searching the infor-
mation. Especially for fast changing domains like biomedicine, it can help clinicians to save valuable
time that could be use on treating patients. Therefore, summarization algorithms should utilize domain
knowledge to create accurate summaries.
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In order to improve the understanding of the domain, we relied on named-entity recognition in our
summarization algorithms. We showed that adding named entities to graph-based summarization algo-
rithm did improve the results for the task. The named-entity information supported building a sentence
graph, by improving the similarity measure. This approach is especially effective for summaries that are
generated from few documents.

We showed two different ways of enriching graph-based algorithms with named-entity information.
The extended LexRank proved that using named entities greatly improves the overall results of the
LexRank in the medical domain. But the main contribution of this work is EntityRank, which is a graph-
based algorithm that is solely based on named entities instead of terms. We showed that a graph-based
summarization algorithm that only uses technical terms can outperform other graph-based approaches
within a restricted domain. Although the performance only increases for summaries that are created
from few documents, it still shows the potential of that approach, since it performs comparable to other
state-of-the-art systems.

Additionally, we showed how the EntityRank could be adapted to more specialized use cases, such as
question answering and gene summarization. We implemented two bonus scores and showed how they
improve the results for special use cases.
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Abstract

Electronic health records show great variability since the same concept is often expressed with
different terms, either scientific latin forms, common or lay variants and even vernacular naming.
Deep learning enables distributional representation of terms in a vector-space, and therefore,
related terms tend to be close in the vector space. Accordingly, embedding words through these
vectors opens the way towards accounting for semantic relatedness through classical algebraic
operations.

In this work we propose a simple though efficient unsupervised characterization of Adverse Drug
Reactions (ADRs). This approach exploits the embedding representation of the terms involved
in candidate ADR events, that is, drug-disease entity pairs. In brief, the ADRs are represented as
vectors that link the drug with the disease in their context through a recursive additive model.

We discovered that a low-dimensional representation that makes use of the modulus and argu-
ment of the embedded representation of the ADR event shows correlation with the manually
annotated class. Thus, it can be derived that this characterization results in to be beneficial for
further classification tasks as predictive features.

1 Introduction

The aim of this work is to represent Adverse Drug Reactions (ADRs) efficiently so as to find drug
related etiologies in Electronic Health Records (EHRs). Nebeker et al. (2004) defined an ADR as “a
response to a drug which is noxious and which occurs as doses normally used”. Finding ADRs effi-
ciently is of much concern to pharmaco-surveillance and clinical documentation services. Personnel at
pharmaco-surveillance services reads thousands of EHRs in order to detect this type of events and, fur-
thermore, documentation services claim that, while ADRs should be reported by law, they seem to be
under-reported (Dalianis et al., 2015).

From the natural language processing perspective, EHRs differ substantially from clinical literature
as PubMed (Cohen and Demner-Fushman, 2014) in aspects such as syntax, the use of non-standard
abbreviations (Okazaki et al., 2010; Kreuzthaler and Schulz, 2015), and misspellings (Dalianis, 2014).
Within EHRs it is common to find the same concept expressed with different terms or surface-forms,
synonyms or near-synonyms, either scientific latinised forms, common or lay variants or even vernacular
naming, misspells, abbreviations etc. For example, we have found in the Spanish corpus we are working
with a wide variety of ways to refer to the diagnostic term with code 600.00 from the ninth Clinical
Modification of the International Classification of Diseases (WHO, 2014), namely, “benign prostatic
hyperplasia” e.g. hipertrofia benigna de próstata, hiperplasia BP, HBP-II, hiperplasia benigna de la
prstata en estado II, etc.

Distributional semantics has demonstrated to be a powerful approach to represent closely in a contin-
uous space (Rn) related entities. The rationale is to represent similar entities by means of close points
in that space (or word-embedding) since close points render related meaning. Hence, embedding words

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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through vectors opens the way towards semantic search (Thompson et al., 2016) as an alternative to
the classical string-based methods that rely on keyword search. In this context, distributional semantics
arises as a naturally appropriate framework as it exploits semantic similarity rather than the frequency
of target surface-forms (Batista-Navarro et al., 2016). Deep learning (LeCun et al., 2015) has proven
useful to model semantic relatedness based on corpus (Mikolov et al., 2013b). It accounts contextual
information and patterns that occur in big amounts of unsupervised corpora to create sketches of word-
forms that embed semantic relatedness. Mikolov et al. (2013a) proposed a distributed word embedding
model that allowed to convey meaningful information on vectors derived from neural networks. With
this approach, semantically related terms tend to be close in the vector space and the advantage is that
closeness is a well studied metric in vector spaces (e.g. through Euclidean distance) while measuring
semantic closeness is not trivial.

Our work is inspired by the example proposed by Mikolov et al. (2013a), where the authors present the
association of the following terms: Madrid is to Spain what a query entity is to France or more formally
as in (1). −−−−−−−−−−−−→

Spain−Madrid ≈ −−−−−−−−−−−→France− query (1)

Here, each entity as Madrid, Spain or France, is represented as a point in a vector space that conveys
meaningful information. The intuition is that close points correspond to semantically related entities.
Accordingly, the hypothesis stands that similar vectors constructed by linking points also convey sim-
ilar relations. Bearing this in mind and back to our domain, our research question is as follows: are
drug-related aetiologies similarly represented in a semantic space? That is, given that a disease (e.g.
“nosebleed”) was caused by a drug (e.g. “sintrom”) in a given EHR, can we extract other relations for
their location in the vector space? Moreover, are similar the vectors that trigger ADR events and can
be distinguished from those that do not form ADR events? We have tried to state this question formally
through expression (2), where we denoted an ADR candidate by a disease-drug pair and, particularly,
denoted as ⊕ the ADR events, 	 the non-ADR events and the sub-indices (i and j) simply refer to a
given particular instance in the data. We have tried to depict the research question through Figure 1
which shows relevant entities as points in a space and also a few ADR events through vectors linking
drugs and diseases.

(
−−−−−−−−−−−−→
Disease−Drug)⊕i

?≈ (
−−−−−−−−−−−−→
Disease−Drug)⊕j (2)

(
−−−−−−−−−−−−→
Disease−Drug)⊕i 6

?≈ (
−−−−−−−−−−−−→
Disease−Drug)	j

The contribution of this paper is an efficient representation of ADR events with high correlation with
the class (C = {	,⊕}). The interest behind stands in its potential use for further supervised classification
tasks as a stand-alone technique or, as it is our purpose, as predictive features for other classification
techniques. All in all, we focus on representation while classification is out of the scope of this paper.

1.1 Related work
A big challenge of ADR event extraction is the fact that ADRs represent rare or infrequent events. In
real EHRs we saw that ADRs represent 1% of the drug-disease pairs. That is, the ADR event extraction
task is significantly skewed towards the negative class (	 non-ADR events) in real EHRs and, hence, it
represents a complex and still open problem for supervised classification. Regarding this issue, Henriks-
son (2015) created an artificially balanced corpus consisting of positive examples, health-care episodes
coded with ADR-related diagnosis codes, and the negative examples were an equal number of randomly
selected examples. By contrast, in this work we tackle the ADR extraction problem in its natural con-
text, without avoiding the data skewness problem. Accordingly, we explore the scope of the proposed
representation in the real context.

Last years authors have combined both supervised and unsupervised techniques to tackle entity recog-
nition (Agerri and Rigau, 2016) and event extraction (Zhang et al., 2015; Zhou et al., 2015). Focusing on
the clinical domain, the task presented by Henriksson et al. (2015) entailed the detection of health-care
episodes that involved an ADR. They were pioneers in representing health-care episodes using semantic
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Figure 1: We represent the entities together with their context by means of word-embeddings (e.g. blue
dots represent drugs, red squares diseases, triangles body-parts etc) and the ADR candidates through
vectors linking a drug with a disease. The goal is to explore if the disposition of the ADR events is
similar in the distributional semantic space.

spaces, that is, they extracted different representations of the documents and a semantic space was cre-
ated for each component of the representation. The semantic spaces and other features were used as input
to a machine learning algorithm. The task presented in (Henriksson et al., 2015) differs from ours since
ADRs were a sub-set of diagnostic terms referred to as ADRs in the ICD-10-CM. This subset consisted
of particular diseases that always had a drug as their cause. The goal was not to relate two entities (a
drug and a disease) but, instead, it was to recognize a sub-set of disease-entities (a sub-set of ICDs). By
contrast, we aim at extracting relations between drug and disease entities rather than subsets of entities.

Typically event extraction tasks and challenges (Pradhan et al., 2014) focus on the extraction of events
that occur within the same sentence. Trying to relate entities that are in different sentences is by far much
more complicated due to the amount of information that is required to take into account as the distance
increases, not to mention anaphora and co-reference resolution. Nevertheless, the systems that only at-
tempt at finding intra-sentence events might be discarding valuable information as many relations involve
entities in different sentences. Indeed, in our set of EHRs, the inter-sentence events represent 51.7% of
the positive instances, besides, on average the positive events are placed at a distance of 4 sentences but
we found positive events involving entities further than 15 sentences. With the representation of each
drug-disease pair proposed in this work we do not restrict ourselves to explore only intra-sentence events
(as it tends to be the main trend in this area) but we also cope with inter-sentence events.

2 Methodology: ADRs as relation-vectors

Full classification systems rely entirely on predictive features to infer a model. The features represent,
hence, a crucial source of knowledge. Our aim is to get an efficient representation of ADR events. By
virtue of distributional semantics we prove that relevant features can be obtained. In an attempt to build
a model able to extract events, the event should be characterized in an efficient manner. The key issue is
that the representation itself should show correlation with the type of event (e.g. ⊕ for ADR events and
	 for non-ADR events).

We resort to semantic vector spaces to represent the entities (drugs and diseases), that is, each entity
will be represented by its vector, calculated by the word2vec tool (Mikolov, 2016). As a result, each
word has associated a point in an Rn vector-space. Nevertheless, a given drug does not always provoke
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the same side effects, hence, the context turns out crucial to set the relations. Accordingly, we propose
to encompass the entity together with its right and left contexts (being the contexts within a window
of size m). Note that even though word vectors trained by means of Skip-gram model encode context
information in the corpus, this context information reveals the global trend of the sample. With the
general contextual trend, the model assigns a location in the space to each word. Nevertheless, the
rationale behind the use of the context is that focusing on each EHR can leverage the local contextual
information. In this regard, given an EHR in its textual form: x(1), x(2), · · · , x(i), · · · , x(s), and given
that we identified x(i) as an entity (either drug or disease) that shall be taken into account as a candidate
that could trigger an ADR event, the issue is how to render all the contextual information information as
well. To do so, it is common practice to turn to the embedding of each word, that is, for a given word
in the vocabulary, x(k) ∈ Σ, get the corresponding embedding ~x(k) = (x(k)

1 , x(k)
2 , · · · , x(k)

n ) ∈ Rn where
1 ≤ k ≤ |Σ| and n is the pre-fixed size for the dimension of the space. Nevertheless, in this work we do
not rely only on their associated embedding but on a vector formed as a linear combination of the context
vectors as stated through (3). In brief, for a given word x(i) ∈ Σ, we get a vector ~x(i) ∈ Rn, but in such
a way that it comprises not only the word but its context as well, that is, a window of m words to the left
and to the right.

v(x(i−m), x(i−m+1), · · · , x(i), · · · , x(i+m−1), x(i+m)) =
m∑

k=−m

λk~x
(i+k) (3)

Expression (3) represents a recursive additive model (Ferrone and Zanzotto, 2013) that makes a repre-
sentation for each word within a given context, but adapted to the entity on the focus through a context of
a given length (m). The weight λk balances the contribution of the context-word k in the representation,
as an alternative to the basic additive model (Mitchell and Lapata, 2008; Zanzotto et al., 2010).

For instance, given that we would like to explore whether the disease x(i) was caused by the drug y(j)

in a given EHR, first we represent the entities following the recursive additive representation. That is, for
the word x(i) we get the vector v(x(i−m), x(i−m+1), · · · , x(i), · · · , x(i+m−1), x(i+m)) that, for the sake
of brevity, shall be referred as x; likewise, for y(j) we get its contextual recursive representation y. Given
the representation in an n-dimensional semantic space of a disease, x ∈ Rn, and of a drug, y ∈ Rn, our
goal is to carry out data analysis and measure if this characterization helps to represent the relatedness of
those concepts and, thus, assess quantitatively if the semantic space helps to guess if the pair is an ADR
event or not.

Quite naturally, we defined the contextual relation vector as the vector that starts in the point x and
ends in y to represent the ADR. Note that−→xy = y−x, thus,−→xy ∈ Rn. We explored both the cosine sim-
ilarity between the entities x and y and also the euclidean distance between them or, what is equivalent,
the argument and modulus of the relation vector −→xy. Cosine similarity is formally stated in (4) and the
euclidean distance in (5), both of them are graphically depicted in Figure 2. It is well worth mentioning
that xi in (5) represents the i-th component of vector x and likewise, yi for y.

cos(θ) =
x · y
|x||y| (4)

d(x,y) = |−→xy| =
[

n∑
i=1

(xi − yi)2
] 1

2

(5)

Note that the smaller the argument θ ≡ ∠(x,y), the bigger its cosine and, thus, the more related the
entities associated to x and y. In the same way, the smaller the modulus |−→xy|, the more related the drug
and disease entities. This is the reason for which we opted to provide the results in terms of the argument
and the euclidean distance, both decrease as the entities get related.
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Figure 2: Argument θ, between vectors x and y, and modulus of the relation vector ~xy

Our aim is to analyze if the event-vectors−→xy that relate ADRs show similarities (and likewise for non-
ADRs). In other words, we aim at analyzing two sets of event-vectors that contain, respectively, ADR
(or positive events) and non-ADR (or negative events), denoted as S⊕ in (6) where c(−→xy) represents the
real class of the event (equivalently, for S	).

S⊕ = {−→xy : c(−→xy) = ⊕} (6)

There are more sophisticated approaches that represent relation extraction through directed graphs
that also make use of continuous vector spaces (Bordes et al., 2013). This kind of multi-relational
data can represent entities as points in a vector space and relations as operations, such as projections,
translations, etc. (Wang et al., 2014). In our work we explore a simple approach in a particular context
where the relations are highly unbalanced. Nevertheless, relational machine learning approaches (Nickel
et al., 2016) have demonstrated an for their ability to model and generalize relations. In particular,
constraining the embedding in such a way that semantically related entities were placed in a lower-
dimensional subspace (Jameel and Schockaert, 2016) seems applicable to our task. Provided that drug
and disease entities would be represented in different subspaces while each sub-space would ensure that
drug families would still be distinguished.

3 Experimental results

3.1 Task and corpus

We focus on EHRs written in Spanish by staff from the Galdakao-Usansolo and Basurto Hospitals.
Admittedly, getting this kind of corpora to do research is not easy due to confidentiality issues (Cohen
and Demner-Fushman, 2014), and it is even more difficult when it comes to explore other languages
rather than English (Névéol et al., 2014). All in all, as Spanish is official in many countries, developing
clinical text mining results for this language is of much interest, not only for the health systems but also
for patients so that they get their EHRs in their own language.

The analysis of the proposed representation for relation vectors was built up based on an unsupervised
or unannotated corpus, an in-domain medium-sized unsupervised set formed by 141,000 EHRs. From
this partition we computed the word embeddings (~x(k)) that served to get the two features that are being
proposed in this article (namely, θ and |−→xy|). Next, the assessment of the proposed representation was
carried out on two independent supervised test sets not contained within the unsupervised set. In other
words, we aimed to measure the correlation between θ and |−→xy| with respect to the class (C = {⊕,	}).
The total number of tokens and documents involved in each set are shown in Table 1. To sum up, the

tokens docs |S⊕| |S	|
unsupervised 52× 106 141,000 - -
test-1 21× 103 41 58 21,911
test-2 11× 103 17 38 17,654

Table 1: Data sets: unsupervised to train the word embeddings and two supervised sets for testing.
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resources exploited for the detection of ADRs are simply based on an unsupervised corpus, since we turn
to word-embeddings and, from them, we derive the two proposed features (θ and |−→xy|). For the sake of
curiosity, in this task we got an inter-annotator agreement of 82.86% on the test sets.

An inspection to Table 1 reveals a challenging (Monard and Batista, 2002; Phua et al., 2004; Mu et
al., 2010) characteristic intrinsic of ADR detection: the classes are highly skewed being 	 the majority
class. There are many works in this field that tackle ADR extraction with artificially balanced test sets
(Henriksson, 2015). By contrast, we keep the repetition ratio as it is in the original sample of EHRs. Our
aim is to check if this technique would help in real practice.

3.2 Results

The data analysis based on the proposed relation vector for ADR and non-ADR events is shown in
Table 2. It presents the average argument θ and euclidean distance of relation vectors in each set (S⊕
and S	). Regarding the configuration of word2vec, we employed the skip-gram choice and a window
of size s=5 requiring a n=300 dimensional vector space trained on the unsupervised set. Next, in order
to represent each entity through the recursive additive model proposed in expression (3), a symmetric
context ofm = 3 tokens was chosen. Besides, we considered all the elements within the window equally
influent and, hence, decided for λi = 1. Needless to say, this experimental setup involved a series of
parameters (s, n,m, λ) that could have been fine-tuned on the basis of a supervised training corpus. Such
a tuning would have helped to reassure the influence of each of them, for instance, with m an empirical
comparison of the need to exploit local context and its scope when it comes to get the relation vector;
with λi the influence of the context as the scope increases. While these empirical comparisons are of
interest we found them out of the scope of this work.

θ |−→xy|
mean stdev mean stdev

S⊕ 1.10 0.26 10.89 2.98
S	 1.35 0.09 15.05 2.70

Table 2: Argument and modulus of ADR candidate events.

Figure 3 shows that ADR and non-ADR events from test-1 represented as relation vectors are statis-
tically different in terms of both θ and |−→xy|. Hence, any of the proposed features (θ and |−→xy|) allows to
distinguish between ADR and non-ADR events.

Figure 3: Box-plot for the argument, θ, and modulus, | ~xy| with respect to the class of the event
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The reader might wonder what would happen with an independent test from the same domain. We
tackled this question through test-2 (presented in Table 1) and observed that the representation remains
as stable as for the test-1. Indeed, both θ and |−→xy| remained as in Table 2. Note that the model follows the
intuition that related ADRs pose both small θ and small |−→xy|. In addition, one-way analysis of variance
in the modulus stated that for this data-set, with respect to the null hypothesis of equal modulus, the
p-value is 3.7× 10−15. The same applies to θ with a p-value of the same order of magnitude.

The proposed model is able to deal with inter-sentence and intra-sentence events. We wondered if the
proposed event-vector representation gets degraded as the distance in sentences between the drug-disease
pairs increases. In other words, does the event-vector remain stable in the vector-space despite they are in
different sentences? Figure 4 comes to answer these questions. We explored the modulus of the relation
vector for negative and positive instances. To be precise, we turned to the relative location of the drug
x(i) with respect to the disease y(j) measured in sentences: location(x(i), y(j)) ≡ numSent(y(j)) −
numSent(x(i)). Whenever the drug and the disease are in the same sentence this location is 0; else,
if the disease precedes the drug in the document, then the relative location is positive; otherwise, it is
negative. Figure 4 depicts the box-plot associated to | ~xy| for each class on three different location-
ranges. We noticed that the regular way of reporting ADRs in EHRs in Spanish follows a scheme where
the relative location is negative, and for them, | ~xy| turned out very helpful to discriminate the class. As
the trend changes, and particularly for very long positive relative locations, see the range “(5, Inf ]” in
Figure 4, the correlation of | ~xy| with respect to the class decreases. We conclude that | ~xy| is a helpful
discriminant feature for ADR classification, particularly for those events that occur within the same
sentence or relatively close (within 5 sentences), but also for the events that follow the trend and show a
negative relative location despite of being far from each other.

Figure 4: Impact on | ~xy| of the relative location, in sentences, from the disease to the drug.

Even more, we carried out preliminary experiments with simple classifiers and, while it is out of
the scope of this paper, the results are consistent with the hypotheses. The proposed features helped
to discriminate ADR events. An example of the ADRs detected in a real EHR are shown in Figure 5
through Brat (Stenetorp et al., 2012). In this figure, the drug entities are marked in green with the tag
Grp Medicamento while the disease entities are marked in green with the tag Grp Enfermedad.
Positive ADR events are linked through arrows. In these examples all the ADRs occur within the same
sentence, note that intra-sentence events.
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Figure 5: Example of ADRs detected in a real EHR.

In the mid-term we mean to test these features with a wide-suite of classifiers and focus, entirely,
on classification techniques and results rather than on representation which is, indeed, the focus of this
paper. Hence, we conclude that empirical observations lead us to support the representation introduced.

4 Concluding remarks and future work

In this work we proposed an efficient vector representation of drug-disease pairs, or ADR events, derived
from distributional semantics. This representation of events showed clear correlation with respect to the
class (⊕ for ADR events and 	 for non-ADR events). In plain words, we made a linear combination of
the context-vectors of each entity (either drug or disease) to get the vector representation of the entity
within its context. Next, we formed the event by linking both entities yielding a relation vector.

Accordingly, we propose the use of a contextual recursive additive model to characterize each entity,
either drug (represented as x) or disease y. Other approaches could have been explored, such as the
mean vector (instead of the sum) of the context-vectors. Next, we related the drug trough the relation
vector defined as −→xy. From here, we proved that two characteristics derived from this relation vector (θ
and −→xy) showed clear correlation with respect to the class of the event (⊕, 	). This work does not aim
at proposing this low-dimensional representation as a stand-alone ADR event extraction technique, by
contrast, we think of this as a prior step in order to leverage the representation of ADRs for subsequent
supervised classification methods. This representation settled a basis for an ongoing work focused on the
ADR classification.

Even though distributional semantics is known for its ability to embed related words in close positions
of the vector space, there are still open challenges. Limitations of the approach explored in this paper
stand on that we do not cope with ADRs expressed by means of aphoristic pronouns and co-referent
expressions (such as “it”), even though distributional semantics could approach those terms for their
co-appearance as well.

Future work is planned in two directions: on the one hand we aim at going ahead and try fully unsuper-
vised classification of ADR events by improving this representation and enhancing it with LDA analysis;
in parallel, we shall focus on feeding supervised classifiers with this approach and experimenting thor-
oughly if this low-dimensional vector representation can leverage the performance of current supervised
methods.
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Aurélie Névéol, Hercules Dalianis, Guergana Savo va, and Pierre Zweigenbaum. 2014. Panel: Clinical natural
language processing in languages oth er than english. In American Medical Informatics Association (AMIA).

Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. 2016. A review of relational machine
learning for knowledge graphs. Proceedings of the IEEE, 104(1):11–33.

Naoaki Okazaki, Sophia Ananiadou, and Jun’ichi Tsujii. 2010. Building a high-quality sense inventory for im-
proved abbreviation disambiguation. Bioinformatics, 26(9):1246–1253.

Clifton Phua, Damminda Alahakoon, and Vincent Lee. 2004. Minority report in fraud detection: classification of
skewed data. Acm sigkdd explorations newsletter, 6(1):50–59.

Sameer Pradhan, Noémie Elhadad, Wendy Chapman, Suresh Manandhar, and Guergana Savova. 2014. Semeval-
2014 task 7: Analysis of clinical text. In Proceedings of the 8th International Workshop on Semantic Evaluation
(SemEval 2014), pages 54–62, Dublin, Ireland, August. Association for Computational Linguistics and Dublin
City University.
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Abstract

Very few datasets have been released for the evaluation of diagnosis coding with the International
Classification of Diseases, and only one so far in a language other than English. This paper de-
scribes a large-scale dataset prepared from French death certificates, and the problems which
needed to be solved to turn it into a dataset suitable for the application of machine learning and
natural language processing methods of ICD-10 coding. The dataset includes the free-text state-
ments written by medical doctors, the associated meta-data, the human coder-assigned codes for
each statement, as well as the statement segments which supported the coder’s decision for each
code. The dataset comprises 93,694 death certificates totalling 276,103 statements and 377,677
ICD-10 code assignments (3,457 unique codes). It was made available for an international auto-
mated coding shared task, which attracted five participating teams. An extended version of the
dataset will be used in a new edition of the shared task.

1 Introduction

Over the past decade, biomedical named entity recognition (NER) and concept normalization have been
widely covered in NLP challenges. Different types of texts were explored: clinical texts were used in the
CMC (Pestian et al., 2007) and the i2b2 NLP Challenges (Uzuner et al., 2007; Uzuner et al., 2011) while
the biomedical literature provided material for the BioNLP-Shared Tasks (Kim et al., 2011; Nédellec et
al., 2015). Few challenges offered datasets in more than one languages, such as the CLEF ER (Rebholz-
Schuhmann et al., 2013) and CLEF eHealth Challenges (Goeuriot et al., 2015)

The assignment of codes from the International Classification of Diseases (ICD) to clinical texts is
primarily used for billing purposes but also has a wide range of applications including epidemiologi-
cal studies (Woodfield et al., 2015), monitoring disease activity (Koopman et al., 2015a), or predicting
cancer incidence through retrospective and prospective studies (Bedford et al., 2014). Nevertheless, use-
ful results can only be achieved if ICD code assignment is accurate (Mieno et al., 2016), and studies
evidenced that it is a challenging task even when performed manually (Dalianis, 2014).

This is a motivation for creating shareable datasets for ICD coding from natural language text: text
corpora annotated with associated ICD codes that can be used to train and evaluate automatic coding
systems. Automatic coding has the potential to reduce the cost of physician involvement in the coding
process and to increase the consistency of coding.

A potential source of ICD coding datasets comes from death certificates, which are coded in countries
around the world according to the World Health Organization (WHO) international standards, using
ICD-10. This coding process exists in virtually every country, hence in a large variety of languages. We
describe herein the creation of a large-scale ICD coding dataset from death certificates, instantiated in
the case of France and the French language. This experience can pave the way for other instantiations in
other countries and languages.

This work is licenced under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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We first review related work on ICD coding datasets, briefly mentioning associated automated coding
methods. We then present the material we started from, the issues we encountered and how we solved
them. We describe the resulting data and its use in an international shared task.

2 Related work

In 2007, the Computational Medicine Center (CMC) challenge proposed to identify ICD-9-CM disease
codes on a corpus of outpatient chest x-ray and renal procedures (Pestian et al., 2007). In those docu-
ments, two sections are identified as more likely to yield codes: ‘clinical history’ and ‘impression’. Both
training set and test set are well balanced (respectively 978 and 976 documents). The corpus targeted
a subset of only 45 ICD-9-CM codes so that each one of the 94 distinct combination of codes from the
test set were seen during the training stage. The best system used a decision tree and achieved a 0.89
F-measure on the test set.

Apart from the CMC challenge, various studies have addressed automatic ICD-10 coding. Koopman
et al. (2015a) classified Australian death certificates into 3-digit ICD-10 codes such as E10 with SVM
classifiers based on n-grams and SNOMED CT concepts, and with rules. They also trained SVM clas-
sifiers (Koopman et al., 2015b) to find ICD-10 diagnostic codes for death certificates. In contrast to the
dataset presented here, they only addressed cancer-related certificates. In addition, they tackled the level
of 3-digit ICD-10 codes (e.g., C00, C97) instead of the full 4-digit level usually required for ICD-10
coding (e.g., C90.2). Another important difference is that they focused on the underlying cause of death,
i.e., one diagnosis per death certificate. The present dataset keeps all the diagnoses mentioned in each
statement of a given death certificate, so that the number of codes to assign to a certificate varies from
document to document and is not known a-priori. This dataset is intended to support a statement-coding
task rather than as a certificate-coding task.

Perotte et al. (2014) took advantage of the presence of ICD-9 codes in the MIMIC-II database along
with free text notes. They tested the use of the hierarchical structure of the ICD codes system to improve
automatic coding. They compared two coding approaches to assign ICD-9 codes to documents, using
SVM classifiers: one took into account the hierarchical structure of ICD-9 codes (hierarchy-based clas-
sifier); the other did not (flat classifier). They report higher recall (0.300) and F-measure (0.395) when
using the hierarchy-based classifier.

All of this work addressed English language free text. Additionally, ICD-10 coding shared tasks from
Japanese clinical records were organized at NTCIR-11 (MedNLP-2) (Aramaki et al., 2014) and NTCIR-
12 (MedNLPDoc) (Aramaki et al., 2016). The latter included 200 medical records with an average 7.82
sentences and 3.86 ICD codes per record, totalling 552 distinct codes. However, the inter-annotator
agreement was low, with an F-measure of 0.235. The best system obtained an F-measure of 0.348.

We present here the construction and use of a much larger-scale ICD-10 coding dataset in French.
Instead of clinical records, it is based on much shorter narratives, viz. death certificates.

3 Material and methods

This section describes the original data; it presents the issues that prevented direct use for a shared task
as well as the processing methods we designed to create a dataset suitable for a shared task.

3.1 The coding process at the French WHO collaborative center

Causes of death statistics are essential data to monitor population health, undertake epidemiological
studies and international comparisons.

Death certification by a medical practitioner is a mandatory procedure for any death occuring on the
French territory. It can be done on a paper certificate or through a secure Web application. In 2007,
electronic certification was introduced in France with the objective (among others) to provide a much
quicker process for health surveillance and alert systems (Pavillon et al., 2007). Currently, around 12%
of death certificates are electronically certified. The system is run on a completely voluntary basis.

Paper death certificates are keyed in by contractors. In this process, contractors may normalize parts
of the text to facilitate its subsequent coding; for instance, disease mentions may be replaced with an
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equivalent from a standard dictionary.
Causes of death data is centralized at the French Epidemiological Center for the Medical Causes of

Death (CépiDc – Inserm). Death certificates are coded with the international software IRIS (Johansson
and Pavillon, 2005) in order to assign a code selected from the International Classification of Diseases,
tenth revision (ICD-10) to each reported nosologic entity. Then several ICD rules are applied in order to
select the so-called underlying cause of death, which is used in most statistics compilations.

Death certificates are now increasingly produced electronically. While this makes the documents
more easily available for machine processing, it also creates new challenges. Since electronic certificates
are not handled by contractors, their variability of expression is higher than that of transcribed paper
certificates; they can also contain spelling errors. Therefore, it is more difficult to handle automatic
processing of electronic certificates compared to transcribed certificates which are currently handled
by IRIS. This creates an additional motivation for testing state-of-the-art automatic coding methods on
modern death certificates, as can be done in a shared task. For these reasons, we used electronic death
certificates to create the dataset described herein.

3.2 Data produced by this coding process
In compliance with the World Health Organization (WHO) international standards (Wor, 2011), French
death certificates are composed of two parts: Part I is dedicated to the reporting of diseases related to
the main train of events leading directly to death, and Part II is dedicated to the reporting of contributory
conditions not directly involved in the main death process. According to WHO recommendations, the
completion of both parts is free of any automatic assistance that might influence the certifying physician.

In the course of coding practice, the data is stored in different files: a file that records the native
text entered in the death certificates (called ‘raw causes’ thereafter) and a file containing the result of
normalizing the text and assigning ICD codes (called ‘computed causes’ thereafter). An example of
‘raw’ and ‘computed’ causes is show below in Table 1.

3.3 Encountered issues
We found that the formatting of the data into raw and computed causes made it difficult to directly relate
the codes assigned to original death certificate texts, which would reduce the interest of the data for a
shared task. The main issues we identified were:

1. Outside information needed. Some coding decisions were made after complementary information
was obtained through another channel, such as by contacting the author of the certificate. No trace
of this communication is present inside the death certificate itself, hence its contents are not relevant
as a source for coding.

2. Alignment challenge. The correspondence between the ‘computed causes’ records in the computed
causes file and the statements in the raw causes file could not be easily recovered through the
information present in these files. The raw causes file used actual line numbers of the source death
certificate (1–4 and 5), but the computed causes file sometimes did not keep the order of the causes
as mentioned in the raw causes, and used line numbering that could arbitrarily differ from that of
the raw causes. Further more, the text of the computed causes consists of a normalized excerpt of
the raw causes text that lead to the specific code assignment. In practice, this means that the specific
text strings were related, but often not identical.

The certificates which needed outside information to assign the correct code could be identified
through the mention of conditions that prevent a specific code assignment: décès de cause inconnue
(unknown cause of death), autopsie en cours (autopsy requested) or through the automatic detection of
incoherence between the cause mention and the patient age or gender. In those circumstances, a letter
is addressed to the doctor, in order to request additional information. Every year, about 1,800 letters
are sent and 500 answers received. With this feedback, codes are directly assigned to the corresponding
certificates without revising the original text; instead, a free text comment reporting on the support-
ing correspondance is entered in the coding software. The certificates meeting these criteria were then
removed from the dataset.
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The alignment issue required to find a method to align the source statements with the computed causes
records. We describe this method in the next section.

3.4 Pre-processing of death certificate through alignment
The goal of the alignment process is to obtain (statement, code) pairs, where the statement includes the
original text and its associated meta-information, as per the raw causes file, and the code is one of those
which should be assigned to this statement as per the computed causes file, together with the associated
normalized text. Input statements with multiple codes are repeated in multiple (statement, code) pairs.

A sample document is presented in table 1. This example illustrates different types of difficulty of the
alignment step:

• cause order is reversed (e.g., choc septique appears in line 1 of the raw causes but in line 3 of the
computed causes),

• multiple causes are merged on a single raw line (e.g. peritonite stercorale and perforation colique
on line 2),

• different capitalization and stopwords (e.g. see line 3 of aligned causes),

• different spelling. There is no occurrence of this in our sample document; however, a raw cause
such as bactériémie à K. pneumoniae would be normalized to bactériémie klebsiella pneumoniae,
using a variant of the name of the bacteria involved in the reported infection.

Table 1: A sample document from the CépiDC French Death Certificates Corpus: alignment of the raw
causes and computed causes. English translations for each text line are provided in footnotes.

data line text normalized text ICD
type codes

R
aw

ca
us

es 1 choc septique1 -
2 peritonite stercorale sur perforation colique2 -
3 Syndrome de détresse respiratoire aiguë3 -
4 defaillance multivicerale4 -
5 HTA5 -

C
om

pu
te

d
ca

us
es

1 defaillance multivicerale R57.9
2 syndrome détresse respiratoire aiguë J80.0
3 choc septique A41.9
4 peritonite stercorale K65.9
5 perforation colique K63.1
6 hta I10.0

A
lig

ne
d

ca
us

es 1 choc septique choc septique A41.9
2 peritonite stercorale sur perforation colique peritonite stercorale K65.9
2 peritonite stercorale sur perforation colique perforation colique K63.1
3 Syndrome de détresse respiratoire aiguë syndrome détresse respiratoire aiguë J80.0
4 defaillance multivicerale défaillance multiviscérale R57.9
5 HTA hta I10.0

Our alignment method relied both on the order that causes and codes occurred in the files and on string
similarity between the texts of raw and computed causes. More specifically, the principles we followed
to reconcile raw and computed causes were the following:

1septic shock
2colon perforation leading to stercoral peritonitis
3Acute Respiratory Distress Syndrome
4multiple organ failure
5HBP: High Blood Pressure
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• Alignments have the form (0, 1)→ m

• All computed causes must be supported by an input statement

• No alignment should have the form n → m. However, some death certificates contain separate
input statements which must be taken as a whole to produce a relevant code. An example is the
set of two lines 1. Strangulation au lien (ligature strangulation) and 2. Suicide which is coded as
X70.9 (Intentional self-harm by hanging strangulation and suffocation home during unspecified
activity), where the suicide must be coded by taking into account the specific circumstance that lead
to it (here, strangulation). In such cases we kept the input statements separate. The most generic
statement (e.g. suicide) was considered inconclusive and did not receive a code assignment while
the ‘head’ statement (e.g. ligature strangulation, which provided the defining information for code
assignment) was aligned with the output code.

To align the statements, we used a model originally intended for bilingual word alignment in paral-
lel sentences: a log-linear reparameterization of the IBM2 model (Dyer et al., 2013). The alignments
were produced from the computed clauses without allowing for null alignment in order to satisfy our
constraints, and with a Dirichlet prior to favor diagonal alignments.

The model underperforms on multi-word segments as it relies on co-occurrence counts of raw and
computed causes, which are very sparse. To overcome this problem, both causes were pre-processed
by removing stopwords and applying stemming. Next, the Damerau-Levenshtein distance between two
segments was linearly combined with the occurrence count to act as a prior on the alignment probabilities.

4 Results

We applied the above-described methods to the 2006–2013 death certificates created by the electronic
work-flow and describe the resulting data and its usage.

4.1 Corpus characteristics

Table 2 presents the fields found in each line of the produced dataset. One line is produced for each
(input line, output code) pair. Some input lines have no associated output code: the corresponding values
are empty. As explained in Section 3.4, this also occurs when two “raw cause” input lines need to be
considered together to be coded. In that case, only one of them has an associated code.

The dataset was split into training and test sets: the training set contains statements of years 2006–
2012, and the test set contains statements of year 2013. We now provide more detail on the training
set.

The distribution of statement length in tokens, after stop-word removal (French stop words of the
NLTK toolkit), is shown on Figure 1a. It shows that statement length follows a Zipfian distribution from
length 2 to length 31. Statements over 20 tokens are rare (455 = 0.17%), over 10 tokens too (9538 =
3.6%). The maximum length of a statement is 120 tokens.

Figure 1b shows the most frequent codes. The top five are R092 (Respiratory arrest), A419 (Sep-
ticaemia, unspecified), R688 (Other specified general symptoms and signs), I10 (Essential (primary)
hypertension), I509 (Heart failure, unspecified). These top diagnoses, as well as those in the rest of the
figure, display a mixture of very general diagnoses (unspecified, other) and most frequent causes of death
(infection, hypertension, pneumonia, cancer, etc.).

ICD-10 is divided into 21 chapters. Figure 1c shows the number of codes in each chapter in the
training set. The most represented chapters are Chapters IX (codes I00–I999, Diseases of the circula-
tory system), II (C00–D489, Neoplasms), XVIII (R00–R999, Symptoms, signs and abnormal clinical
and laboratory findings, not elsewhere classified), etc. Figure 1d shows the number of occurrences of
each age group for each chapter. A few chapters have a skewed distribution of age groups: P00-P969
(Certain conditions originating in the perinatal period: 99.8% for age group 0), Q00-Q999 (Congenital
malformations, deformations and chromosomal abnormalities, 55.4% for age group 0), and O00-O999
(Pregnancy, childbirth and the puerperium: 15.4% for age group 25, 46.3% for 30, 34.6% for 35).
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Field Contents
DocID Death certificate ID.
YearCoded Year the death certificate was processed by the human coder.
Gender gender of the deceased
Age Age at the time of death, rounded to the nearest five-year age group.
LocationOfDeath Location of death, according to the following categories: 1 = Home; 2 = Hospital;

3 = Private Clinic; 4 = Hopice, Retirement home; 5 = Public place; 6 = Other
Location.

LineID Line number within the death certificate. Note that if a statement is assigned multi-
ple ICD10 codes, it is repeated for each code, each time with the same LineID.

RawText Raw text entered in the death certificate.
IntType Type of time interval the patient had been suffering from coded cause, according to

the following categories: 1 = minutes; 2 = hours; 3 = days; 4 = months; 5 = years.
IntValue Length of time the patient had been suffering from coded cause; for example, if

the patient had been experiencing the cause for 6 months, IntValue should be 6 and
IntType should be 4.

CauseRank Rank of the ICD10 code assigned by the human coder. The rank (e.g., 2-1) is
composed of two items found in the original CausesCalculees file: the num-
ber of the line (NumLigne, e.g., 2) followed by the rank of the cause in that line
(RangCause, e.g., 1).

StandardText Dictionary entry or excerpt of the raw text that supports the selection of an ICD10
code.

ICD10 Gold standard ICD10 code.

Table 2: Fields in each row of the dataset. The last three fields are the output of the coding process.

4.2 Use in a shared task

The resulting dataset was used in an international shared task (Névéol et al., 2016). The certificates
corresponding to year 2006-2012 were used as a training set (N=65,844) while certificates corresponding
to the year 2013 were used as a test set (N=27,850). A small number of codes (N=244, about 10% of
the unique codes in the test set) in the test set were unseen in the training set. Five teams from three
countries submitted a total of seven runs for this task. Participating teams used methods relying either
on knowledge-base linking or statistical machine learning. Table 3 shows the performance of the official
runs, compared to a baseline run, which consisted in assigning codes to lines in the test set when an
exactly identical line was also found in the training set. When the line occurred multiple times in the
training set, the most frequent code was selected. It can be seen from the table that all runs submitted
by participants outperformed the baseline by at least 20 points in F-measure, thus demonstrating that the
state of the art in ICD10 coding is quite advanced.

We examined the relative difficulty of finding each expected statement code for the submitted systems:
for each death certificate statement and expected code for this statement, we counted the number of
systems which correctly found this code. Figure 2 shows the results.

We found out that among the 110767 distinct entries of the test dataset, 29100 were easy to find: all
systems found the correct answer; 25215 were fairly easy: all but one system found them; 20743 were
less easy (3 systems); 15933 were harder (2 systems); 10685 were rather hard: only one system found
them; and 7714 were hard: no system found them at all. The latter may help identify to difficult, hence
interesting problems, such as codes which need to refer to the broader context of the full death certificate,
beyond the current individual statement, to be assigned properly. They may also point at cases where
human coding might not be correct.
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Figure 1: Statistics on training set. (a) Distribution of statement length (after normalization, log-y scale).
(b) Most frequent codes. (c) Distribution of ICD-10 chapters. (d) Occurrences of age groups for each
chapter.

5 Discussion

With 93,694 death certificates totalling 276,103 statements and 377,677 ICD-10 code assignments (3,457
distinct codes), the size of the presented dataset is comparable to the largest so far on English (Perotte et
al., 2014) (22,815 discharge summaries and 215,826 ICD9 codes (5,030 distinct codes)), and is several
orders of magnitude above the other ICD coding datasets we identified (Pestian et al., 2007; Aramaki et
al., 2014; Aramaki et al., 2016).

An important difference though is that the present dataset consists of death certificate statements,
whereas the other cited datasets are made of clinical records such as discharge summaries. Death cer-
tificate statements are fairly short and focused on nosologic entities, whereas clinical records are usually
longer and mention a broader set of entities and events. Medical records exhibit a large range of sizes
however: for instance, texts in the MedNLPDoc dataset (Aramaki et al., 2016) contained on average 7.82
sentences.

A consequence of the difference between death certificate statements and for instance discharge sum-
maries is that death certificate statement coding might be more easily addressed as a text classification
task, whereas clinical record coding may need to rely on a step of entity detection and normalization
methods to identify more relevant pieces of information before ICD coding proper. This makes the
clinical record coding task more difficult and explains the lower F-measures obtained in that context.

Future plans include the extension of the present dataset with death certificates of more recent years
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Table 3: System performance for ICD10 coding on the death certificate test corpus. A * symbol indicates
statistically significant difference of a run with the runs ranked before and after it, according to a Student
test.

Team TP FP FN Precision Recall F-measure
TeamA-run2* 88497 11423 20321 0.886 0.813 0.848
TeamA-run1* 87404 10823 21414 0.890 0.803 0.844
TeamB-run2* 71319 9479 37499 0.882 0.655 0.752
TeamB-run1* 66954 15605 41864 0.811 0.615 0.700
TeamC-run1* 72192 31480 36626 0.696 0.663 0.680
TeamD-run1* 61874 19002 46984 0.765 0.569 0.652
TeamE-run1* 57256 40650 51562 0.585 0.526 0.554
Baseline-Zipf-Top1* 26688 23610 82130 0.531 0.245 0.336

Figure 2: Distribution of coding difficulty based on system results, based on the best run of each of the
five participating teams. Samples = number of systems which found the expected code for a statement.
Counts = number of (statement, code) pairs found by a given number of systems.

as they are processed by human coders. In an upcoming edition of the shared task, he dataset described
herein will be used as a training set while more recent data will be offered as a test set. This time-ordered
distribution of certificates in the datasets is guided by the practical use case of coding death certificates,
where historical data is available to coders who then need to work with current data. The goal of this
series of shared tasks is to engage the community in the development of ICD-10 coding methods that can
then be integrated to coders work flow as coding assistance and productivity enhancing tools.

We also plan to include additional languages in future datasets, as other WHO collaborating centers
express their interest in this enterprise. We hope that the development of a multilingual ICD-10 coding
dataset will foster the development of portable methods that can be easily adapted to several languages.

6 Conclusion

This paper presents a new dataset for ICD-10 coding based on death certificates in French. This is a large
dataset comprising death certificate statements in a language other than English as well as rich metadata
and professionally assigned gold-standard ICD10 codes. The preparation of the dataset involved the use
of complex alignment techniques to ensure the quality of the text-code pairings. It was shown to be a
suitable tool for evaluating the state of the art in ICD-10 coding in an international shared task. In future
work we plan to enhance the dataset with newer data for French as well as other languages in order to
foster global approaches to ICD10 coding.
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Abstract

The development of text mining techniques for biomedical research literature has received in-
creased attention in recent times. However, most of these techniques focus on prose, while
much important biomedical data reside in tables. In this paper, we present a corpus created
to serve as a gold standard for the development and evaluation of techniques for the automatic
extraction of information from biomedical tables. We describe the guidelines used for corpus
annotation and the manner in which they were developed. The high inter-annotator agree-
ment achieved on the corpus, and the generic nature of our annotation approach, suggest that
the developed guidelines can serve as a general framework for table annotation in biomed-
ical and other scientific domains. The annotated corpus and the guidelines are available at
http://www.csse.monash.edu.au/research/umnl/data/index.shtml.

1 Introduction
Biomedical science generates vast quantities of data, which reside in publicly available databases and
repositories of structured biomedical information, such as the Catalogue of Somatic Mutations in
Cancer (Bamford et al., 2004) and the International Society for Gastrointestinal Hereditary Tumours
Database (Plazzer et al., 2013). In order to be useful to researchers, data sources must contain precise
and reliable information, and therefore are typically manually curated by biomedical professionals (Cam-
pos et al., 2013), which leads to a “curation bottleneck”. As a result, automatic information extraction
from biomedical literature has become an important task.

The development of approaches for automatic and semi-automatic information extraction requires
annotated corpora for training and evaluating text mining systems. To date, biomedical text mining
has focused on extracting information from prose, yielding a wealth of diverse annotated corpora for
unstructured text. For example, gold and silver standard corpora have been developed for a variety of
tasks, such as named entity recognition (Doğan et al., 2014; Kim et al., 2003; Rebholz-Schuhmann et
al., 2010; Verspoor et al., 2013), entity linking (Bada et al., 2012; Doğan et al., 2014), and relation and
event extraction (Kim et al., 2003; Lee et al., 2016; Rosario and Hearst, 2004; Verspoor et al., 2013).
The source of these datasets also varies, e.g., corpora comprising research abstracts (Doğan et al., 2014;
Kim et al., 2003; Rebholz-Schuhmann et al., 2010) versus full-text journal articles (Bada et al., 2012;
Lee et al., 2016; Verspoor et al., 2013).

In addition to prose, biomedical literature frequently presents information in other forms, such as tables
and graphs. Several studies have shown that tables often contain important data and experimental results
that are not mentioned in the main text of publications (Jimeno Yepes and Verspoor, 2013; Wong et al.,
2009). At the same time, Jimeno Yepes and Verspoor (2013) have shown that text mining techniques
developed for prose tend to under-perform when applied to tables, because of the difference in how
information is presented in tables and in text. For example, the arrangement of cells, which is meaningful
for understanding table contents, is not taken into account by classical prose mining techniques. This
calls for the development of specialised approaches to information extraction from tables (Table IE) in

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/
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the biomedical literature. Advances in Table IE have been made in general and Web domains (Cafarella
et al., 2008; Hignette et al., 2009; Hurst, 2000; Jannach et al., 2009; Limaye et al., 2010; Mulwad et
al., 2013; Quercini and Reynaud, 2013; Van Assem et al., 2010; Venetis et al., 2011; Wang et al., 2012;
Yakout et al., 2012; Yin et al., 2011; Yosef et al., 2011). However, Table IE has received comparatively
little attention from the biomedical text mining community, which may be partly attributed to the limited
availability of suitable annotated corpora.

In this paper, we introduce a new corpus of tables obtained from full-text biomedical research papers
in two areas of genetics: human cancer and mouse — the tables in the human cancer papers cover topics
such as genetic aberrations and patient and tumour characteristics; and the tables in the mouse papers
include distributions of genotypes and phenotypes, and parameters and outcomes of genetic analyses.
This corpus was developed to support our work in Table IE, which focuses on relation extraction and
fine-grained named entity recognition. The tables in our corpus were supplemented with the following
annotations: (1) concepts in table cells; (2) classification of table cells into homogeneous cell groups;
(3) fine-grained cell types of each homogeneous cell group; and (4) relations between cell groups.

In Section 2, we motivate the design of the corpus, and describe the created corpus, the annotation
schema and the annotation guidelines. Section 3 details the corpus construction process. The character-
istics of the developed corpus are discussed in Section 4, followed by concluding remarks in Section 5.

2 Corpus Design
The design of our corpus and associated annotation schemas is closely aligned with the requirements of
our project on information extraction from tables in biomedical research papers. However, both the cor-
pus and the schemas are general enough to be of value to the broader biomedical text mining community.

The presented corpus is the gold standard for two information extraction tasks: (1) mapping of table
cells into fine-grained entity types, and (2) identification of relations between table cells. Both fine-
grained entity types and relations are drawn from a domain vocabulary. The design of the corpus was
strongly influenced by the characteristics of the biomedical tables we encountered, which have a variety
of structures, and tend to be more complex than the structures typically considered by researchers in
information extraction. For example, Limaye et al. (2010) and Mulwad et al. (2013), who worked on
a table information extraction task similar to ours, but for a Web domain, assumed that tables have
lattice-like structures, and that the objective of information extraction is to identify table column types
and relations between columns. However, even for simple lattice-like biomedical tables, we often found
that interesting relations could be built between columns and their headers, and between the headers
themselves. For instance, the relation associated with can be built between the header “Diet-induced
Obesity” and the data cells “S [8]”, “R [8]”, “S [41]”, “R [44]” and “S [18]” in the table in Figure 1b.

This motivated us to view each table as a collection of homogeneous groups of cells, rather than a
collection of columns. We assume that (1) all cells within each homogeneous group of cells share the
same fine-grained type, and (2) it is possible to define relations among cell groups that hold for each
corresponding pair of cells inside the groups. These assumptions motivated the creation of four types
of annotation: (1) cell group, which splits each table into sets of homogeneous cell groups; (2) cell

(a) Concept annotations. The annotated text spans are un-
derlined, concept annotations are pictured in boxes.

(b) Cell group, cell type and relation annotations. Cell
groups (CG1)–(CG4) are highlighted, cell types are pictured
in boxes, relations are represented as arrows.

Figure 1. Annotation example for a sample biomedical table from (Hoover-Plow et al., 2006)
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type, which represents the mapping of all cells in a homogeneous group into a single fine-grained named
entity label; (3) concept, which represents the mapping of utterances inside table cells (i.e., the syntactic
heads of the utterances expanded with their modifiers) into their semantic equivalents from a domain
vocabulary; and (4) relation, which represents relations between cell groups. Figure 1 illustrates a table
annotated with these types of information.

2.1 Annotation Schema
Cell Group Annotation. Each set of homogeneous cells in a table is assigned a unique identifier to
distinguish between different cell groups.
Concept, Cell Type and Relation Annotation. To generate fine-grained entity and relation labels, we
used the National Cancer Institute (NCI) subset (Sioutos et al., 2007) of the Unified Medical Language
System® (UMLS®) Metathesaurus (UMLS-NCI) and the UMLS Semantic Network (UMLS SN) as the
basis for our annotation schema (UMLS release 2015AA). To illustrate, using this annotation schema,
the text spans “Obesity” and “S” in Figure 1a are mapped to the UMLS-NCI concepts Obesity and
Predisposition respectively to create concept annotations. The single-cell group “Diet-induced Obesity”
is assigned the fine-grained cell type Obesity (Figure 1b) and the coarser cell type Disease or Syndrome
from the UMLS SN. Finally, the relation associated with from the UMLS SN is built between the cell
group “Diet-induced Obesity” and the cell group comprising the data cells “S [8]”, “R [8]”, “S [41]”, “R
[44]” and “S [18]” (Figure 1b). No relations from UMLS-NCI can be built between these cell groups.

We chose the UMLS because of the lexical and information extraction tools for unstructured text that
are distributed with the UMLS. We decided to use one subset of the UMLS Metathesaurus, because
(1) the reduced size of the annotation schema reduces the complexity of the annotation tasks; and (2) the
UMLS combines over 100 source vocabularies, and does not resolve conflicts among these vocabularies.

The UMLS-NCI subset was chosen because it is a large, comprehensive and heterogeneous controlled
vocabulary, which focuses on genetics. It comprises over 110,000 biomedical Concept Unique Identifiers
(CUIs) (e.g., C0028754 for Obesity and C0220898 for Predisposition), and more than one million rela-
tionships between concepts, drawn from 208 unique relation types (e.g., the generic hierarchical relations
parent-child, and many specialised relations, such as is grade of disease and gene mapped to disease),
thus providing a large set of fine-grained entity and relation labels. The concepts and relations from
UMLS-NCI were used as the primary set of labels for concept, cell-type and relation annotation. How-
ever, despite its extensive scope, the UMLS-NCI’s coverage of relations between the concepts in our
dataset was very sparse. Specifically, it yielded only 222 relations in total for the entire corpus. We
therefore expanded the set of relations in the UMLS-NCI schema with SRs from the UMLS SN.

The UMLS SN provides an alternative set of labels for cell types and relations that is smaller, and
hence of lower granularity, than the labels in UMLS-NCI. It consists of (1) a set of Semantic Types
(STs) that provide a broad subject categorisation of the concepts represented in the UMLS-NCI; and
(2) a set of Semantic Relations (SRs) that can hold between STs. The UMLS SN contains 127 STs (e.g.,
Organism Attribute for the concepts Age and Gender, Clinical Attribute for the concepts Tumour Stage
and Cellular Differentiation) and 54 SRs (e.g., isa, causes, consists of, interacts with, assesses effect of
and location of). Each concept in UMLS-NCI is assigned one or more STs;1 and SRs defined between
the STs in UMLS SN may or may not hold between particular concepts assigned to these STs. The
incorporation of UMLS SN into our schema enabled the creation of 1625 additional relation annotations.

3 Corpus Construction
The construction of the dataset involved the following activities, described below: (1) document selec-
tion, (2) development of annotation guidelines, (3) document pre-processing and choice of distribution
format, (4) annotation tool configuration and development, and (5) actual annotation process.

3.1 Document Selection
The following criteria were applied to select documents for our corpus: (1) the documents must represent
full-text biomedical research articles containing at least one table; (2) the corpus must be diverse with

1When a concept was linked to several STs, our annotation guidelines required the exclusion of STs that were irrelevant in
the context of the source table.
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respect to the structure of tables, and representative of their distribution in biomedical research publica-
tions, in order to eliminate selection bias based on table structure; (3) the documents must be available in
a structured format, preferably XML, to avoid the need to programmatically determine document and ta-
ble structure; and (4) the articles must be available under non-restrictive licensing terms to enable future
public release of our dataset. Finally, we preferred articles that were already included in other corpora
with existing concept, named entity or relation annotations of unstructured text, in order to facilitate the
future development of text mining tools for the joint analysis of free text and tabular content.

The application of these criteria resulted in the inclusion of papers from the following datasets:2

1. CRAFT Corpus (Bada et al., 2012). A subset of the CRAFT Corpus comprising 24 papers (50 tables)
was included in our dataset. The CRAFT dataset, which comprises articles drawn from the Open
Access subset of PubMed Central, is heterogeneous with respect to the content of the papers, and
covers topics related to mouse genetics. The CRAFT dataset contains a mapping of concepts that
appear in its free-text parts into seven open biomedical ontologies.

2. The Human Variome Project (HVP) Corpus (Verspoor et al., 2013). Nine out of ten papers (28 tables)
from the HVP Corpus were included in our dataset. This corpus covers topics related to the genetics of
human colon cancer. The free-text parts of the papers are annotated using a small annotation schema
comprising eleven named entity classes and thirteen binary relations between the entity classes.

3. An additional subset of ten papers (22 tables) was randomly sampled from Open Access subsets of
three datasets comprising papers about genomic variation (Jimeno Yepes and Verspoor, 2013; Wong
et al., 2009). These datasets did not contain annotations of unstructured text, but several of these
papers were previously used in (Shmanina et al., 2014).

3.2 Development of Annotation Guidelines
The table annotation guidelines were developed by the first author, who is a researcher in biomedical text
mining. The guidelines contain four parts, each corresponding to a single annotation task: (1) cell group,
(2) concept, (3) cell type, and (4) relation annotation.

The initial versions of the guidelines were developed through several iterative attempts to annotate ten
tables using the guidelines. After each annotation iteration, we tested whether the strict application of
the guidelines yielded consistent and objective annotations, and revised the guidelines as necessary. The
final version of the guidelines was 49 pages long.
Cell Group Annotation. Cells were collated into homogeneous cell groups according to two main
guidelines: (1) every header cell should form its own cell group, and (2) data cells should be merged into
maximum-size cell groups.
Concept Annotation. These annotations were created due to the potential subjectivity of assigning
a cell type to a cell group. For example, a cell group comprising the entries “C57/LJ”, “AKR/J” and
“NZB/BiNJ” can be potentially assigned UMLS-NCI concepts [C0026809] Mice, [C1518614] Organ-
ism Strain or [C2985604] Biologic Entity Group. By first annotating concepts for each table cell, it
was relatively straightforward to derive cell type annotations. For example, the mentions above can
be mapped into the concepts [C1511387] C57L/J Mouse, [C1515841] AKR/J Mouse and [C1513862]
NZB/BlNJ Mouse — all of which have a common parent [C0025927] Inbred Mouse Strains in the UMLS-
NCI concept hierarchy, which is then chosen to represent the cell type.

We based our concept annotation guidelines on those used in the CRAFT Corpus, which resulted
in high inter-annotator agreement for concept annotations of free text (Bada et al., 2012). The main
characteristics of these guidelines are: (1) a text is mapped into a concept from a vocabulary only if the
concept is an exact semantic match for the text; and (2) the rules for the identification of text segments are
syntax-based, and specify how to annotate nouns and noun phrases, adjectival and prepositional phrases,
nested and overlapping mentions, etc.

We slightly modified the original CRAFT guidelines to better suit our table annotation task. Firstly,
for each table cell, we annotated only the syntactic head of an utterance, expanded with as many of

2All the articles in our table dataset belong to the Open Access subset of PubMed Central.
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its modifiers as possible. For example, given the table entry “Fragment length”, UMLS-NCI contains
concepts that are semantically equivalent to “Fragment” and “length”, but there is no concept that is
semantically equivalent to “Fragment length”. Therefore, only “length”, which is the syntactic head of
the phrase, receives a concept annotation, and its modifier is excluded from the annotation. Secondly,
the text inside table cells tends to be more concise than unstructured text. For instance, in a column
listing colon cancer stages, such as “A”, “B” and “C”, “B” could stand for “stage B” or “Dukes B rectal
cancer”. We addressed this problem by stipulating that if it was not possible to annotate a concept using
the guidelines from (Bada et al., 2012), its mention should be mapped into the semantically closest
concept available in the vocabulary, e.g., “B” should be mapped to Dukes B rectal cancer.

Cell Type Annotation. The cell type is the most specific superclass of all the entries in a cell group. It
must first be obtained for entries with concept annotations (if they exist) using the UMLS-NCI concept
hierarchy, and possibly generalised to entries without concept annotations. However, if there are no
concept annotations for the cells in a cell group (54.22% of cell groups in our dataset), or the concept
annotations do not have an informative superclass in UMLS-NCI (e.g., when the most specific common
ancestor of concept annotations in UMLS-NCI is Conceptual Entity, NCI Administrative Concept or
NCI Thesaurus), the annotator must retrieve the most specific concept in UMLS-NCI that best describes
the content of the cells in the cell group. For example, a cell group that lists chromosomes (e.g., “1”,
“2”, “18”) is annotated with the concept [C0008633] Chromosome.

Relation Annotation. The relation annotation guidelines were developed under the assumption that
the relation annotation phase would follow the cell type annotation phase. This meant that all relation
hypotheses could be automatically pre-computed using the constraints from the UMLS Metathesaurus
and the UMLS SN, and suggested to the annotators, who in turn could accept or reject the suggestions.
Therefore, the relation annotation guidelines contain the following information: (1) definition and exam-
ples of what constitutes a valid relation between two cell groups; (2) a definition and use cases for the
isa relation; and (3) a list of cases where no relation should be built between two cell groups.

3.3 Choice of Corpus Distribution Formats and Pre-processing of the Documents
When choosing formats for the articles and annotation, we considered the following criteria: (1) they
must preserve information about table structure; (2) they should preferably preserve information about
the structure and formatting of the original paper; and (3) they should be flexible and expressive enough
to uniformly encode all the annotation types and schemas described above.

We considered various linguistic annotation formats, such as BRAT stand-off, BioC and XML/JSON
stand-off. However, neither BRAT nor BioC satisfy the first two criteria, as they convert tables into plain
text, and BRAT also stores documents in plain text. We therefore decided to distribute the articles in the
original XML format used by PubMed Central for archiving. Such XML versions of articles use The
Journal Archiving and Interchange Tag Set,3 which preserves the content, structure and format of the
articles and the tables within. The created annotations were stored in stand-off JSON format – one JSON
annotation file per paper.

To construct the dataset, we downloaded the XML versions of the papers from the FTP service of
PubMed Central.4 We then automatically assigned unique IDs to all the XML tags that contained actual
content (as opposed to article meta-data), such as paragraphs <p>, section titles <title>, article titles
<article-title>, table headers <th> and data cells <td>. The templates of the JSON annotation files
for each paper in the dataset were automatically generated by a script.

3.4 Annotation Process
The annotation process was conducted in three stages. First, cell groups were annotated, followed by the
annotation of concepts and cell types for each cell group; relations between cells were annotated last.

Cell group annotation was carried out by the first author for the 100 tables of the dataset (43 papers)
using a text editor with programming language support.

3http://dtd.nlm.nih.gov/archiving/
4ftp://ftp.ncbi.nlm.nih.gov/pub/pmc/
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Owing to budgetary constraints, the annotation for the second and third stages was done on a subset
of 83 tables in 39 papers. The annotation was performed by the first author and two specialist annotators
who hold post-graduate degrees in Biology and are familiar with the subject matter. The annotators re-
ceived extensive annotation guidelines for each stage, were instructed in the use of the annotation tools,
and were advised to consider information from the full text of the papers during the annotation process.
Thereafter, the annotators performed a double-blind annotation of a subset of five tables (two papers),
to assess the level of inter-annotator agreement, and to discover any problems related to the guidelines
and tools. The budgetary constraints also led us to perform a single-blind annotation for the remaining
78 tables (37 papers), which were distributed between the first author and the annotators: each partici-
pant annotated their assigned tables, which were then passed to another team member for verification.
Throughout the annotation process (130 hours per person) the first author and the annotators met after
every 6 to 8 hours of annotation, in order to measure the agreement between the original annotator of a
table and the “reviewing” team member; annotation disagreements were resolved by consensus, and the
annotation guidelines were amended where necessary, which happened rarely. At the end of each anno-
tation stage, the master version of the annotations for the entire corpus was verified by the first author for
consistency and compliance with the guidelines. Annotations were corrected where necessary.

Concept and cell-type annotations were carried out using a modified version of the BRAT annotation
tool. Prior to loading the corpus into the tool, the XML files were automatically mapped into plain text
(the input format of BRAT). Upon completion of the annotation, the files were mapped back into the
XML/JSON distribution format.5 We employed an in-house Web interface to integrate the NCI subset of
the UMLS Metathesaurus into our BRAT installation. The annotators used BRAT to select text spans for
annotation, and to query the Web interface for concepts related to these text spans. The Web interface
allowed annotators to browse the lists of returned concepts, and to look up information about these
concepts, such as name, STs, definition and position in the NCI concept hierarchy. If a suitable concept
was found, the annotation was sent back to BRAT.

Finally, relations between cells were annotated using an in-house online Relation Annotation Tool,
which suggested relation annotations drawn from UMLS-NCI and the UMLS Semantic Network on the
basis of existing cell type annotations.

4 Results and Discussion
4.1 Corpus and Annotation Statistics
83 tables from our corpus were manually annotated with cell groups, Concepts, Cell Types and Relations
(denoted CCTR-83); 17 additional tables were annotated with cell groups only. Table 1 details the
composition of the dataset. As seen in Table 1, the corpus is evenly split between two main topics, human
cancer and mouse genetics (43 and 40 tables in CCTR-83 respectively), offering interesting opportunities
for cross-domain training and testing. Statistics about the dimensions of the tables (average, median,
minimum and maximum per table, and total counts) appear in Table 2. Table 3 shows statistics of cell-
group, concept, cell-type and relation annotations, both for all annotations (left-hand side) and unique
annotations (right-hand side).

As seen in Table 3, the unique concept and cell-type annotations constitute a relatively high percentage
of their total counts (528 out of 3042 concepts, and 375 out of 2545 cell types based on UMLS CUIs).
However, the distributions of the unique annotations are skewed. For example, the top-three most fre-
quent cell-type annotations based on UMLS-NCI (Count, Percent and Biologic Entity Group Quantity)
together constitute 36% of the 2545 cell types based on UMLS CUIs, while 178 cell-type annotations
appear only once in the corpus. The most frequent cell-type annotation based on UMLS STs is Quan-
titative Concept, comprising 49.7% of the 2089 UMLS ST cell-type annotations; followed by the label
Organism Attribute, which constitutes only 6% of the annotations. Such a strong bias towards Quantita-
tive Concept may be explained by the predominantly quantitative nature of biomedical tables: 43.5% of
the cell groups in our corpus contain numbers and numerical expressions, while 25.8% and 23.7% of the
cell groups contain free text (terms and phrases) and abbreviations respectively; the remaining 7% of the

5To our knowledge, currently there is no annotation tool that natively supports table annotation. Due to our budgetary
constraints, we were unable to develop such an annotation tool ourselves, and had to resort to partial suboptimal solutions.
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Source Dataset Domain Full dataset CCTR-83
Papers Tables Papers Tables

CRAFT Mouse genetics 24 50 22 40
HVP Corpus Human colorectal cancer genetics 9 28 8 24
Jimeno Yepes and Verspoor (2013) Human cancer genetics 8 17 8 17
Wong et al. (2009) Human cancer genetics 2 5 1 2

Table 1. Article and table counts and domains

Full dataset CCTR-83
Table Element Total # # per table Total # # per table

Avg. Med. Min. Max. Avg. Med. Min. Max.
Cells 13061 130.61 78 12 1300 9753 117.51 64 12 1300
Rows 1929 19.29 13 3 100 1500 18.07 10 3 100
Columns 631 6.31 5 2 16 500 6.02 5 2 13

Table 2. Counts of table cells, rows and columns in the dataset

All annotations Unique annotations
Annotation Type Total # # per table Total # # per table

Avg. Med. Min. Max. Avg. Med. Min. Max.
Cell Group 2443 24.43 15.0 4 163 – – – – –

CCTR-83 2134 25.71 15.0 4 163 – – – – –
Concept 3042 36.65 23 1 296 528 13.83 11 1 37
Cell Type

UMLS CUI 2545 30.66 20 4 148 375 11.28 10 3 25
UMLS ST 2089 25.17 16 4 122 52 6.75 6 2 15

Relation
All labels 1847 22.52 9 1 113 31 3.22 3 1 12
UMLS MetaTh. 222 2.71 0 0 32 4 0.61 0 0 2
UMLS SN 1625 19.82 9 1 109 27 2.61 2 1 10

Table 3. Annotation counts (including ambiguous annotations)

cell groups have mixed content (e.g., “MSI-H (n = 19)”). The breakdown for cells is 52.4% numerical,
14% text, 26.7% abbreviations and 6.9% mixed content.

Another noteworthy observation is the relatively modest corpus coverage provided by our concept and
relation annotations. Concept annotations were assigned to only 30.47% of the non-empty table cells,
which corresponds to 45.78% of the cell groups. This may be explained by (1) the quantitative nature
of many biomedical tables combined with the difficulty of mapping numbers to concepts; and (2) the
insufficient coverage of table entries by UMLS-NCI for non-numerical concepts such as specific muta-
tions (e.g., “c.1886 A > G”), base sequences (e.g., “5’-dT20-ACTGGC. . .GAAAAC-3’”) and patient
IDs (e.g., “IC628”). With regard to relations, even after we expanded the relation annotation schema
with labels from UMLS SN, we annotated only 1847 relations between the available 2134 cell groups in
the CCTR-83 dataset, yielding a small set of only 31 unique labels, and a median of nine relations per
15-cell-group table (column 4 in Table 3). The distribution of the relation labels in the corpus is even
more skewed than the distribution of the concept and cell-type labels, with about 75% of the relations
being quite general: the isa relation from UMLS SN constitutes 51% of the relation labels, followed
by the labels associated with from UMLS SN (11.3%), and isa and inverse isa from UMLS-NCI (each
6%). This imbalance may be attributed to the discrepancy between the information in our tables and the
relations available in UMLS, which may be mitigated by employing a different annotation schema.
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Annotation Kappa values Kappa values (per paper)
(entire corpus) Avg. Med. Min. Max.

Concept 0.88 0.90 0.96 0.13 1.0
Cell Type

UMLS CUI 0.87 0.82 0.92 0.15 1.0
UMLS ST 0.87 0.86 0.94 0.23 1.0

Relation 0.82 0.87 0.91 0.49 1.0

Table 4. Inter-annotator agreement for concept, cell-type and relation annotation

4.2 Inter-Annotator Agreement
To enable the prompt resolution of problems in the annotation guidelines, and to map the progression
of inter-annotator agreement (IAA) over time, per-paper IAA was measured at every conflict-resolution
meeting throughout the annotation process. We used Cohen’s Kappa statistic (Cohen, 1960) to evaluate
IAA for all types of annotations.

Two concept annotations were deemed to match if their UMLS CUIs and text spans were equal; two
UMLS CUI cell-type annotations matched if their CUIs were equal, and similarly, two UMLS ST cell-
type annotations matched if their STs were equal; and two relation annotations were deemed to match
if they had the same relation label, direction and arguments. It is worth noting that every cell group
received at least one cell-type label; if there was more than one label (ambiguous annotation), each label
was considered separately when computing IAA. In contrast, some table-entries did not have concept
annotations, and similarly, some pairs of cell groups did not have relation annotations. In order to handle
these cases, as well as ambiguous annotations, we added the label No Annotation, so that IAA could be
computed between absent and present labels.

IAAs computed over the entire corpus and per-paper IAAs appear in Table 4. For all annotation types,
the average and median IAA values exceeded 0.82 and 0.91 respectively. This shows that, for most
papers in our dataset, the application of our annotation guidelines yielded highly consistent annotations.
However, the low minimum IAA values indicate that a few papers posed a significant challenge. This
was variously due to (1) ambiguities in the annotation guidelines, which were fixed after discussing the
relevant part of the guidelines;6 (2) erroneous annotations caused by lack of clarity and ambiguity of
some concepts and relations in the UMLS; and (3) absence of a concept annotation from which a cell-
type annotation could be derived — these cases were less consistent across annotators than those where
concept annotations were available.

5 Conclusion
We have offered a corpus comprising 100 tables sourced from 43 biomedical journal articles on the topic
of genetics. All the tables in the corpus were manually annotated with information about homogeneous
cell groups, and a subset of 83 tables was annotated with a total of more than 3000 concepts, 2000 cell
types and 1800 relations, drawn from the Unified Medical Language System®. Our annotation schema
was designed to accurately capture fine-grained semantic classes of table entries and the relationships
between them. This annotation schema, combined with the stringent table annotation guidelines we de-
veloped, enabled a high average inter-annotator agreement of over 0.82 for all annotation types. This
makes both the annotated corpus and the guidelines used to create it a valuable resource for the develop-
ment and evaluation of tools for information extraction from biomedical tables. Furthermore, although
our guidelines were developed for a particular biomedical corpus, they may be adapted to tables from
other scientific fields, thus providing a general framework for table annotation.
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Abstract

In some plain text documents, end-of-line marks may or may not mark the boundary of a text
unit (e.g., of a paragraph). This vexing problem is likely to impact subsequent natural language
processing components, but is seldom addressed in the literature. We propose a method which
uses no manual annotation to classify whether end-of-lines must actually be seen as simple spaces
(soft line breaks) or as true text unit boundaries. This method, which includes self-training and
co-training steps based on token and line length features, achieves 0.943 F-measure on a corpus
of short e-books with controlled format, F=0.904 on a random sample of 24 clinical texts with
soft line breaks, and F=0.898 on a larger set of mixed clinical texts which may or may not contain
soft line breaks, a fairly high value for a method with no manual annotation.

1 Introduction

Text segmentation is a low-level task which contributes to the higher-level information extraction tasks
performed by natural language processing; for instance, Smith (2011, p. 5) states that “If we build a
language model on poorly segmented text, for instance, its predictive performance will suffer.” Specifi-
cally, splitting a text into sentences, despite its looking like a largely solved problem, continues to raise
nagging issues for some ill-formatted texts such as clinical texts (Miller et al., 2015). Most methods and
software performing higher-level tasks (e.g., cTAKES (Savova et al., 2010) and others), such as part-of-
speech tagging, syntactic parsing, entity and relation extraction, depend on low-level processes such as
sentence segmentation. This paper focuses on a little-addressed, basic component in the NLP pipeline,
which impacts sentence splitting and hence subsequent processes. This component may be seen as the
determination of paragraph boundaries, or the classification of end-of-lines.

The problem can be described as follows. In some plain text documents, such as e-mail messages,
text fields in databases, or PDF documents converted into text, the line break or end-of-line mark may
or not play the role of a boundary marker for a text unit (a title, a paragraph, etc.) and hence may or
not mark a sentence boundary. In some text documents the end-of-line mark is always a paragraph
(or title) boundary, and no problem occurs: subsequent processes such as sentence splitting can be run
within each paragraph. But in some text documents, an end-of-line mark may occur in the midst of
a paragraph, typically to “wrap” paragraphs that exceed some set length: depending on the origin of
the text and on input and formatting conditions, this may have been caused by an automatic process
(‘hard’ line wrapping in some text editors) or by manual intervention of the typist. Often enough these
originating conditions are not precisely known at the time these documents are submitted to natural
language processing. Preprocessing must then address this situation and include some solution to the
classification of end-of-line marks (henceforth noted <EOL>), i.e., to determine whether an <EOL> must
be considered as an actual text unit boundary (henceforth <TUB>) or should be considered as standing
for a simple space (<SP>), meaning that this line has incurred “paragraph wrapping” and should be
considered together with (e.g., pasted to) the next line to form a larger text unit.

This work is licenced under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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This situation is mentioned by some authors, e.g., by Miller et al. (2015) for the MIMIC II clin-
ical texts, or by Zweigenbaum & Grouin (2014) for the i2b2/UTHealth 2014 NLP challenge docu-
ments (Stubbs et al., 2015). It is probably present in a much larger set of text collections, hence is
likely to create some problems for many systems and teams working with these documents. While the
impact of these problems still needs to be assessed precisely (see, e.g., (Zweigenbaum and Grouin, 2014)
for limited examples), and may depend on the type of processing that follows, the number of situations
where they are likely to occur warrants an investigation into general methods to address the task of
classifying <EOL> marks.

End-of-line classification is therefore the topic of the present paper. We address it as a problem in
itself, independently of its impact on subsequent tasks, and thus perform intrinsic evaluations of its
performance; extrinsic evaluations, for instance through its impact on sentence splitting accuracy, are
left for future work. Because <EOL> classification, although often needed, is only a small piece of
preprocessing in a larger natural language processing pipeline whose adaptation to a given clinical task
generally already requires some human annotation effort, a supervised method requiring more human
annotation is not desirable. We therefore endeavored to investigate methods which require no human
annotation to perform this task.

2 Related work

The problem of <EOL> classification seems to be little explored in natural language processing (NLP),
and the section that Smith (2011) dedicates to segmentation does not mention it. Some NLP research
(Sporleder and Lapata, 2006; Filippova and Strube, 2006) has addressed paragraph segmentation from a
quite different perspective: given a text split into sentences, determine paragraph boundaries. However,
they started from texts where sentence boundaries were given, and the input texts were assumed to be
“clean” from the point of view of <EOL> marks (i.e., either sentence boundaries are deterministically
marked by <EOL>s or by XML markup). A few papers on clinical NLP have recently addressed it and
proposed methods based upon heuristics and knowledge about the usual format of the texts (Zweigen-
baum and Grouin, 2014) or supervised machine learning (Miller et al., 2015).

Some document analysis research considers the notion of paragraph when converting a document into
text by optical character recognition (Radakovic et al., 2013) or to reformat a text obtained from a PDF
file (Fang et al., 2011). To perform these tasks they need to decide whether or not an <EOL> marks
a paragraph boundary: this problem is similar to the one we address here. Radakovic et al. (2013)
check whether a line starts with certain symbols (e.g., bullet points) or character case (uppercase or
lowercase letters), ends with a number, together with other clues related to the number of words in the
line, to its left and right indent size, to character font size, line coordinates in the page, distance between
lines, and the presence of images. Fang et al. (2011) use information about the vertical and horizontal
positioning of characters in the page, which are not available in plain text, together with paragraph
indenting information. In contrast to (Radakovic et al., 2013), they do not use clues obtained from text
content. To determine the reading order in a set of text objects (lines, paragraphs, etc.), Aiello et al.
(2002) combine information on the spatial positioning of these objects and on the probability that the
part-of-speech tag of the first word in the next object follows those of the last two words in the current
object, according to a language model. This is the only reference we found in document analysis where
a language model is used to help decide whether or not two lines must follow each other (which would
mean, for us, be merged within the same paragraph).

We address a situation where we are given plain text but no information on the original layout of the
page, such as spatial positioning of lines or characters, font size, actual left or right indent size of each
line in its displayed form, which play a key role in document analysis methods. Text content, in contrast,
is readily exploitable: language models based on the distribution of word features at the beginning and
end of lines, as well as the distribution of line lengths in documents, can be used as cues.

Additionally, we aim to find methods which involve no human annotation. We shall see in the follow-
ing section that a method consists in framing the situation as a supervised learning problem where each
whitespace in a text (including spaces and <EOL>s) must be classified as a simple space (<SP>) or a text
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Corpus (Gutenberg identifier) Language Documents Paragraphs Lines (wn) Words
Around the World in 80 Days (103) en 37 1679 6106 62,752
Around the World in 80 Days (2154) en 37 1734 6887 65,510
Le Tour du Monde en 80 Jours (800) fr 37 2053 6962 66,878
De la terre à la lune (38674) fr 28 1449 5609 53,724
Da terra à lua (28341) pt 28 1503 5869 57,487
Reis naar de Maan in 28 dagen. . . (27309) du 47 1905 6915 65,671
Around the World in 80 Days (103+2154) en 74 3413 12,993 128,262
Le Tour (800) + De la terre (38674) fr 65 3502 12,571 120,602
i2b2/UTHealth 2014 training corpus en 790 — 73,590 488,904
test subset en 64 3554 5619 38,167

Table 1: Corpora. Lines are measured on the wn version of the documents, paragraphs on the ln version.

unit boundary (<TUB>), where part of the training examples (spaces) are positive and the rest (<EOL>)
are unannotated. Nigam et al. (2000) show how text classification obtained by a Naive Bayes classifier
can be improved by exploiting unannotated data on top of annotated data. This is how they train a classi-
fier on texts whose class is known, then use it in a self-training fashion to compute the probabilities of all
classes for each unannotated text. The additional information thus obtained allows them to re-train the
classifier then to iterate until convergence, according to the expectation-maximization algorithm (EM).
The method we propose below to train an <EOL> classifier is related to this principle, but does not need
an initial human annotation. Elkan and Noto (2008) propose a non-iterative method for this purpose,
but it assumes that the annotated examples are drawn randomly from the positive examples, which is
not the case in our situation. Yet another path would consist in considering the <EOL> annotations as
ambiguous (both <SP> and <TUB>) and in applying the methods of (Wisniewski et al., 2014). However,
this would create a systematic dependency between these two classes in these annotations, a situation in
which learning is not guaranteed (Bordes et al., 2010).

3 Material and methods

3.1 Corpora

We target here clinical texts with a complex mixture of formats. However, we also test our methods
on more controlled corpora which we have in several formats. The controlled-format corpora are made
of six plain text e-books by Jules Verne in four languages from the Gutenberg project (http://www.
gutenberg.net), which we split into chapters. Each of their paragraphs is split into multiple lines
(wrapped) if it exceeds a given threshold, and is bounded by blank lines. We consider each of these e-
books, and the combination of the two English e-books and that of the two French e-books (see Table 1).

We produced versions of the e-books in which two properties of the paragraphs were set. First, a
paragraph can be wrapped (w: broken into separate lines, the original format in this case) or typeset as
one long line (l). Second, paragraph boundaries can be marked with a blank line (b) or not (n). This
results in four combined formats. Among these, wn is the most difficult format to handle: it is the only
one which has no simple paragraph delimitation. This is the one our system is meant to address. In wb,
apart from obvious blank line separators, all end of lines should be classified as <SP>s: it is used to test
whether our system produces false negatives. Conversely, ln has no obvious separators but no wrapped
line at all: it is used to test whether our system produces false positives. Finally, lb has no wrapped line
at all, and blank line separators everywhere, so our system handles it perfectly without classification.

The clinical text corpus is the i2b2/UTHealth 2014 NLP challenge (Stubbs et al., 2015) training corpus,
which contains 790 records. These records keep the layout of a printed document and can include fixed-
width columns, blank lines between text lines to reproduce double spacing, approximate positioning
of elements on the page (tabulation, multiple spaces), table column separators represented by a special
character (circumflex accent, pipe), etc. Some of the files have wrapped paragraphs, other do not.

We first preprocessed these texts to handle what is probably double line-spacing documents. To focus
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on the paragraph wrapping problem, we handled double line-spacing deterministically by removing every
other blank line in texts whose ratio of contiguous pairs of non-blank lines over the number of blank lines
is below an empirical ceiling of 10%.

For evaluation during the development and test of our present <EOL> classifier, we manually annotated
<EOL>s in a randomly sampled 64-document subset of the i2b2 training corpus. After initial annotation
of another, smaller sample by two annotators and observation of a near-perfect inter-annotator agreement,
we decided that this subset could be annotated by only one annotator. Note that since our method uses no
manual annotation, the human annotations in these documents were not used to train the system, only to
evaluate it. Specifically, using a plain text editor (emacs), we marked each <EOL> with a code as follows:

• 0 (no paragraph wrapping) means this <EOL> is a <TUB>.

• 1 (paragraph wrapping) means this <EOL> should be considered as an <SP>.

• 2 means there is no ambiguity in the present <EOL> (this is further explained below): it must be
considered as a <TUB>, but no problem needs to be solved nor evaluated here.

3.2 Task modeling

We decompose the overall task of end-of-line classification into two parts:

1. Determine whether a document is subject to paragraph folding, i.e., whether it is liable to contain at
least one <EOL> which should be categorized as an <SP>.

2. In a document which is subject to paragraph folding, classify <EOL>s as <SP> or <TUB>.

We focus here on the second part of the task, <EOL> classification proper, assuming that the first (easier)
part, document classification, is solved, for instance in a supervised way. We also present a direction to
address document classification with no human annotation, which we integrate into our general method.

3.3 Determination of documents with folded paragraphs

A text in which paragraphs are folded is likely to have a number of lines with similar lengths, which
should thus be close to the mean line length in this text. Conversely, a text in which some lines are much
longer than most other lines is probably not subject to paragraph folding, otherwise these longer lines
would have been folded. The distribution of line lengths in a text, compared to their mean length, should
therefore be a useful clue to determine whether a text is likely to have incurred paragraph folding.

Zweigenbaum and Grouin (2014) used the coefficient of variation of line lengths in a document (more
detail is given below in the description of individual features). They set a threshold in a supervised
way, over which a document was considered not to incur paragraph folding: documents with a larger
variation in line lengths have a higher coefficient of variation, whereas documents with many lines of
similar length have a smaller coefficient of variation. We use the same feature in the present work, but as
a discretized value and with no manual annotation.

3.4 Blank line handling

We first solve an easy case which requires no further classification effort: a blank line, i.e., a line which is
empty or only contains whitespace characters, such as whitespace and tabulations, is always considered
as marking a paragraph boundary (as explained above, double line-spacing is removed if present). There
is therefore no need for the classifier to learn to detect these lines: the <EOL> which ends a blank line,
as well as the <EOL> of the preceding line, are both unambiguous. They are tagged with the “2” class
in the training corpus and are excluded from the evaluation. These two <EOL>s remain useful however
to train the classifier, because they participate in the estimation of the probabilities of occurrence of the
preceding or following tokens given a <TUB> class.
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3.5 End-of-line classification by self-training on noisy data and and co-training

The input to this task is made of tokenized texts, where punctuation has been separated from words.
These texts contain whitespace spans which can play the role of simple spaces (<SP>) or text unit bound-
aries (<TUB>). We define the task as deciding, for each <EOL>, whether it should be considered as an
<SP> (i.e., this is an <EOL> which is the result of paragraph folding and should thus be converted to a
space) or a <TUB> (i.e., this is a true text unit boundary).

We address this task through a first subtask which consists in learning, for each whitespace span in
a document (whether space or <EOL>), whether it should be classified as an <SP> or an <TUB>. The
peculiarities of the training data and processes in this learning task are the following:

• <EOL>s are ambiguous: we do not know at this stage whether they are true <TUB>’s or actually
<SP>’s. This results in a partial annotation of the corpus: spaces are unambiguously tagged as <SP>,
but we do not know the actual tags for <EOL>s. We convert this situation into a noisy annotation by
tagging every <EOL> with <TUB>: these tags are sometimes correct and sometimes incorrect.

• Because only <EOL> marks are ambiguous in our overall task, we are only interested in applying
our classifier to them, not to spaces. Training is performed on these noisy annotations, using token-
based features as described below, and learns a model MA for tagging <EOL>s.

• ModelMA is applied to the <EOL>s in the training corpus itself, resulting in (noisily) disambiguated
<EOL> tags (self-training).

• A second modelMB is learned on these new annotations, using different features (co-training). MB

is applied to the <EOL>s in the training corpus, resulting in modified <EOL> tags.

• Alternatively, a combined model MA·B is built and applied to the <EOL>s in the training corpus.

We thus obtain, by exploiting only the naturally available information, three models and their associated
<EOL> annotations. The process could be iterated, but we leave that for future work.

3.6 Features

We characterize a whitespace position si (space or <EOL>) between two words in a document d with the
four discrete features below:

A1 Left token: as in (Radakovic et al., 2013), we assume some tokens or punctuations are more often
found at the end of a paragraph, while others are less often found there.

A2 Right token ; similarly, we expect that some tokens or punctuations are often found at the start of a
paragraph, or on the contrary are seldom found in this position.

A3 Typographic form of the left token: all uppercase, capitalized, is a number, only contains punc-
tuation (possibly differentiating between strong punctuations, i.e., period, exclamation mark and
question mark, and the other punctuations), is a number followed by at least one punctuation and
possibly preceded by one punctuation (typical form of bullet points). We assume that some ty-
pographic patterns, such as uppercase, are more frequent at the beginning of paragraphs, whereas
others, such as strong punctuations, are more frequent at the end of paragraphs.

A4 Typographic form of the right token.

These four features define a bigram language model, where a bigram is made of a whitespace position
and an adjacent token or typographic form. Extension to longer n-grams is left for future work.

Additionally, we characterize a position si at the end of a line by the following two features:
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B1 l, length in characters of the line that ends with the space si, normalized (centered and reduced) as
lnorm in document d (Equation 1a). We assume that a short line (or a very long line) is unlikely to
need to be “pasted back” to the following line.

(a) lnorm =
l − µd

σd
, µd =

1
N

∑
l∈d

l, σd =
√
E[(l − µd)2], (b) cvd =

σd

µd
(1)

µd is the mean line length in document d and σd is the standard deviation of line lengths in d.

B2 cvd, coefficient of variation of line length l in document d (Equation 1b). This feature is common
to all positions in document d. We assume that a document whose paragraphs are folded is likely to
contain a number of lines of comparable lengths (probably close to the width of the input screen or
original printable page). This should result in a low standard deviation of line length compared to
the mean line length. The coefficient of variation cv is defined as their ratio (Equation 1b).

The latter two features l and cvd have numeric values, we discretize them into ten bins between their
minimal and maximal values as observed in the training corpus. If a test document has out-of-range
values, they are discretized into the closest bin.

3.7 Naive Bayes classification
We use a very simple classifier, the Naive Bayes classifier, which is well-known for its robustness and
speed. The probability of having a given class cj ∈ C (here, C = {<TUB>, <SP>}) for a certain
whitespace s, characterized by features (e.g., ai ∈ A), is (2a):

(a) P (cj |s) =
P (cj)P (s|cj)

P (s)
, (b) P (s|cj) =

|A|∏
i=1

P (ai|cj) (2)

The Naive Bayes classifier hypothesizes the independence of the observed features for a given class. This
leads to (2b). At inference time, the selected class is the one with the maximum a posteriori probability;
since in (2a) P (s) does not vary with the class cj , we obtain (3a):

(a) arg maxj P (cj |si) = arg maxj P (cj)
|A|∏
i=1

P (ai|cj), (b) P̂ (ai|cj) ≈ occ(ai, cj) + 1
occ(cj) + |C| (3)

Concretely, we compute the likelihood ratio of c<SP> over c<TUB>, i.e., P (c<SP>|si)
P (c<TUB>|si)

and decide for an
<SP> (tag 1) if greater than zero, <TUB> (tag 0) otherwise.

Equation (3a) relies on an estimation of P (cj) and P (ai) in a training corpus. This is classically
performed according to a maximum likelihood principle: P̂ (cj) ≈ occ(cj)

occ(s) and P̂ (ai|cj) ≈ occ(ai,cj)
occ(cj)

where occ(s) is the total number of spaces in the corpus, occ(cj) is the number of spaces with class cj ,
and occ(ai, cj) is the number of spaces with feature ai and class cj . A commonly encountered problem is
the presence of test examples whose feature values have no occurrence in the training corpus. We address
it with a widespread method, Laplace smoothing (Manning et al., 2008) (see Equation 3b above).

Training for model MA is performed on all spaces with language model features A1 . . . A4, whereas
training for modelMB is performed only on <EOL>s with length featuresB1B2. A study of the scores of
the two models on the development corpus shows that their distributions have similar dynamics, thus that
a combination of the two can be considered. We create this combination by multiplying the likelihood
ratios of MA and MB for the same space, hence its name MA·B . A more sophisticated combination
might improve performance, but would require an annotated corpus to optimize its parameters.

4 Results

Since we use no human annotation, we trained our model on the whole set of texts in each sub-corpus and
applied it to the same sub-corpus: each e-book of Section 3.1, and the 790 texts in the i2b2 corpus. For
the i2b2 corpus, we only have gold annotations for a 64-text subset, on which performance is measured.
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Corpus Model Acc P R F Acc P R F
six individual e-books two merged e-books

e-books: wb wrap-none 0 — 0 0 0 — 0 0
e-books: wb wrap-all 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
e-books: wb MA 0.733 1.000 0.733 0.846 0.812 1.000 0.812 0.895
e-books: wb MB 0.949 1.000 0.949 0.973 0.992 1.000 0.992 0.996
e-books: wb MA·B 0.833 1.000 0.833 0.908 0.902 1.000 0.902 0.948
e-books: ln wrap-none 1.000 — — — 1.000 — — —
e-books: ln wrap-all 0 0 — 0 0 0 — 0
e-books: ln MA 0.996 — — — 0.995 — — —
e-books: ln MB 0.833 — — — 1.000 — — —
e-books: ln MA·B 0.999 — — — 0.999 — — —
e-books: wn wrap-none 0.262 — 0 0 0.264 — 0 0
e-books: wn wrap-all 0.738 0.738 1.000 0.849 0.736 0.736 1.000 0.848
e-books: wn MA 0.802 0.998 0.733 0.845 0.861 0.998 0.812 0.895
e-books: wn MB 0.917 0.939 0.949 0.943 0.932 0.922 0.992 0.955
e-books: wn MA·B 0.875 0.998 0.833 0.907 0.924 0.994 0.902 0.945

+wrap all
i2b2 wrap-none 0.459 — 0.000 0.000 0.804 — 0.000 0.000
i2b2 wrap-all 0.541 0.541 1.000 0.702 0.196 0.196 1.000 0.328
i2b2 MA 0.900 0.890 0.930 0.910 0.846 0.565 0.930 0.703
i2b2 MB 0.897 0.905 0.904 0.904 0.960 0.893 0.904 0.898
i2b2 MA·B 0.919 0.916 0.937 0.926 0.903 0.685 0.937 0.791

Table 2: Experiments on multi-format e-books and on the i2b2 evaluation corpus (+wrap = only files
with paragraph wrapping); Acc = accuracy, P = precision, R = recall, F = F-measure. Note that e-books:
ln has no wrapped paragraph hence no positive space hence no true positive, therefore it has P=R=F=0.

We evaluate results by measuring the classical accuracy, precision, recall, and F-measure, for a task
whose goal is to detect whether an <EOL> should be considered a <SP>. A true positive (TP) corresponds
to an <EOL> which is correctly classified as a <SP>. A false positive (FP) is an <EOL> incorrectly
classified as an <SP>. A false negative (FN) occurs when an <EOL> is incorrectly classified as a <TUB>.
Accuracy, precision, recall, and F-measure stem from these definitions.

We provide two simple baselines: wrap-none considers that every <EOL> is a <TUB>, and wrap-all
considers that every <EOL> is a <SP>. They enable us to show the ’lift’ brought by MA.

Table 2 shows evaluation results for two series of experiments: (i) on the e-book corpus, with wrapped
paragraphs separated by blank lines (wb), long-line paragraphs with no separating blank line (ln), and
wrapped paragraphs with no separating blank line (wn); and (ii) on the i2b2 corpus, on paragraph-folded
documents (+wrap) then on the whole Test corpus (all).

5 Discussion

The first baseline method wrap-none always has null recall and F-measure by definition. It obtains
perfect accuracy when no paragraph is wrapped (ebooks:ln), and sets a baseline with a fair accuracy on
the mixed-type i2b2:all corpus. The second baseline method wrap-all has perfect or null performance
on the artificial ebooks:wb and ebooks:ln corpora respectively. It sets a useful baseline for the highly
wrapped ebooks:wn and i2b2+wrap corpora. However, for the more difficult, mixed i2b2 all corpus, it
performs poorly. MA and subsequent models outperform these baselines in F-measure and accuracy on
the highly wrapped ebooks:wn corpus (except the F-measure of MA on ebooks:wn, which is only on par
with that of wrap-all and on the i2b2 corpus).

On e-books, the best recall in condition wb is obtained by model MB . Its accuracy looks lower in
condition ln, but this is due to its complete failure on one document (Le tour du monde (800)), which
warrants further exploration; on all other documents it creates no false positive and hence outperforms the
other two models. In condition wn, the more difficult situation,MB obtains the best recall and F-measure,
whereasMA andMA·B obtain near-perfect precision. The merged documents (103+2154 and 800+3874,
right pane of Table 2) obtain better results than each individual document they contain. Globally, recall
increases by 5–8pt while precision remains constant or slightly decreased, resulting in a 1–5pt increase
in F-measure. Specifically, on the merged French documents, the failure of MB which occurred on one
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of them disappears. Training size is thus an important factor. Not shown for reasons of space: apart
from one exception mentioned above, performance was similar on the four languages (English, French,
Portuguese and Dutch). The format of the texts and the consistency of their vocabulary are probably more
important than the language, and this set of languages does not exhibit a wide morphological variation.
In summary, in each of these tests on one type of text with very regular wrapped text, the length-based
model MB , trained on the output of MA, performs best.

Our evaluation on i2b2 documents is unfortunately not directly comparable to the F=0.965 of
(Zweigenbaum and Grouin, 2014): they used a different subset of the i2b2 corpus which is not pub-
lic. Besides, they implemented an extensive set of heuristics, whereas our method relies on no heuristic
and aims at being more generic. Miller et al. (2015) used human annotations on a different corpus, and
their results are thus not directly comparable to the present ones either.

The documents of the i2b2 evaluation corpus which incur paragraph wrapping display a more complex
distribution of w/l and b/n formats, even within one document. The three models perform well, with a
small advantage to the combined model MA·B . On the full i2b2 evaluation corpus, the length-based
model MB brings a substantive improvement over MA and fares the best in terms of precision and F-
measure. We hypothesize that this is due to the ability of its coefficient of variation feature to detect texts
that are not likely to incur paragraph wrapping, thereby integrating a partial solution to this document
classification subtask. In this setting the combined model MA·B strongly improves the precision and
F-measure of model MA: the detection of non-paragraph-wrapping texts by the length-based features
removes a large number of false positives and slightly improves recall at the same time.

In summary, if one wants robustness on both types of texts with a balanced precision, recall, and F-
measure, the length-based model MB , trained with annotations obtained from the token-based model
MA, is the most stable choice, at or above 0.90 for all these measures. Its features help the language-
model model MA reach a better precision and F-measure for the documents which are not subject to
paragraph wrapping. However, if one looks for high-recall detection of wrapped paragraphs, model MA

has a higher recall of 0.93, and its combination with MB was the most successful on wrapped texts.
Therefore, depending on the needs of the natural language processing task that will be run on these
texts, the choice of the model allows to favor precision (MB) or recall (MA or, better, MA·B). Besides,
models (MA or, better, MA·B) show their true performance on texts with paragraph wrapping. Finally,
the combination MA·B , albeit efficient on i2b2 wrapped texts, was not sufficient to block false positives
on texts with no wrapped paragraphs. Other strategies might be more successful, such as using MB in
a first step as a filter to detect and exclude non-wrapped documents, hence restricting the application of
MA or MAB to an automatically detected +wrap subset.

A most interesting perspective is the study of the interaction of <EOL> classification with sentence
segmentation. On the one hand, as suggested by one of the reviewers, sentence segmentation might be
used as a baseline for <EOL> classification, all the more in texts where paragraphs typically end with
a period. On the other hand, the study of the impact of <EOL> classification on sentence segmentation
is one of the motivations for the present work, and constitutes our next step. As suggested by another
reviewer, section title detection (Tepper et al., 2012) can also help paragraph segmentation. As a matter
of fact, it was part of the heuristics used in (Zweigenbaum and Grouin, 2014), where it helped to avoid
pasting a title (possibly with no final period) to the next line.

6 Conclusion

We presented a method which uses self-training and co-training to classify <EOL>s with no human
annotation, based on available token and line length features. It achieves high <EOL> classification F-
measures on i2b2 clinical texts which incur paragraph folding, and can also detect texts which are not
subject to this phenomenon.

In future work, we plan to test MB as a filter as outlined above. We will also explore other features
such as POS tags and n-grams with n > 1, more powerful classifiers such as logistic regression and
SVM, and perform extrinsic evaluations such as the impact on sentence segmentation.
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Abstract

This paper describes a Natural language processing system developed for automatic identifica-
tion of explicit connectives, its sense and arguments. Prior work has shown that the difference in
usage of connectives across corpora affects the cross domain connective identification task neg-
atively. Hence the development of domain specific discourse parser has become indispensable.
Here, we present a corpus annotated with discourse relations on Medline abstracts. Kappa score
is calculated to check the annotation quality of our corpus. The previous works on discourse anal-
ysis in bio-medical data have concentrated only on the identification of connectives and hence we
have developed an end-end parser for connective and argument identification using Conditional
Random Fields algorithm. The type and sub-type of the connective sense is also identified. The
results obtained are encouraging.

1 Introduction

Due to advancements in bio-medical field, a large number of bio-medical literatures are available. It
is crucial to extract knowledge from these literatures, to prevent the loss of important findings required
for progression in bio-medical field. For extracting the information from the text, the text needs to be
analyzed linguistically and it is absolutely essential to add such linguistic information to the text for fu-
ture research. Natural language processing (NLP) methods are being widely used to analyse bio-medical
text by performing tasks like automatic summarization, translation, named entity recognition, discourse
analysis, speech recognition, etc.,. Discourse analysis is one such fundamental topic in NLP domain that
makes a text linguistically rich. Discourse analysis is the study of the relation between phrase, clauses
or sentences in a text. The basic units of discourse relations are discourse markers and their arguments.
Discourse markers are words or phrases that establish a relation between two discourse units thereby
connecting two events.
Example [1]
a) Embryonic Stem cells have a high mitotic index and form colonies. So, experiments can be completed
rapidly and easily.
b) Clinical lung cancers containing a higher abundance of ALDH and CD44 co expressing cells were
associated with lower recurrence free survival.
In the above Example 1 (a) “so” is the discourse connective that indicates a relation between two dis-
course units. These discourse units are labeled as arguments. It is not easy to identify the discourse
connectives, as all connectives are not discourse markers. In some cases it acts as conjunction simply
unifying two words. Consider the Example 1 (b), where “and” acts as a conjunction connecting two
bio-medical named entities “ALDH” and “CD44 co expressing cells”.

The intended goal of our present work is to study the “discourse relation” in Medline abstracts and
develop a system to automatically extract these relations. Cohen et al., (2010) has examined the struc-
tural and linguistic aspects of abstracts and bodies of full text articles. Their work shows that full parsing

This work is licensed under a Creative Commons Attribution 4.0 International License. License details:
http://creativecommons.org/licenses/by/4.0/
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of article bodies is more difficult than abstracts as article bodies has longer sentences. They also as-
sessed the incidence of conjunctions in abstracts and article bodies. The difference between abstracts
and bodies was not statistically significant with only slightly more conjunction in article bodies than in
abstracts. Hence, we used abstracts to develop the system instead of whole articles. Since abstracts give
an overview of a work, the sentences in the abstract need to be coherent. Hence it is well connected
by connectives. The occurrence and type of discourse connectives in the bio-medical domain vary from
other domain.
Example [2]
Furthermore, juglone blocked the adipogenic medium-induced activation of PPAR, C/EBP, C/EBP, and
ERK pathways, which was rescued by Ad-PIN1 infection. In summary, the present study shows for
the first time that PIN1 acts as a significant modulator of odontogenic and adipogenic differentiation of
HDPSCs, and may have clinical implications for regenerative dentistry.
In the above Example 2, the discourse marker “In summary” occurs commonly in bio-medical abstracts,
whereas in general domain it is used to a lesser extent. There are many such connectives that occur in bio-
medical domain and may or may not occur in other domains. Also, work done by Ramesh et al., (2012)
show that the classifier trained on open domain performs poorly on bio-medical domain. Hence there is
a demand to spring up a discourse parser for bio-medical domain.

Our work makes a substantial contribution to the development of the discourse annotated corpus for
bio-medical domain. At this period, there is no end-end discourse parser available for automatically
identifying the connectives, sense and its arguments in bio-medical domain; hence we have developed
a discourse parser for explicit relation identification from bio-medical corpus. This system can further
be used in NLP tasks like machine comprehension, extraction of semantic relations, co-reference reso-
lution, etc. In the next section, works related to discourse analysis are detailed. Section 3 describes the
annotation task. Section 4 explains the method used. Results are demonstrated and discussed in section
5. We conclude and outline our future work in section 6.

2 Related Works

In this section, we describe the annotation works and various systems developed for automatic identifi-
cation of the discourse relations.

2.1 Annotation

Large scale annotated corpora for discourse analysis is developed in recent years that play a major role
in natural language research. Lopatkova et al., (2009) in their project has assigned structure of clauses
to Czech sentences from the Prague dependency tree, but as a new stratum of syntactic annotation. The
PDTB adds low level discourse structure and semantics using connective specific semantic role labels
(Prasad et al., 2008a). Dinesh et al., (2005) in their paper has disclosed substantial divergences among
the syntactic structure and discourse structure in terms of the arguments of connectives. Miltsakaki et
al., (2005) has presented a set of manual sense annotation studies for three connectives since, while and
when. The work on discourse connectives also extends to other languages. The discourse relation has
been studied in various languages like Turkish (Zeyrek and Webber , 2008), French (Roze et al., 2010),
Arabic (Al-Saif et al., 2010), Hindi (Prasad et al., 2008b), Tamil (Rachakonda and Sharma, 2011;
Menaka et al., 2011) and cross lingual variation is analyzed in Indian languages like Malayalam, Hindi
and Tamil (Devi et al., 2014). Discourse annotation work has also been widened to bio-medical domain
by Mihaila et al., (2013) and Tateisi et al., (2000)

The first work on the annotation of bio-medical discourse connectives and its arguments was done
by Prasad et al., (2011). They have developed a Biomedical Discourse Relation Bank (BioDRB) in
which they have annotated explicit and implicit discourse relation in 24 open access full text bio-medical
articles from GENIA corpus containing 4911 sentences. They have adapted the annotation guidelines
from PDTB, but have introduced new conventions and modification for sense classification. The related
works show that BioDRB is the only discourse relation tagged corpus available in the bio-medical field.
Motivated by the need to construct a corpus to be used for the text mining in the bio-medical field, we

90



developed a discourse annotated corpus using Medline abstracts.

2.2 Systems Developed

Existing systems for connective and argument identification are developed based on the PDTB. Elwell
and Baldridge (2008) shows that using models for specific connectives and the types of connectives and
interpolating them with a general model improves performance. Lin et al., (2012) has developed a full
discourse parser using the parsing algorithm in PDTB style. This parser first identifies all discourse and
non-discourse relations, locates and labels their arguments, and then classifies their relation types. They
reported overall system F-scores for partial matching of 46.80% with gold standard parser and 38.18%
with full automation. Ghosh et al., (2011) in their work has taken a data driven approach to identify
arguments of explicit discourse connectives using Conditional Random Fields (CRFs) technique and ob-
tained an F-score of 57% for arg1 and 79% for arg2. Wellner et al., (2007) has worked on discovering the
arguments of discourse connectives in the PDTB. Rather than identifying the full-extent of the arguments
as annotated in the PDTB, they identified the argument heads. Using log-linear re-ranking model, they
identified both the arguments correctly for over 74% of the connectives on held-out test data using gold
standard parsers.

Stepanov and Riccardi (2014) in their paper has presented cross-domain evaluation of PDTB trained
discourse relation parser and evaluated feature-level domain adaptation proficiencies on the argument
span extraction sub task. They summed up that the corpora differences with respect to discourse con-
nective usage affect the cross domain generalization of connective detection tasks negatively. Hence, it
is necessary to develop a domain specific system for identification of discourse connectives. Ramesh
et al., (2012) has developed a system for identification of discourse connectives in bio-medical domain
and has obtained an F-score of 69%. But, they did not focus on identification of arguments. The main
goal our work is to develop a system for automatic identification of explicit connectives, its sense and
arguments using machine learning approach. The experiment outcomes manifested the efficiency of our
system in discourse relation identification task.

3 Annotation Task

Our annotation task includes the annotation of discourse connectives, its sense and their arguments by
following the guidelines of PDTB, a large-scale resource of annotated discourse relations and their ar-
guments (Prasad et al., 2008a). We formulated our corpus by collecting abstracts from PubMed Central
(PMC). PMC is a free full-text archive of bio-medical and life sciences journal literature developed by
the U.S. National Institutes of Health’s National Library of Medicine (NIH/NLM). To analyze the dis-
tribution of discourse connectives and its arguments, a corpus containing 7670 sentences is used. The
bio-medical corpus is annotated with Explicit, Implicit, Altlex, NoRel and Entrel relations. The syntac-
tic classification of connectives includes Subordinators, Coordinators, Conjunct adverbs, and Correlative
conjunction.
Example [3]
The practical application of ESCs is throttledarg1 because it is unmanageable to derive and culture
ESCsarg2.
In Example 3, the subordinator “because” occurs in the middle of the sentence connecting main clause
with the subordinate clause. The sense of the discourse connectives provide a semantic description of the
relation between the arguments of connectives. Based on the sense, these connectives are broadly classi-
fied into four top class levels viz Expansion, Temporal, Comparison and Contingency. These classes are
further classified into various types and sub-types. For instance in Example 3, the connective “because”
comes under sense class “Contingency” and belongs to the type “Cause” and sub-type “reason”.

The arguments are labeled as arg1 and arg2. The arguments include single clauses or multiple clauses
and in some cases it may include whole sentences and even multiple sentences. The clause or sentence
that is syntactically attached to connective is labeled as arg2 and the other clause or sentence is marked
as arg1. Furthermore the arguments may be adjacent or non adjacent to the connectives. According
to the concept of minimality, the minimum required argument for a relation is annotated. There are
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no constraints for the linearity of the connectives and arguments. The linear order of the connectives
and arguments need not be of the basic order arg1-con-arg2. It varies depending on the location of
the connective. The connective can occur at sentence initial, medial or final position. In cases, where
connective occurs in the initial position, the linear order is of the form con-arg2-arg1.

In case of implicit connectives, we have tagged the relation with a label “Implicit”. Implicit relation
can be inferred, where a relation exists between two discourse units but not explicitly marked.
Example [4]
In adipogenic cultures, both cell populations showed positive Oil Red O staining by day 21arg1. Implicit
(Likewise, Similarly) in chondrogenic cultures, both stem cells expressed the formation of proteogly-
canarg2.
The above Example 4 shows that there exists an implicit relation between two discourse units. The
relation can be established by connectives like “likewise”, “Similarly” etc.

AltLex relation is realized between adjacent sentences, where inserting an implicit connective may
lead to redundancy in the expression of the relation.
Example [5]
Dichaete potentially regulates many more genes in the Drosophila genome and was found to be associ-
ated with over 2000 mapped regulatory elements. AltLex [Our analysis suggests] that Dichaete acts as
a transcriptional hub, controlling multiple regulatory pathways during CNS development.
In the above Example 5 the AltLex relation is shown. Here, inserting a connective may cause redundancy.
Hence AltLex relation is marked in such cases.

EntRel relation exists where the implicit relation between adjacent sentences is not between their
abstract object interpretations, but form an entity based coherence. The entity is realized in both the
sentences directly or indirectly.
Example [6]
Brg1 is required for stem cell maintenance in the murine intestinal epithelium in a tissue-specific manner.
EntRel Brg1 is a chromatin remodeling factor involved in mediation of a plethora of signaling pathways
leading to its participation in various physiological processes both during development and in adult
tissues.
In Example 6, the entity “Brg1” in first discourse is directly realized in the second unit.

Norel relation exists where there is no discourse relation or entity based coherence relation between
adjacent sentences. Since our corpus contains abstracts, all sentences within abstracts are related explic-
itly or implicitly or entity based coherence are found. However, in our corpus NOREL relation can be
tagged between abstracts, as shown in Example 7.
Example [7]
TGF-1 alone and in combination with PDGF also amplified surface integrin expression and adhesivity
of MSCs with extracellular matrix proteins. These findings will provide a more mechanistic insight for
modeling tissue-level rigidity in fibrotic tissues and tumors. NoRel Lung cancer tumorigenicity and drug
resistance are maintained through ALDH(hi)CD44(hi) tumor initiating cells.
The data statistics are shown in the Table 1.

S.No Connective Types No of Connectives
1 Explicit 2957
1.a Intra-sentential 1742
1.b Inter-sentential 1215
2 Implicit 1610
3 Altlex 616
4 EntRel 802
5 NoRel 585

Table 1: Data statistics.

We annotated our corpus with above relations and cross checked the annotation quality by tagging
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3000 sentences from the data using second annotator. We calculated the inter-annotator agreement using
Cohens Kappa coefficient (Viera and Garrett, 2005), which is a statistical measure.
K = (po - pc)/ (1- pc)
where po is the agreement rate between two human annotators and pc is chance agreement between
two annotators. The agreement between the annotators is almost perfect for connectives. We obtained
Cohens kappa score of .94 for explicit connectives. In the case of annotation of arguments there is a
substantial agreement between the annotators for all the argument boundaries. The overall agreement in
identifying both the arguments of explicit connectives is 0.86. The variation in agreement rate is due to
various structural inter-dependencies that occur between discourse relations.

4 Method

This section describes the experiments performed for extraction of discourse relations using machine
learning (ML) approach. In this work we have concentrated on the automatic identification of explicit
relations. We performed two sets of tasks. In the first task the connectives and its sense were identified
and in the second task the argument boundaries were identified. In further sections experiments are
explained in detail.

4.1 Features Used

For our work we have used simple and minimal number of features given in Table 2 and Table 3. The
connectives are mostly conjunction and hence the PoS features contribute most to the identification of
connectives. Chunk features help to identify the boundary of the connectives and arguments. Since a
discourse connective connects two clauses, clause start and end can be used as feature for connective
identification. For sense identification, we have used syntactic features. In addition to features used for
connective identification, connective itself is used as a feature for identifying the sense of the connective.

S.No Features for Connectives Examples
1 Word previous word, current word, next word
2 PoS (P) PoS of previous word, PoS of current word,

PoS of next word
3 Combination of PoS and Chunk PoS and Chunk of current word
4 Combination of 1, 2, 3 Current word, PoS of current word,

Chunk of current word
5 Connective Connective is an exceptional feature

for sense identification

Table 2: Features used for connective identification (syntactic and sense).

S.No Features for Arguments Examples
1 Sentence position with respect to connective arg1 end mostly will be before connective

and arg2 start after connective
2 Sentence boundary arg1 start mostly start of the sentence,

arg2 end- mostly end of the sentence
3 Clause Arguments may be clause and

hence clause boundary is used as feature
4 Previously identified Argument boundaries Previously identified arguments

arg1 end, arg2 start, arg 1 start

Table 3: Features used for argument identification.
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4.2 Experiments Performed
The annotated corpus was preprocessed, before training it using ML algorithms. The sentences were
tokenized and PoS tags and chunks were added using the GENIA tagger (Tsuruoka et al., 2005). After
analyzing the corpus, features were extracted. Based on the extracted features, language models were
built using CRFs algorithm. We used CRF++ tool (Kudo, 2005), an open source implementation of
CRFs algorithm. Using the language model the explicit connectives, its sense and argument boundaries
were automatically identified from the test set. The experiments were performed as two tasks.

Connective classification and sense identification: In the first task, the system was trained for clas-
sification of connectives. Using the features described in section 4.1, the model was built for connective
identification. The built model was used for identifying the connectives from the test data. Further,
post-processing rules were applied to improve the system’s performance. After classifying the tokens
as connectives and non-connectives, sense of the connectives were identified. In our work we have also
identified the type and sub-type of the connective sense. We developed one-stage model and multi-stage
model to identify the sense. For one stage model, a single model is developed for all types of sense.
While for multi-stage model, four separate models were developed for each type of sense based on its
upper level class. After identifying the senses separately, the output was combined from each model.
The connectives having overlapping senses were merged based on confidence scores (i.e. sense having
large probability).

Argument identification: After identifying the connectives, the second task was performed, where
the arguments were identified. To overcome the problem of overlapping sequence, we processed each
connective separately for argument identification. We developed two types of models, first by parti-
tioning these sentences into inter and intra-sentential relations and second as a one-stage model without
partitioning the sentences. Intra-sentential connectives are those that occur within a sentence, while inter-
sentential connectives are those that occur outside the sentence. For inter-sentential connectives mostly
previous sentence acts as argument. In few cases the arguments span across sentences. For the one-stage
model the output from connective identification was given as such after extracting the features without
dividing them as inter-sentential or intra-sentential connectives. We developed gold standard parser and
automatic parser for argument identification using features mentioned in Table 3 .

For gold standard parser the gold standard connectives were used to train the system. For automatic
parser the output from the connective identification task was fed as input to the argument identification
task. For identifying the arguments we followed the method used by Menaka et al., (2011). They
presented their work on automatic identification of the cause-effect relation from Tamil text. In their
work they developed separate models for each boundary. Similarly, we built 4 models for each boundary
of the arguments, i.e. identification of arg1 start and end and arg2 start and end. The argument boundaries
were identified in the following series, arg2 start, arg1 end, arg1 start and arg2 end. The output from one
model is fed as input to the next model. The choice of order of identification of bounds was made with
the idea that it is easier to identify the boundaries that are close to the connective. After identifying the
boundaries, the outputs were merged. Thus connective, sense and arguments were identified. The results
are detailed in the next section.

5 Results and Discussion

We evaluated the performance of our system using precision, recall and F-score measure. Precision
is the number of labels correctly perceived by the system from the total number of labels identified,
Recall is the number of labels correctly detected by the system by the total number of labels contained
in the stimulus text and F-score is merely the mean of precision and recall. We performed 10 fold cross-
validations for connective identification using CRFs. The partition of the corpus was done randomly
to test all the relations at least once. The average 10 fold cross-validation F-score obtained for CRFs
is 86.42%. The result for connective classification obtained from best model is presented in Table 4.
For sense identification the results for one-stage model and multi-stage model are presented in Table 5.
For sense identification one-stage model gives better results than multi-stage model for both gold and
automatic parser.
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Method Precision (%) Recall (%) F-score (%)
CRFs 92.49 83.83 88.16

CRFs + Post-processing 93.01 88.05 90.53

Table 4: Results for connective classification.

Model Gold Parser Automatic Parser
Precision Recall F-score Precision Recall F-score

One-stage model 98.03 93.26 95.65 90.79 79.25 85.02
Multi-stage model 97.79 91.22 94.51 90.87 78.13 84.5

Table 5: Results for sense identification in %.

Then the arguments of the connectives were identified using intra-sentential and inter-sentential model
and also using one-stage model. It is observed that the F-score for identification of intra-sentential and
inter-sentential argument boundaries arg1 end and arg2 start is better than arg1 start and arg2 end. This
is because the argument boundaries arg1 end and arg2 start are nearer to discourse connective in intra-
sentential model. While, in inter-sentential model the argument boundary arg1 end will be mostly the
sentence or clause end and arg2 start will succeed the connective. The argument identification results
for intra-sentential argument and inter-sentential arguments are shown in Table 6 and 7 respectively. The
results for one-stage model is given in Table 8.

Arguments Gold Parser Automatic Parser
Precision Recall F-score Precision Recall F-score

Arg1 start 80.95 81.20 81.08 81.27 76.39 78.83
Arg1 end 94.11 89.24 91.68 84.31 81.2 82.76
Arg2 start 94.20 93.24 93.72 93.1 90.89 91.99
Arg2 end 85.31 80.54 82.93 83.3 81.56 81.93

Table 6: Results for intra-sentential argument identification in %.

The system achieved significant performance even with minimal features. The performance of existing
systems described in Section 2.2, shows that the performance of our system is comparable to state-of-art
systems. The errors in the identification of connectives and arguments were analysed. After identifying
the errors we developed post-processing rules to improve the results. We analyzed the output obtained
from the system and observed that the decrease in measures in automatic identification of connectives
is due to data sparsity. The connective patterns that exist in test data may not exist in the training data.
Also, the difficulty in identification of connectives arises due to propagation of errors from preprocessing
modules. As we use PoS as a feature for connective identification the error introduced in PoS module
decreases the measure. Importantly, conjunctions are not connectives.
Example [8]
BMECs are important components of the hematopoietic microenvironment in the bone marrowarg1 and
they can secret several types of cytokinesarg2.
In Example 1 (b) the conjunction “and” connect two noun “ALDH” and “CD44 co-expressing cells”.
Hence “and” does not act as a discourse connective. Whereas, in Example 8 “and” connects two dis-
course units as a whole and hence in this case it acts as a discourse connective. This ambiguity in the
identification of connectives creates false positive results. To overcome this problem we have formulated
some linguistic rules and have applied to the CRFs output. We explain an example for linguistic rule
used in our work.
Rule1:
If the current token is “and”, previous token is “,”, PoS of previous to previous token is “VBN” and PoS
of the next token is a “noun”, then “and” is a discourse connective.
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Arguments Gold Parser Automatic Parser
Precision Recall F-score Precision Recall F-score

Arg1 start 86 78 82 84 76.6 80.3
Arg1 end 86.5 83.4 84.9 85.6 82.4 84
Arg2 start 90.5 90.5 90.5 88 86.8 87.5
Arg2 end 82.1 81.5 81.8 80.5 76.3 78.3

Table 7: Results for inter-sentential argument identification in %.

Arguments Gold Parser Automatic Parser
Precision Recall F-score Precision Recall F-score

Arg1 start 82.9 80.1 81.5 83.4 76.8 80.1
Arg1 end 96.3 95.5 95.9 86.6 86.8 86.7
Arg2 start 99.4 98.2 98.8 92.1 85.4 88.8
Arg2 end 87.3 87.5 87.4 87.4 82.1 84.7

Table 8: Results for one-stage model argument identification in%.

Rule2:
If the current token is “also”, PoS of previous token is “JJ” and PoS of the next token is “RB”, then
“also” is a disourse connective.

In the identification of arguments, the paired connectives generate errors. The paired connectives or
co-relative conjunction includes two connectives that share same arguments. The error occurs in the
argument boundary identification, when the argument includes multiple sentences. As we consider only
the sentence with intra-sentential connective as input to intra-sentential model for argument identification
the difficulty occurs in identification of argument with multiple sentences. Connectives can occur at the
beginning or in the middle of the sentences or sometimes at the end. Consider below Example 9, where
connective “also” occurs in the middle of the argument. This creates an error in identification of arg2
start.
Example [9]
IL-17 activates several downstream signaling pathways including NF-B, MAPKs and C/EBPs to induce
gene expression of antibacterial peptides, proinflammatory chemokines and cytokines and matrix metal-
loproteinases (MMPs)arg1. IL-17 can also stabilize mRNAs of genes induced by TNFarg2.
The error analysis indicates the need for more sophisticated features to further improve the precision of
the system.

6 Conclusion

We have developed a discourse relation bio-medical corpus, annotated with discourse connectives and
its arguments. In this paper, we have explained the guidelines used for annotating our corpus. The
inter-annotator agreement is calculated to check the annotation quality. We obtained almost perfect
agreement between annotators for connectives and substantial agreement for argument boundaries. Also,
a method for identification of discourse connectives and arguments from the annotated corpus using the
ML approach is presented. We obtained encouraging results even with minimal features. In our future
work, we will try to resolve the errors identified, thereby improving the overall results of the parser. Also,
we will evaluate our system using BioDRB corpus, so that performance of our system on full articles can
be verified. We will also extend our work in developing a discourse parser for identifying the implicit,
EntRel and Altlex relations.
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Abstract 

Social media has emerged into a crucial resource for obtaining population-based signals for 

various public health monitoring and surveillance tasks, such as pharmacovigilance. There is 

an abundance of knowledge hidden within social media data, and the volume is growing. 

Drug-related chatter on social media can include user-generated information that can provide 

insights into public health problems such as abuse, adverse reactions, long-term effects, and 

multi-drug interactions. Our objective in this paper is to present to the biomedical natural lan-

guage processing, data science, and public health communities data sets (annotated and unan-

notated), tools and resources that we have collected and created from social media. The data 

we present was collected from Twitter using the generic and brand names of drugs as key-

words, along with their common misspellings. Following the collection of the data, annotation 

guidelines were created over several iterations, which detail important aspects of social media 

data annotation and can be used by future researchers for developing similar data sets. The an-

notation guidelines were followed to prepare data sets for text classification, information ex-

traction and normalization. In this paper, we discuss the preparation of these guidelines, out-

line the data sets prepared, and present an overview of our state-of-the-art systems for data col-

lection, supervised classification, and information extraction. In addition to the development of 

supervised systems for classification and extraction, we developed and released unlabeled data 

and language models. We discuss the potential uses of these language models in data mining 

and the large volumes of unlabeled data from which they were generated. We believe that the 

summaries and repositories we present here of our data, annotation guidelines, models, and 

tools will be beneficial to the research community as a single-point entry for all these re-

sources, and will promote further research in this area.  

Keywords:  

Social media, data mining, public health, natural language processing, data science. 

1 Introduction 

In recent years, social media has become a crucial platform for communication, discovery of in-

formation, and the sharing of opinions and views [1]. Thus, social media has also emerged as a re-

source for collecting real-time data directly from public discussions. The social media sphere contin-

ues to grow [2], and websites like Twitter attract significant numbers of daily users. Twitter currently 

has 289,000,000 active users with the number of registered users rising by 135,000 every day [3]. 

With 58 million tweets per day (9,100 tweets per second), Twitter data is content-rich on everyday 
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discussions. As a result, Twitter, in addition to other popular social networks, is being actively utilized 

for a range of tasks including advertising [4], opinion mining [5], political analytics [6], and public 

health monitoring [7]. 

 

From the perspective of public health, systems have been proposed for a variety of tasks includ-

ing the tracking of the spread of infectious diseases [8, 9], monitoring of prescription and illicit drug 

abuse [10-12], pharmacovigilance [13], and the monitoring smoking patterns [14]. Despite the obvious 

use cases for utilizing social media data, national surveillance programs are yet to integrate proposed 

systems [2]. A prime reason for this are the numerous challenges associated with the use of social me-

dia data. While early, keyword-based systems were easily deployable [15], their shortcomings have 

also been identified [16]. Solving complex natural language processing problems with social media 

data introduce additional challenges—such as dealing with the use of colloquial language and mis-

spellings [17]. Even data collection from social media faces challenges due to these factors. In addi-

tion, the notoriously noisy nature of social media data, and data imbalance hinder system performanc-

es [13]. As a result, despite the abundance of health-related knowledge that is encapsulated within the 

vast social media domain, it is still significantly under-utilized in practical systems.  

 

1.1 Social media and data science 

Over the last several years, a flurry of research tasks has successfully employed supervised learn-

ing systems that use manually annotated data to solve various natural language processing (NLP) 

problems. These include, for example, text classification tasks such as detecting mentions of adverse 

drug reactions [22], and extracting exact mentions using sequence labeling techniques [23]. While 

these approaches have shown good performance in noisy, social media text, their need for manual an-

notations make them expensive in nature. Manual annotations are time consuming, and the erratic 

properties of social media text make annotation tasks even harder. Consequently, even designing an-

notation tasks and guidelines require significant amounts of expert time, experience in annotations, 

and exposure to user posted texts. While research from the recent past [13] has elaborated the need for 

data annotation efforts, the importance of developing standardized annotation guidelines for social 

media based non-standard data sets have been somewhat overlooked. Therefore, in addition to the 

need for publicly available targeted data and models, there is also a need for the development of social 

media text annotation guidelines that to ensure consistency in annotation standards. 

 

The majority of the data available from social media is unlabeled. Recent advances in NLP has 

seen the effective application of language models learned from large volumes of unlabeled data for 

various text mining tasks. While the ability to learn language models from large data sets presents new 

possibilities, social media oriented public health monitoring research has still not actively applied 

these techniques. One reason behind this is that targeted data from social media for specific public 

health monitoring tasks is still scarce. Thus, there is a strong motivation for the public release of such 

data and models. For example, recent approaches for generating distributed word representations [18-

20] from large, unstructured data sets have seen growing popularity. However, availability of such 

language models learned from relevant social media data is limited. 

 

1.2 Aims 

 We have several aims for this broad coverage paper. These aims are summarized as follows: 

 

1. To outline our annotated data and the resources we have created over the last several years, as 

part of a National Institute of Health (NIH) research grant [21] on mining social media for discovering 

adverse drug reactions. 

2. To make available our evolving social media text annotation guidelines for pharmacovigilance 

and toxicovigilance so that these annotation guidelines can be followed for future annotation tasks. 

3. To provide insights about our annotated corpora, annotation tasks, unlabeled data and models.  

4. To discuss some of the utilities of our data sets and their potential future uses. 
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  The rest of the paper is organized as follows. In the next section we present (i) our data collec-

tion technique, which expands on keyword-based approaches to include common, phonetically similar 

misspellings of drug names, (ii) our preparation of various publicly available annotated data sets, (iii) 

our detailed annotation guideline preparation, and (iv) our language model generation techniques. In 

the Discussion section we present some statistics and utilities of our published resources and tools, 

including potential applications of our unlabeled data and language models. 

2 Methods 

2.1 Data collection 

Prior to collecting data, we selected a set of drugs of interest, which were likely to have a large 

number of associated comments in social media. In particular, we selected drugs that were prescribed 

for chronic diseases and syndromes for which large numbers of comments were expected and drugs 

with high prevalence of use (as per the IMS Health’s Top 100 drugs by volume for the year 2013 

[22]). Starting with this initial list of drugs, we added various drug names based on interest since 2014, 

such as drugs that may be prone to abuse. The final drug list is monitored by our in-house pharmacol-

ogy expert, and further details about the drugs can be found in our past publications [22,23]. 

 

We collected data from Twitter using the drug names (trade and generic) as keywords. To address 

the issue of misspelled drug names, which affects recall during data collection, we developed a 

spelling variant generator [24]. The generator first identifies lexically close misspellings, specifically 

those that are 1-edit distance away in terms of Levenshtein distance. Phonetically similar misspellings 

are then identified, and finally, the Google custom search API is used to identify a smaller set of mis-

spellings that are commonly used by users. We have made a downloadable version of our generator 

publicly available.
1
 The generator is semi-automatic. Figure 1 presents a random sample of tweets as-

sociated with a number of drugs that were collected using our technique. The tweets appear to present 

a number of types of information, such as symptoms/indications, perceived adverse drug reactions, 

medication abuse information, user sentiments towards drugs and/or prices, and potential drug abuse, 

to name a few. The figure also illustrates how some drug names are often misspelled. Depending on 

the intent, distinct types of drug-related information can be mined from this data source. 

2.2 Data annotation, guidelines and resources 

Following the collection of large amounts of drug-related chatter from Twitter, we allocated sig-

nificant resources to perform annotation of the data and for the preparation of standardized annotation 

guidelines. The annotation guidelines were prepared in consultation between experienced language 

annotators, NLP experts, public health professionals, and a pharmacology expert. The guidelines were 

finalized by the pharmacology expert after multiple iterations. The annotation guidelines also evolved 

over time, which is a necessity for social media data, as new characteristics of the data were discov-

ered during the early iterations of annotation. Using the annotation guidelines, we were able to achieve 

high inter annotator agreements for our various annotation tasks. For adverse drug reaction detection 

from social media, we first performed binary annotations indicating if user posts mentioning at least 

one drug mentioned an adverse reaction or not (inter annotator agreement κ = 0.74). Following that, 

we performed annotations to tag specific mentions of adverse reactions and indications (κ = 0.81), in-

cluding mapping the mentions to standardized IDs in the Unified Medical Language System (UMLS) 

vocabulary. We have made these detailed annotation guidelines publicly available to support future 

annotation tasks.
2
 In addition to the guidelines, we have made resources associated with our classifica-

tion and extraction tasks publicly available [22,23]. These include source codes, executable applica-

tions, lexicons, topics, cue words, word clusters, word embeddings, and annotated data, which we dis-

cuss later.  

 

 

                                                 
1
 Available at: http://diego.asu.edu/Publications/ADRSpell/ADRSpell.html. Last accessed: 2nd October, 

2016.  
2
 Available at: http://diego.asu.edu/guidelines/adr_guidelines.pdf. Last accessed: 2nd October, 2016. 
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Figure 1. Sample tweets containing drug names including some that are misspelled, but were 

caught our common misspelling generator. The tweets present a variety of different types of infor-

mation including the symptoms effectiveness of drugs, adverse reactions, user sentiments, and poten-

tial abuse of prescription medications. 

 

In addition to our work on pharmacovigilance, our experts have collaborated to create guidelines 

and resources for additional tasks such as prescription medication abuse monitoring from social media. 

Similar to our other tasks, the annotations were carried out in several iterations and the guidelines pre-

can’t sleep, temazepam myself into a coma, pass out for hours on end. finally wake 
up, feel like shite for days. Oh I love my life! :-/ 
 
my fibromyalga is killing me lately. has anything worked for u? lyrica and neurontin 
f’d up my life. cymbalta worse 
 
just got retested for jcv. tecfidera did not work out well for me, so i’m onto tysa-
bri. #ms #multiplesclerosis  
 
adderal made me manic, saphris makes my skin crawl and gives me the dreaded 
twitches, hydroxyzine is more like a placebo than anything else 
 
list of psychiatric medications i take for various psychiatric reasons. !. saphris. 2. 
lamictal. 3. hydroxygine.  4. trazodone. 5. zoloft. 
 
the only kind i have is sleeping siroquil and it knocks me out for too long to make it 
to class 
 
the sun is up & i haven’t slept yet! the quetiapine is not knocking me out like it used 
to. been up for 24 hours & i aint sleepy :-( #bipol 
 
snorted 2 15mg oxycodone ($24) 
 
also adderall prevents me from having any feelings other than tired rage 
 
i hate how this firbo and gabapentin robs me if my life … i just hate feeling so use-
less and worthless feeling tired 
 
i am taking a cocktail of tramadol, acoxia, myonol & pregabalin twice a day and l still 
cannot control this pain. huhuhuhuhuh 
 
do not take victoza if you are allergic to victoza … i an now worried about people 
who actually need this warning 
 
i’m trying to go off it. i’m on lamictal now and it works but i’m still addicted to Ge-
odon 
 
my memory is still so awful, hate the side effects of pregabalin -.- 
 
taken other stuff, but can’t really remember. Aripriprazole & ziprasidone apparently 
weight neutral aps. topiramate: weightloss 
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pared have been made publicly available.
3
 We have also made some of our annotated research data on 

peripheral topics, such as prescription medication abuse, publicly available.
4
 

 

As discussed in the abovementioned guidelines, annotation of social media data presents a variety 

of challenges, which must be addressed in a consistent manner. For Twitter, the first challenge faced 

when performing binary annotations was the lack of context. Due to the character limit of 140 per 

post, even for human annotators, it is often difficult to determine the context in which a potential ad-

verse reaction is mentioned or if a mentioned adverse reaction represents a personal experience or just 

a general statement. Other factors, such as posts that are spread over multiple tweets also add to this 

problem. To address these and other annotation difficulties, regular meetings were held between the 

annotators and the pharmacology expert, during which common difficult annotation issues were iden-

tified, discussed, and resolved. We provide further details of common social media text annotation 

problems that we faced in the Discussion section.  

 

2.3 Unlabeled data and language models 

Besides preparing and releasing the largest annotated social media data sets for pharmacovigi-

lance and other tasks, we also released unlabeled data and language models derived from the data. 

Language models generated from unstructured data sets, such as those via deep learning techniques, 

have recently received significant research attention because of their ability to capture semantic infor-

mation [18]. We released two sets of language models for the research community, along with the data 

(approximately a quarter million tweets) used to create the models.
5
 The following is a brief overview 

of each set. 

 

The first set of models were prepared using the word2vec tool,
6
 and they capture distributional 

and semantic information. Phrases/terms are represented using vectors using these models, with the 

vector sizes largely determining where each phrase appears in semantic space. We generated models 

with vector sizes between the sizes 200 and 400. For the different vector sizes, we generated models 

using context windows within the range [2,9]. Such distributed word representation models are already 

being applied for research utilizing other sources of noisy health-related data, such as clinical reports 

[25]. Our second set of models are sequential, and these language models capture the probabilities of 

n-gram sequences. These models have been applied for a variety of tasks in the past, such as lexical 

normalization [26]. In a sequential language model, the conditional probability of a term given all the 

previous terms is given as 𝑃(𝑡1
𝑀) = ∏ 𝑃(𝑡𝑘|𝑡1

𝑘−1)𝑀
𝑘=1 , where tk is the k

th
 term. To generate the n-gram 

language models, we used the KenLM n-gram, language modeling tool [27]. We have also made 

available a set of n-gram language models (n= 2—4) from the same unlabeled data set. 

3 Discussions 

In this section, we briefly discuss some of the uses of the various resources that we have pub-

lished. The value of most of our various annotated data sets has already been established, and there has 

been a sizable amount of recent research that have utilized these data sets for tasks such as classifica-

tion and extraction. The resources associated with our annotated data sets, such as the lexicons, word 

clusters, and so on, have been used for research outside the domain of pharmacovigilance. For binary 

classification of adverse drug reaction classification, we currently have a total of 25,678 annotated 

posts, which were prepared in 3 batches. 10,822 posts were made publicly available with our sys-

tem/source code for social media text classification for pharmacovigilance [22].
7
 Additional data sets 

                                                 
3
 Available at: http://diego.asu.edu/guidelines/DrugAbuseAnnotationGuideline1.1.pdf. Accessed 2nd Octo-

ber, 2016. 
4
 Available at: http://diego.asu.edu/Publications/DrugAbuse_DrugSafety.html. Accessed 2nd October, 

2016.  
5
 Available at: http://diego.asu.edu/Publications/Drugchatter.html. Accessed 2nd October, 2016. 

6
 https://www.tensorflow.org/versions/r0.11/tutorials/word2vec/index.html. Accessed: 20th October, 2016. 

7
 Resources, tools and data are available at: http://diego.asu.edu/Publications/ADRClassify.html. Accessed: 

26th October, 2016. 
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were made available to the participants of a shared task that we organized [33], and these data sets will 

also be made available via the link mentioned above. For adverse drug reaction mention extraction, we 

have made available 1784 annotated posts publicly available along with our state-of-the-art extraction 

system [23].
8
 In total, we have 2607 annotations for this task, with the rest of the data only available to 

our shared task participants and will be made publicly available in the near future. We have also made 

available a collection of resources for social media mining for pharmacovigilance along with our re-

view of the domain [13].
9
 

Annotating biomedical data or social media data are challenging tasks and require expertise with 

the domains. The challenges are exacerbated when it comes to biomedical data from social media. As 

mentioned in the Methods section, we faced several frequently occurring annotation difficulties, which 

had to be resolved via multiple meetings and paired annotation sessions. The lack of context available 

with the short Twitter posts often made it difficult to determine if a post mentioned a personal experi-

ence of adverse reaction or just mentioned an adverse reaction for other reasons (e.g., in many posts 

we found users simply repeating adverse reactions mentioned in television commercials). In many 

cases, our annotators found it difficult to determine if a mentioned condition was an adverse reaction 

or a symptom for which the drug in question was taken. Annotating the spans of concept mentions is 

even more challenging. Non-standard expressions (e.g., ‘head feels like a zombie’) and disjoint men-

tions of adverse reactions (e.g., ‘gives me pain in my freakin stomach) are two of the leading causes of 

these difficulties. In addition to annotating the spans, our annotators were also required to map them to 

IDs in the UMLS. Non-standard adverse reaction mentions and context ambiguities led to numerous 

cases where more than one concept ID seemed valid. To resolve difficulties in selecting concept IDs, 

our annotators used paired annotation to identify IDs that were the most concrete fits, and developed 

specific, step-wise rules which are detailed in the previously mentioned annotation guideline.  

 

Because of the costs and difficulties faced when annotating data within this complex domain, the 

preparation of comprehensive guidelines, such as ours, is of paramount importance. Detailed annota-

tion guidelines with specific examples of problem cases can significantly reduce time required to plan 

for and design annotation tasks for social media based NLP studies. Even within the same annotation 

task there are inconsistencies in distinct research groups. We discovered such inconsistencies, for ex-

ample, in the several data sets for binary classification of adverse drug reaction mentions. Therefore, 

we believe that our publicly available annotation guidelines will be helpful for the better understand-

ing of potential issues associated with annotation of social media health data and to plan future annota-

tion tasks.  

 

We have discussed the recent release of a small batch of unlabeled data and sets of language 

models that were prepared using this data [32]. Analysis of that batch of unlabeled data revealed that 

discussions associated with drugs are generally skewed in Twitter, with some drugs discussed much 

more frequently than others. In the abovementioned sample of unlabeled data, while the distribution of 

tweets over the months were similar, we found some drugs to have a very large number of tweets as-

sociated with them. Figure 2 illustrates this information, showing that among the discussions regarding 

the top 10 most discussed drugs, 56% of the discussion was about Adderall® and 12% was about 

Xanax®. We suspect that the skewness in the distribution of drugs in social media chatter is because 

of the demographics among which social media is popular. Adderall®, for example, is a popular med-

ication for abuse among young students, and, therefore, there is a large amount of chatter available for 

this drug, particularly during typical college examination times (e.g., November/December) [10,28].  

                                                 
8
 Resources, tools and data are available at: http://diego.asu.edu/Publications/ADRMine.html. Accessed: 

26th October, 2016. 
9
 Available at: http://diego.asu.edu/Publications/ADRSMReview/ADRSMReview.html. Accessed: 26th 

October, 2016. 
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Figure 2. Distribution of drug related tweets over time and over different drug related keywords.  

 

Past research has explored co-occurrence based techniques for identifying drug-adverse reaction 

associations [29]. One of the properties of the distributional semantics model is the ability to capture 

semantic associations between terms based on co-occurrence, and we have performed preliminary ex-

perimentation to assess the use of our models for drug-adverse reaction association identification. For 

the drug Trazodone, using one of our distributed representation models with a vector size of 400 and 

context window size 9, we compared the cosine similarity values between a drug keyword and a set of 

adverse reaction terms. Our similarity computations produced relatively high scores for known ad-

verse reactions (the first four reactions from the left in Figure 3) and low scores for reactions for which 

no associations are known. While the threshold for this drug appears to be between 0.3 and 0.4, we 

could not establish specific values during our preliminary experimentation. Experimentation with oth-

er drugs (e.g., such as those presented in [32]), also suggest that thresholds may vary between drugs or 

classes of drugs. Furthermore, there are unsolved NLP based problems, such as the vector representa-

tion of multi-word adverse reaction expressions. We also performed preliminary experiments with our 

sequential language models, such as assessing their usage in text classification. Because our data set 

essentially consists of health-related tweets, we used the sequential models to score a sample of posts 

from a separate data set containing annotations for health related tweets [31]. We observed that in 

general, health-related posts obtained higher scores compared to non-health related posts, as was ex-

pected. However, as with the distributional language models, we could not identify thresholds in the 

preliminary experimentation. We plan to address some of these limitations of our work in future re-

search. We believe that incorporation of information from these models will improve the existing tasks 

of classification and extraction, and will be crucial for previously unexplored tasks such as concept 

normalization.  

 

 
Figure 3. Association between trazodone and 10 adverse reactions computed using the distribut-

ed language models and cosine similarity.  

 

The experimental results obtained from the use of our language models are very promising. With 

very simplistic settings, there appears to be a clear use case for these models for the tasks discussed. 

Our planned future work involves in-depth exploration of the various parameters of these models (e.g., 
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effect of context window sizes). We also encourage the research community to investigate the proper-

ties of the distinct models we are making available, and their applications. As discussed earlier, studies 

have already focused on extracting drug abuse information from social media, assessing the safety of 

drugs, exploring the prevalence of use of drugs, and discovering user sentiments towards specific 

drugs, to name a few. The linguistic regularities and the semantic knowledge captured by these models 

are likely to be useful for a number of important research tasks. 

 

With the ever growing size of social media data, and the development of more efficient data pro-

cessing techniques, the broader health domain will invariably benefit from utilizing social media data. 

However, it has also been realized that the right data is more important than big data, and the devel-

opment of effective systems benefit from access to the former. Therefore, we believe that our released 

data, tools and resources, which have been summarized in this paper, will be very useful to the re-

search community. 
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Abstract
Electronic Health Records (EHRs) are increasingly available in modern health care institutions
either through the direct creation of electronic documents in hospitals’ health information sys-
tems, or through the digitization of historical paper records. Each EHR creation method yields
the need for sophisticated text reuse detection tools in order to prepare the EHR collections for
efficient secondary use relying on Natural Language Processing methods. Herein, we address
the detection of two types of text reuse in French EHRs: 1) the detection of updated versions of
the same document and 2) the detection of document duplicates that still bear surface differences
due to OCR or de-identification processing. We present a robust text reuse detection method
to automatically identify text reuse in document pairs in two French EHR corpora that achieves
an overall macro F-measure of 0.68 and 0.60, respectively and correctly identifies all redundant
document pairs of interest.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/

1 Introduction

Over the last decade a large number of hospitals and medical institutions have adopted the use of Elec-
tronic Health Records (EHRs) to store patient records and medical details. Simultaneously, the lowered
cost of computational resources has given rise to digitization efforts of existing (paper) collections. While
the presence of such large, digital corpora opens up exciting possibilities for medical data and text min-
ing or modelization efforts, this is not without certain caveats. The resulting digital collections often are
noisy, with several issues that can have an impact on the accuracy of subsequent text mining processes,
such as encoding errors, missing files, OCR errors, etc. One interesting issue in cumulatively constructed
text corpora is the problem of ‘text reuse’. Text reuse is defined here as the intentional or unintentional
reusing of existing text (fragments) to create a new text, for example, by copy-pasting text fragments
from one document to fit into a new document; or by adapting a report and saving both the old and the
new version as separate documents. Text reuse is a complex phenomenon which has been studied in mul-
tiple settings such as newspaper journalism (Clough et al., 2002), programming code (Ohno and Murao,
2009), the analysis of text reuse in blogs and web pages (Abdel Hamid et al., 2009), etc. It is quite preva-
lent in the medical domain (Wrenn et al., 2010) and often seen as a negative factor: Cohen et al. (2013)
found that copy-pasting practices in US hospitals have a significant negative impact on the accuracy of
the subsequent text mining systems on the clinical notes. However, when text reuse is considered as a di-
achronic phenomenon, it has some interesting aspects. By identifying which text (fragments) have been
reused we can follow the flow of information over time in a patient’s file. Moreover, adjustments that are
made to copied text (fragments) can give an insight into the thought process of the acting clinicians and
may help identify potential errors or adjustments during the treatment process (Hirschtick, 2006).
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Text reuse has been studied extensively in the context of authorship attribution and plagiarism detec-
tion (Stamatatos, 2009). In general we can distinguish between two main types of text reuse: ‘global
text reuse’ in which the task is to pair up (near-) duplicate documents that exists in different locations,
or whose differences are linked to version control issues; and ‘local text reuse’ which occurs when peo-
ple borrow or plagiarize smaller text fragments such as sentences or passages from various sources to
incorporate in a new text. Both types are included in this study.

While the goal is the same, there are some key differences between plagiarism detection and text reuse
detection in the medical domain. Medical professionals work under an enormous time pressure, so rather
than rewriting an existing text (fragment), they will merely add new information or adjust existing infor-
mation, and at best edit out some orthographic errors or write out acronyms that existed in the previous
version. Consequently, our methods can focus on literal string matching, rather than employing semantic
similarity measures (other than detecting spelled-out variants of acronyms) or paraphrase detection. Fur-
thermore, redundancy detection is usually performed within a closed reference collection (as opposed to
plagiarism detection systems that use the entire internet as a reference base). Another difference is the
quality of the written text. Depending on the quality and the nature of the text formatting tools that are
available, electronic health records may contain an astounding number of orthographic errors (Ruch et
al., 2003) or in the case of a digitized corpus, a large variety of OCR errors. Another source of potential
minor surface variation is the de-identification process in which personal health identifiers (PHI) such as
patients names, phone numbers, record numbers are replaced by plausible synthetic surrogates (Sweeney,
1996; Meystre et al., 2010). Depending on how the process is implemented, for example with the in-
clusion of random substitution, numbers that were the same in the original documents can appear with
slight variations in the de-identified documents. Text reuse metric tools in this domain therefore need
to be robust to the noise of these sources of surface variation and correctly detect similar text segments
even when the surface forms do not match 100%.

The current paper presents a simple but effective tool for text reuse detection in the medical domain,
both for global and local text reuse detection, which proves robust to surface variation prevalent in
medical texts by allowing for character gaps when calculating the blocks of reused texts. The tool
is meant to figure as a module in a larger framework, i.e. a pipeline which normalizes and extracts
information from documents in a patient file in order to model the patient’s treatment over time. This
adds a practical component to the evaluation of the proposed tool. Missing a case of text reuse is a more
grievous error than (mis)labeling a false positive. A mislabeled case, i.e either not correctly determining
between different degrees of reuse, or erroneously spotting text reuse, can be spotted by the information
extraction module later on in the pipeline. When a case of text reuse is not identified, however, no
subsequent processing will occur for that document pair and the information is effectively lost for the
information extraction process. In this paper we present and evaluate the text reuse detection tool in
isolation and discuss its strengths and weaknesses.

2 Background

A traditional approach for the detection of verbatim copying1 is to compute the similarity between the
source and target text as the proportion of substring sequences that the two texts have in common. These
substring sequences can either be defined as character n-grams (Cohen et al., 2013), words (Wrenn et al.,
2010), or word n-grams (Adeel Nawab et al., 2012). These methods are mainly based on fingerprinting
and hashing techniques, i.e. the documents are represented as sets of unique digital signatures, and are
highly precise but are not robust to much surface variation. Some methods, however, are adapted to
deal with insertions and deletion of words or characters. For example, as an extension of the ‘longest
common substring’ algorithm (Gusfield, 1997), which calculated text similarity as the length of the
longest continuous sequence of characters normalized by the sum of the document lengths, Wise et al.
(1996) developed the ‘Greedy String Tiling’ which allows for insertions and deletions. It determines
the maximum set of contiguous substrings that two documents have in common, wherein each substring
has the largest possible length. However by eliminating word order through the construction of the

1As opposed to semantic reuse where the same idea of message is rewritten in a different manner.
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set, valuable information on the ordering of the subsequences is lost. The method proposed in this
paper aims to address this problem by allowing for a ‘mismatch gap’ (see section 3) while still keeping
information on the original subsequence order when calculating the similarity score. Another form
of surface variation that needs to be caught—especially in OCRed corpora—is due to differences in
formatting: Lopresti (2000) developed a string matching algorithm that distinguishes between differences
in content and differences in formatting within a document pair.

The study of text reuse detection in the medical domain has either focused on plagiarism detection in
medical articles in PubMed (Errami et al., 2010; Sun et al., 2010) or for dedicated journals (Baždarić
et al., 2012) or on text reuse during the creation of medical corpora and its consequences for database
integrity or subsequent text mining applications (Wrenn et al., 2010). Zhang et al. (2011) found that
redundant information contained in US clinical notes increases over time and that a text reuse detection
tool with domain-specific knowledge is a necessary step in the detection of novel information within
clinical files (Zhang et al., 2012).

3 Text reuse detection tool

The text reuse detection tool presented in this article consists of three main modules and is inspired by the
best practices from recent research in plagiarism detection (Potthast et al., 2014). In a first step, the text
is split into character n-grams of a user-defined length. Each substring unit is indexed with information
on its position in the source document (character offsets). The document is thus transformed into a bag
of overlapping character n-grams. We then apply a global alignment algorithm2 to find the alignment of
sequences with the largest global overlap between the two documents. In a second step, we then resolve
gaps in the alignment, i.e. disjoint blocks, and construct larger blocks of aligned text. Where a large
number of consecutive in-common substring sequences are detected that are interspersed by spurious
non-matching blocks, the substring sequences are merged into a larger (quasi-)matching block by a
user-defined ‘gap parameter’. This parameter was heuristically set to 3 characters for the experiments
described in this paper. For the OCRed corpus we also experimented with a variant in which larger
character gaps were allowed if the non-matching blocks of the two documents contained ‘confusion
pairs’3 of common OCR errors that were extracted from a training corpus. This ‘gap parameter’ catches
small differences in formatting or character variations, i.e. a misspellings or OCR errors, between the
two documents.

Finally, in the third step, the tool outputs the constructed larger ‘matching blocks’ with offset infor-
mation for local text reuse detection, and calculates the proportion of matching text over the length of
its source document to give an estimation of the global text reuse between the two documents. At this
point the tool does not yet filter out text blocks that are below a certain length threshold (thus eliminating
spurious matches). The use of short character n-grams (n=3) ensures that the similarity score will not
be largely affected by small differences in detected fragments caused by OCR errors or differences in
formatting. Figure 1 illustrates step 2 and 3 of the process.

4 Corpora

We show the performance of the tool on two separate and distinct corpora of French clinical notes, which
exemplify the problem of local and global similarity, respectively.

4.1 Corpus with local text reuse (LTR)
The first corpus consists of 107 documents that describe a patient’s illness, renal transplantation and
follow-up case over time through various lab results, consultation reports, etc. The corpus is originally an
EHR corpus, that is, the original text was edited in Word documents which were later on automatically
transformed into text files using the AntiWord4 tool which converts MS Word documents into plain

2Implemented in the Python difflib library
3Confusion pairs are systematic OCR errors in which a character or a sequence of characters in the source document is

consistently replaced by another character or sequence of characters during the OCR process. For example, characters like ‘i’
and ‘l’ are visually similar and thus often confused.

4http://www.winfield.demon.nl/
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Figure 1: Report samples of the local text reuse corpus with fake data and realistic text reuse examples.
The source file constitutes an earlier (i.e. older) version of the the target file on the right within the same
patient records. Green highlighting indicates initial matching characters and the green blocks show the
constructed ‘matching blocks’ with variation gaps included. For reasons of legibility we do not show the
overlapping character sequences that were created in step 1. Please note that inconsistencies with regards
to dates are caused by the de-identification method. The proportion of text in common that is used to
calculate the similarity between the document pair is based on the entire documents, here we only show
an excerpt.

text. This corpus is a subset of larger corpus which was used in a previous study on text reuse (D’hondt
et al., 2015). While it does not contain a large amount of text reuse, the corpus exhibits an important
temporal dimension, i.e. medical cases that span multiple years. For this reason, the corpus contains a
series of documents reporting on regular check-ups that each build on the previous one, by retelling the
medical history of the patient and completing it with the most recent exam results. Another interesting
series of documents are follow-up exams that are conducted several times as part of the patient care
pathway, and may yield similar results on each instance.

4.2 Corpus with global text reuse (GTR)

The second corpus consists of 1,007 documents from French foetopathology5 reports, with data from 25
different patients. This corpus was assembled and digitized within the context of the Accordys project.
The digitization effort consisted of OCRing the original typed-out pages, which was then followed by a
de-identification step. There is a substantial amount of redundancy in this corpus: For some documents,
several (nearly-identical6) copies of the same original document were added to the patient’s folder. How-
ever, the de-identification process has deleted parts of the text for some copies, but not for others. While

5The medical domain which specializes in the treatment and diagnosis of illnesses in unborn children.
6While the original paper documents might be identical, the process of OCR and de-identification has introduced enough

noise that very few identical files remain.
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the patient files in the corpus do not span a long time individually, there are multiple cases in which
different (intermediate) versions of a document were contained in the file. It is therefore a considerable
challenge to distinguish between near-duplicate files that originate from the same original document, or
those that came from two different versions of that document.

5 Corpus analysis

For both corpora we generated all possible document pairs for each patient. These document pairs were
then labeled by two independent annotators7 with regards to the similarity between the two documents.
The annotators took care to distinguish between (near-)duplicate text8 (category ‘2’) and documents that
are either different versions of the same report, e.g. an intermediate version versus the final version with
more information, or similar reports on two different events (category ‘1’). Table 1 shows the labeling
scheme, and the cut-off scores that were used to classify the output of the duplication detection tool. The
number of document pairs for each of the three categories can be found in Tables 2 and 3 for the two
different categories.

Category label Category description Score cut-off
2 near-duplicates x >= 0.9
1 different version of same base document or different events 0.5 >= x < 0.9
0 documents are unrelated x < 0.5

Table 1: Explication of labels used in study.

5.1 Corpus with local text reuse (LTR)

Category label # document pairs in reference set Precision Recall F1-score
2 2 0.20 1.00 0.33
1 6 0.60 0.86 0.71
0 99 1.00 1.00 1.00
macro-average - 0.60 0.95 0.68

Table 2: Precision and Recall scores for EHR corpus (LTR)

The local text reuse corpus only has a small number of positive examples of text reuse but the tool
still categorizes the majority of the document pairs correctly. The low Precision score for category ‘2’ is
caused by the distinctive structure in the yearly follow-up reports that are included in the corpus. While
the documents contain different information, i.e. one follow-up report describes the state of patient one
year after the transplant, a second document describes his/her state after 5 years, they follow a similar
structure and formatting and contain little free text. To correctly identify that such documents pertain to
different medical events, additional information such as identifying the documents time stamps is needed.
Copy-pasting of results from smaller, non-structured report into the medical overview was successfully
detected however. From a medical perspective of effectively reviewing the patient record, all document
pairs with some form of reuse have been successfully identified, so that the bulk of the manual review
work can be lightened using this tool.

5.2 Corpus with global text reuse (GTR)
The second corpus contains more examples of near-duplicates. Interestingly, we find that our tool has
severe problems with the detection of intermediary versions of reports, and often categorizes them as
category 2 (identical pairs). A deeper analysis of the errors shows that the current method does not take

7We did not calculate IAA but few conflicting annotations occurred. Conflicts in annotations were resolved after discussion.
8In the case of local text reuse this can signify parts of the document, in case of global text reuse it refers to the entire

document.
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Category label # document pairs in reference set Precision Recall F1-score
2 218 0.96 0.66 0.78
1 55 0.04 0.05 0.05
0 1451 0.95 0.99 0.97
macro-average - 0.65 0.57 0.60

Table 3: Precision and Recall scores for OCRed corpus (GTR)

document length into account. Some reports are highly similar in all sections but for the ‘conclusion
section’. In other document pairs, the intermediary versions are missing only one section which is
present in the final version. One way of dealing with such differences between text versions would be to
add a boosting factor for longer text insertion, i.e. a long block of inserted text should have a stronger
(negative) impact on the similarity score than the same number of inserted characters spread out over
various, shorter blocks of inserted text. This approach would certainly improve classification accuracy
between the ‘1’ and ‘2’ categories, but the booster factor would be hard to determine with regards to
the document length. A more accurate approach would be to equip the tool with additional data, either
on document structure, e.g. perform the comparison on section level rather than document level, or on
the time stamps of the generated documents. While many documents of category ‘1’ are mislabeled as
near-duplicates, analysis of the correct pairings in category 2 shows that the tool exhibits a high precision
in extracting real near-duplicates, even in the face of a high OCR error rate (D’hondt et al., 2016).

6 Conclusion

In this paper we present a character-based tool for the detection of text reuse, and evaluate its usability
on two different French EHR corpora. We find that our tool is robust to the surface variation in the two
corpora which were introduced by OCR and orthographic errors as well as variations introduced by the
de-identification process. As such we believe it is well-suited to be included in a NLP pipeline that will
process a large variety of medical corpora. While the tool generally achieves a high recall score which
is important for the subsequent pipeline, it lacks in precision. The tool is not able to distinguish more
‘semantic’ differences such as the differences between intermediate and final versions, or when reports
describe highly similar yet different events. To capture such information the tool needs to be coupled
with additional information in the NLP pipeline such as information on the time stamp of the document,
or information on document structure, i.e. so that the tool will only be run on parts of the document that
contain free text. One limitation of this study is the size of the EHR corpus used for testing the method.
While the preliminary results obtained here are encouraging, they would need to be confirmed on a larger
data set. We plan to address this in future work in collaboration with physicians who will also provide
qualitative feedback on the usability of the tool in a clinical setting.
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Abstract

An important subtask in clinical text mining tries to identify whether a clinical finding is expressed
as present, absent or unsure in a text. This work presents a system for detecting mentions of clinical
findings that are negated or just speculated. The system has been applied to two different types of
German clinical texts: clinical notes and discharge summaries. Our approach is built on top of NegEx, a
well known algorithm for identifying non-factive mentions of medical findings. In this work, we adjust
a previous adaptation of NegEx to German and evaluate the system on our data to detect negation and
speculation. The results are compared to a baseline algorithm and are analyzed for both types of clinical
documents. Our system achieves an F1-Score above 0.9 on both types of reports.

1 Introduction

Named entity recognition (NER) and relation extraction (RE) are central research topics in medical
text mining. Clinical reports often contain a large number of expressions of negation and speculation.
It is important to recognize whether extracted assertions (especially on medical conditions) describe
these findings as factual, as contrafactual (absent) or as speculated (suspected). If, for instance, the
report mentions urolithiasis (kidney stones) it surely matters, whether this medical condition has been
diagnosed, rejected or merely suspected.

In comparison to many other text types, electronic health reports, radiology reports and other kinds of
medical reports are often written in a rather telegraphic style. Furthermore they contain many technical
terms as well as non-standard and ambiguous abbreviations (Kim et al., 2011). Many of those issues also
appear in social media texts (Reitan et al., 2015). However, in the biomedical domain there are only very
few annotated corpora available, due to data privacy issues. Therefore the curation or development of
suitable data and tools for the clinical domain pose great challenges.

Various tools have been created for detecting negations and speculations in English medical reports.
Probably the most popular one is NegEx (Chapman et al., 2001). The algorithm takes as input sentences
with tagged findings and a list of negation and speculation terms called triggers and then determines
whether the finding is within the scope of negation or speculation. In comparison to English, German
clinical data differs in various characteristics which have to be taken into account for the successful
application of an algorithm detecting non-factuality. First of all, German is a richly inflected language
(e.g. no can be translated as kein, keiner, keine etc.). Furthermore, German includes discontinuous
triggers, such as kann ... ausgeschlossen werden ...1 (can be ruled out). Triggers may precede, but
may also follow the negated expression, as presented in Table 1. Regarding this situation, Wiegand et
al. (2010) state, that the detection of negation scope in German language is more difficult than in other
languages, such as English.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.

1Dots indicate potential positions of the finding: (kann ... finding... ausgeschlossen werden, ... finding... kann aus-
geschlossen werden)
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precede follow
frei von Beschwerden beschwerdefrei
(free of symptoms) (without symptoms)
nicht klopfschmerzhaft Hinweise für eine cerebrale Metastasierung gibt es derzeit nicht.
(no percussion tenderness) (There is no indication of a cerebral metastasis.)

Table 1: Same negation triggers that might precede or follow a finding

Another interesting aspect of German negations are surrounding triggers, such as lehnt ... ab (reject)
and wies ... zurück (declined)). In many cases it is possible to reduce/shorten triggers. However, in the
case of given examples, a reduction would make the triggers too general, extending them to different
meaning: wies (without zurück) for instance, could mean to reject, but also to verify in combination with
the separated particle nach. Similar to English, negations can be directly bound to a target word as prefix
or suffix, such as unauffällig (unremarkable), fettfrei (nonfat) or motivationslos (without motivation).

In this paper we present an adaptation of NegEx (Chapman et al., 2001) for German clinical notes and
discharge summaries. Our work is based on a previous version of NegEx triggers translated to German
(Chapman et al., 2013). We conducted the following modifications: 1) we corrected and extended the
trigger set, 2) we extended the regular expressions to possible expansions, and 3) we classified the triggers
according to their position relative to the findings. Our work differs from Chapman et al. (2013) in that
we evaluate NegEx on German clinical texts. The evaluation is carried out on two types of clinical data
sets (clinical notes and discharge summaries) and it is compared to a baseline algorithm.For evaluation
purposes we created a gold standard. Our system outperforms the baseline on both document types and
achieves a F1-Score of over 0.9.

The remainder of the paper is organized as follows. Section 2 presents previous work in the detection
of negation terms in the medical domain. Section 3 presents the main contributions, by explaining the
methods and the data sets used, by providing an analysis of length and types of negation and speculation
terms and by describing the generation of our gold standard. Section 4 presents the results of evaluating
each of the algorithms with the test data set. After a discussion of the obtained results, the paper ends
with conclusions and an outlook on future work.

2 Previous Work

Negation detection in the biomedical domain is a well-studied problem. Various workshops and chal-
lenges have addressed this problem in the last years, such as the Workshop on Negation and Speculation
in Natural Language Processing in 2010,2 CoNLL 2010 Shared Task: Learning to Detect Hedges and
Their Scope in Natural Language Text (Farkas et al., 2010), the 2010 i2b2 NLP challenge, that focused
on the negation and uncertainty identification (Uzuner et al., 2011) and SEM 2012 Shared Task: Resolv-
ing the Scope and Focus of Negation (Morante and Blanco, 2012). Dı́az published a book about Negation
and Speculation detection in medical texts (2014). S. M. Meystre and Hurdle (2008) present a review of
information extraction in biomedical texts, which also addresses negation detection.

A widely used tool for negation and speculation detection is Negex (Chapman et al., 2001). The
method uses a simple algorithm based on regular expressions to detect triggers that indicate negation
or speculation. Next it uses a window of words preceding or following each relevant term to determine
if the term is under the scope of negation or speculation or not. NegEx has been extended to Context
(Harkema et al., 2009) and adapted to Swedish, French, Spanish and other languages with good results
(Skeppstedt, 2011; Deléger and Grouin, 2012; Cotik et al., 2016; Stricker et al., 2015; Costumero et al.,
2014; Afzal et al., 2014). Beside NegEx and Context a wide range of other methods exist, e.g. based on
syntactic techniques (Huang and Lowe, 2007; Mehrabi et al., 2015; Sohn et al., 2012; Cotik et al., 2016)
or machine learning techniques (Uzuner et al., 2009). However, in clinical context simple methods, such
as NegEx work very reliably for the task they have been designed for.

2http://www.clips.ua.ac.be/NeSpNLP2010/program.html
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Other research has been dedicated to clinical negation detection together with the detection of patho-
logical entities in German texts. Bretschneider et al. (2013) classify sentences containing pathological
and non-pathological findings in German radiology reports. Their approach uses a syntacto-semantic
parsing approach. Gros and Stede (2013) present Negtopus, a system that identifies negations and their
scope in medical diagnoses written in German and in English.

Chapman et al. (2013) translate NegEx triggers into Swedish, French and German. The work reports,
among others, the frequency of occurrence of German triggers in an annotated corpus of German medical
text (Wermter and Hahn, 2004), that, as far as we know, is not available for public use. Both publications,
(Gros and Stede, 2013) and (Chapman et al., 2013), are related to our work. However, Negtopus focuses
currently only on negation terms. It has been evaluated on a set of only 12 cardiology reports for German
negation detection. NegEx with the German trigger set has not been evaluated and thus its performance
is still unknown to us.

3 Methods

The adaptation of NegEx to German requires having a set of triggers written in German. In order to
evaluate the new system, a gold standard data set is necessary, consisting of medical text with tagged
findings and a classification of those findings as negated, speculated or affirmed.

3.1 Baseline Algorithm description

The baseline algorithm uses a small list of negation and speculation terms obtained from a previous
annotation task of another dataset. If one of those terms co-occur in the same sentence with a previously
tagged finding, we assume the finding is negated or speculated. If not we assume it is affirmed.

3.2 NegEx Algorithm description

NegEx (Chapman et al., 2001) takes as input sentences, each of them with a previously tagged finding,
and a list of triggers (negation and speculation terms), and as output it determines whether the finding
is negated, speculated or affirmed. Each trigger has a label assigned, which determines the scope of the
negation or speculation. PREN and POST labels correspond to negation terms that occur before and
after the finding respectively. The same occurs with PREP and POSP, referring to speculation terms.
CONJ refers to trigger terms that terminate the scope of a negation or speculation and PSEU to pseudo-
negations.3 For more information refer to Chapman et al. (2001).

The algorithm takes the following decisions: if a finding appears more than once in the sentence, and
one of the occurrences is negated, the algorithm assumes that all occurrences are negated. If there are
many occurrences of the same trigger in the trigger list (with different labels), the algorithm uses the
label according to this precedence list: PREN, POST, PREP and POSP.

3.3 Triggers

The translated NegEx triggers of Chapman et al. (2013) are publicly available and our work is based
on them. However, due to various reasons the original translation has been adapted by us. First, in
some cases the authors suggest alternative formulations and regular expressions for a trigger. Those
alternatives were added to the trigger list and regular expressions were transformed into strings (e.g.
kein.{0, 2}signifikant.{0, 2}(aenderung.{0, 2}|Veraenderung.{0, 2}) to keine signifikante aendeurng |
keine signifikanten anderungen, etc.) (no significant changes). Next, a small set of triggers have been
exchanged by using an alternative translation. Moreover, new triggers which appeared to be useful were
also added to the list. Classification with respect to speculation, proper negation and pseudo-negations
and direction of scope was also revised for all triggers (i.e. the appropriate labels were assigned). A set
of 506 triggers was obtained.4 In addition to our trigger set, tests were also performed with the triggers
translated by Chapman et al. (2013) without modification. The set contains 167 triggers. Alternative
translations and regular expressions were not considered.

3If a finding is under the scope of a PSEU trigger, NegEx assumes it is affirmed.
4The link to the trigger data set will be made available here: http://macss.dfki.de.
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3.4 Creation of a German Negation and Speculation Gold Standard

The data used for the following experiments consists of anonymized German discharge summaries and
clinical notes of the nephrology domain. Both types of documents (discharge summaries and clinical
notes) are written by medical doctors and have significant differences. The clinical notes are rather short
and are written by doctors during or shortly after a visit of a patient. Discharge summaries instead are
written during a stay at the hospital. The document is more structured. It contains information about
medical history, diagnosis, condition, medication etc. of the patient. Discharge summaries contain much
more text compared to clinical notes and often contain longer and more well-formed sentences.

Both types of documents exhibit non-standard abbreviations, that might include findings and negations
among them (e.g. oB -ohne Befund (without finding)-, opB -ohne pathologischer Befund (without patho-
logical finding)-). Texts have morphemes representing negation, speculation or findings and positioned
as prefix, suffix or in the middle of a word. Examples are un*, like in unangenehm (uncomfortable), un-
klar(e—er—es) (not clear), unverändert(e) (unchanged) and *los or *losigkeit, like in Appetitslosigkeit
(anorexia) and Schlaflosigkeit (insomnia) (both represent findings), problemlos(e) (without problems)
(that represents the absence of a finding). Table 2 provides an overview of the annotated data set used to
test our experiment.5

discharge summaries clinical notes
# number of documents 8 175
total amount of words 6221 6674
total amount of sentences 1076 1158
avg. words per document (std. deviation) 777.63 (322.14) 38.14 (30.49)

Table 2: Comparison of annotated data sources

In order to be able to evaluate the results of our NegEx adaptation, a manually annotated gold standard
was required. The annotation was carried out using the brat rapid annotation tool.6 Moreover, in order
to decrease the time dedicated to manual annotation, the data was automatically pre-annotated using an
annotation tool (Roller et al., 2016).

Potential triggers were detected by using a small negation and speculation dictionary. Findings were
pre-annotated using data of the UMLS7 Methathesaurus. If a given string can be found in UMLS and
its semantic type matches a set of predefined types (Anatomical Abnormality, Congenital Abnormality,
Acquired Abnormality, Finding, Sign or Symptom, Pathologic Function, Disease or Syndrome, Mental
or Behavioral Dysfunction, Neoplastic Process, Injury or Poisoning), then the string was annotated as
a finding by the tool. After, the data was processed by a human annotator. Annotations wrongly made
by the tool were removed or corrected and missing concepts were included. Furthermore, the annotator
had to decide and annotate whether a given finding occurs in a positive, negative or rather speculative
context. Finally, the annotations were corrected by a second -more-experienced- annotator to enhance
the quality of the data.

Table 3 shows the number of findings that are affirmed, the number that are speculated and the number
that are negated in the gold standard. The table shows, that both document types contain a large number
of negations. It is interesting to note, that the ratio of affirmed and negated/speculated concepts is very
different in both sets. While clinical notes contain approx. 25% more negations than affirmations, the
data set contains hardly any speculations. On the other hand, the discharge summaries contain three times
more affirmations than negations and speculations. However, the number of speculations is significantly
higher compared to the clinical notes.

Table 4 and Table 5 present an analysis of the annotated negation and speculation terms for each
document type. The tables depict the most frequent negation and speculation triggers in combination with

5The information was generated by applying a German tokenizer and a sentence splitter. All non alphabetical tokens were
removed.

6http://brat.nlplab.org/
7https://www.nlm.nih.gov/research/umls/
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type of finding discharge summaries clinical notes
affirmed 390 255
negated 106 337
speculated 22 4
findings (distinct) 518 (366) 596 (205)

Table 3: Number of affirmed, speculated and negated findings in the gold standard.

trigger order (i.e. the trigger comes before or after the finding) and its overall frequency. Furthermore,
the tables present the mean word distance between trigger and finding, including standard deviation (std)
and the overall information about how frequently a trigger occurs before (b) or after (a). Table 4, for
instance, shows that kein Nachweis (no evidence) is used in 14.15% of the cases as negation trigger
before the finding. Furthermore the table shows that the mean word distance between trigger and finding
in the discharge summaries is 0.92 with a standard deviation of 1.42. In 97% of the cases the trigger
occurs before the finding in the discharge summaries.

discharge summaries clinical notes
keine (no, b, 35.85%) keine (no, b, 64.47%)

Trigger patterns kein (no, b, 15.09%) kein (no, b, 27.99%)
(translation, kein Nachweis (no evidence, b, 14.15%) keine (no, a, 3.46%)
position, freq.) ohne (without, b, 9.43%) kein (no, a, 0.94%)

kein Hinweis (no indication, b, 5.66%) ohne (without, b, 0.63%)
mean distance (std) 0.92 (1.42) 0.40 (5.62)
position (b/a) 97% / 3% 94% / 6%

Table 4: Annotated negation terms

discharge summaries clinical notes
Verdacht (suspicion, b, 30%) ? (?, a, 100%)

Trigger patterns fraglich (doubtful, b, 10%)
(translation, am ehesten (likely, b, 10%)
position, freq.) wahrscheinlich (probable, b, 5%)

wahrscheinlich (probable, a, 5%)
mean distance (std) 1.55 (1.64) 0 (0)
position (b/a) 80% / 20% 0% / 100%

Table 5: Annotated speculation terms

The tables show that the variation of triggers in the clinical notes is much smaller compared to the
trigger variation in the discharge summaries. This can be explained by the telegraphic style of the clinical
notes. In those reports, information is written very quickly, often while the patient is sitting next to the
doctor. Due to time pressure and the internal use of the notes, verbose formulations are rare.

The analysis of the data and the development of the trigger set were performed in an independent way
(annotated negation and speculation terms were not added as triggers).

4 Results

In this section we present the negation and speculation detection results of our NegEx adaptation (which
we call OTS -our trigger set-) and the comparison against the original NegEx triggers provided by Chap-
man et al. (2013) (which we call NTS -NegEx trigger set-) and against our baseline. Results are pre-
sented in Table 6 and Table 7 and evaluated by using Accuracy, Precision, Recall and F1. In this case
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True Positive (TP) refers to terms negated by the Gold Standard and correctly predicted by the methods.
Furthermore, each table indicates the number of correctly and wrongly predicted instances.

dataset discharge summaries clinical notes
algorithm Baseline NegEx Baseline NegEx
triggerset – NTS OTS – NTS OTS
TP 103 65 99 333 123 328
FP 46 9 13 55 10 19
TN 366 403 399 204 249 240
FN 3 41 7 4 214 9
Accuracy 0.91 0.96 0.96 0.90 0.62 0.95
Precision 0.69 0.88 0.88 0.86 0.92 0.95
Recall 0.97 0.61 0.93 0.99 0.36 0.97
F1 0.81 0.72 0.91 0.92 0.52 0.96

Table 6: Performance on the negation detection task for both datasets with NegEx and with the baseline.
TP refers to True Positive results, FP to False Positive, TN to True Negatives and to False Negatives.
NTS refers to NegEx original triggers and OTS to our trigger set.

dataset discharge summaries clinical notes
algorithm Baseline NegEx Baseline NegEx
triggerset – NTS OTS – NTS OTS
TP 9 0 11 1 0 2
FP 14 0 7 5 5 8
TN 482 496 489 587 587 584
FN 13 22 11 3 4 2
Accuracy 0.95 0.96 0.97 0.99 0.98 0.98
Precision 0.39 0 0.61 0.17 0 0.2
Recall 0.41 0 0.5 0.25 0 0.5
F1 0.4 0 0.55 0.2 0 0.29

Table 7: Performance on the speculation detection task for both datasets with NegEx and with the base-
line.

Table 8 shows the negation and speculation triggers that appear more than four times, taking into
account discharge summaries and clinical notes.

5 Discussion

The results show, that the baseline algorithm provides promising results for the negation detection task.
This might have to do with the fact that in German many of the triggers can be used before or after
the finding (see Table 1). However, the results show, that in all cases the NegEx adaptation achieves
better results compared to the baseline algorithm. In particular the negation and speculation detection
applied to the discharge summaries leads to much better results than using the baseline algorithm. This
can be explained by the fact that the discharge summaries include a larger variety of triggers, which are
not covered by the baseline, but covered by the German trigger set. Moreover, discharge summaries
have longer and more complex sentences, that include CONJ triggers, which end the scope of negation.
However, the results show, that both algorithms achieve better results using the clinical notes. We believe
the reason is related to the fact that clinical notes have much shorter and simpler sentences than the ones
of discharge summaries. The test with the original German trigger set achieves lower results than our
NegEx adaptation and our baseline. The results improve and are similar to ours (F1=0.92 for discharge
summaries and 0.94 for clinical notes) if the trigger keine is added to NTS.

120



trigger type trigger translation number of occurences
negation keine, kein no 471, 226

ohne without 49
nicht not 50
noch still/yet 40
aber but 18
jedoch but/however 15
bis auf except for 11
entfernt removed 7

speculation verdacht suspicion 13
ehesten, eher rather 13,8
nicht sicher not sure 5
? ? 14

Table 8: Negation and speculation triggers used more than four times. Both kind of reports are taken into
account.

Considering the 506 triggers of our data, only 27 occur in the clinical reports (see the ones used more
than four times in Table 8). This makes us infer that the translation effort could be avoided in further
adaptation of NegEx to other languages. Other works arrived to similar conclusions (Cotik et al., 2016).

Reviewing the errors, we found that syntactic analysis could improve our results. For instance, in
kein starker Krampf (no strong cramp), Krampf is under the scope of kein (no), a PREN trigger, but
no is actually addressing to strong and not to cramp. The use of Part of Speech tagging or dependency
parsing information could help us avoid this error. Moreover, the original NegEx speculation triggers
did not help us to find speculation. In fact with those triggers no speculation terms have been detected
(see Table 7). Thus, a number of speculation triggers have been added to OTS. Triggers were taken
from general German knowledge and from the transformation of some of the original negation triggers
to their corresponding speculation triggers (e.g. Ohne Verdacht -without suspicion- originated Verdacht
-suspicion-). In particular, we added the trigger ? as a speculation term occurring after the finding, since
we knew it is frequently used in the clinical notes to express uncertainty. Some False Negative results
were generated by the abundance of acronyms, some of them indicating negation of findings (e.g. in oB
-ohne Befund, without finding-, B -Befund, finding- was annotated as negated, but we don’t have o-ohne,
whithout- as a trigger). In all cases negation detection achieves better results than speculation detection.
This might be due to the fact that there is much greater variety of triggers for indicating speculation than
triggers for indicating negation. Additionally, we detected some missing triggers. In some cases two
classifications of the triggers (e.g nicht) were possible (see Table 1). For those triggers we missed some
correct classifications, where the trigger appeared in the less frequent order (for example Lymphozele
nicht mehr sichtbar , Lymphocele not visible anymore) was classified as positive, since nicht was in the
trigger list as a PREN trigger. See also trigger preference list in Section 3.2.

Parenthesis and commas were not included as CONJ triggers in our trigger set. After evaluating FP
and FN results (see Tables 6 and 7) tests were performed including them. Including parenthesis and
commas as triggers reduces the number of false positives. Consider for example those cases that use the
trigger nicht: Hat Nitrendipin nicht vertragen (Flush) (Did not tolerate Nitrendipin (flush)). Befinden seit
Entlassung nicht gebessert, hat weiterhin Diarrhoe (Condition has not been improved since discharge,
has still diarrhoea). In the previous examples the findings Flush and Diarrhoe are out of the scope of
negation and therefore misclassified. We also could avoid false negatives in speculation detection in
cases such as keine Oedeme (...) (serom?) (no edema (...) (serum?)), because with our trigger set serum?
is under the scope of kein. In a subsequent test, we included parenthesis and commas as CONJ triggers,
which increased F1 of clinical notes to 0.98 and F1 of discharge summaries to 0.94 for negations and F1
of clinical notes to 0.62 (with a recall of 1) and F1 of discharge summaries to 0.58 for speculation.

As explained above, clinical notes are much shorter than discharge summaries. The language is less
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verbose, often just consisting of sequences of noun phrases with some embedded prepositional phrases.
Discharge summaries in contrast contain more verbs and full sentences. Thus it is not surprising when
our analysis of triggers shows that the term kein(e) -no- as a negative determiner is much more often used
in clinical notes (571 vs. 128) whereas the sentence negation nicht (not) occurs more often in discharge
summaries (32 vs 18).

Our NegEx adaptation for negations yields very good results. Although not easily comparable (be-
cause of being applied to different languages and types of medical reports), they are better than the ones
obtained by the original algorithm for English clinical texts and to the adaptations done to Swedish and
Spanish (in this last case only for clinical notes, discharge summaries results are similar to results ob-
tained for Spanish). They also outperform results obtained on 12 German cardiology reports by Gros and
Stede (2013). We believe that the fact of having short sentences with simple syntactic structures helps
us to get good results. It should also be considered that our data set is highly redundant (some negations
or negation types occur frequently). In order to improve results an hybrid method combining syntactic
analysis could be used.

6 Conclusions

This paper presented negation and speculation detection of medical findings reported in German clinical
data. Two approaches were introduced: A dictionary look-up algorithm, that was taken as a baseline
and an approach based on a revised version of an existing German NegEx trigger set. Tests were also
performed with triggers that were previously translated to German. The system has been tested on two
different data sets, German discharge summaries and German clinical notes. In both cases the German
NegEx system outperforms the baseline and achieves an F1-Score above 0.9. Furthermore this work
presented an analysis of negations and speculations existing in both document types. The analysis shows,
that physicians tend to use a structurally simple and precise language. Therefore the degree of lexical
variation in expressing negation is very low. However, applying NegEx to other text types might turn out
to be more challenging.

As Chapman et al. (2013) state, the translation of triggers to another languages has faced a number of
issues. German is a language with agglutinative features, where a morpheme representing negation can
be added to a word. NegEx does not address this fact. German is an inflected language, so a single term
can be translated to many others, because of gender and number agreement. This increased the size of
our trigger set.

One of the challenges of working with medical language is the need for careful anonymization. Texts
also exhibit large numbers of technical terms and non-standardized and ambiguous abbreviations. All
of this raises the efforts needed for corpus curation and annotation raising the demand for gold-standard
data that can be shared.

7 Future Work

We plan to detect negation that is represented by bound morphemes (prefix or suffix) of relevant content
words. If a lexeme lf stands for a medical finding according to the UMLS thesaurus, lf +”los” (without)
should be considered as a negation of the finding, e.g., schlaflos (without sleeping), but also lf +”los” or
lf +”losigkeit” could be included in the thesaurus (e.g. Appetitslosigkeit (anorexia) and Schlaflosigkeit
(insomnia)), and in this case the presence of suffix or infix los does note indicate the absence of a finding.

We also intend to investigate the benefits of employing syntactic analyses to improve the results.
Especially for the clinical notes, chunk parsing technology will have to be adapted in order to cope with
the nature of this text sort.
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Abstract 

Effective knowledge resources are critical for developing successful clinical decision support 

systems that alleviate the cognitive load on physicians in patient care. In this paper, we describe 

two new methods for building a knowledge resource of disease to medication associations. These 

methods use fundamentally different content and are based on advanced natural language pro-

cessing and machine learning techniques. One method uses distributional semantics on large 

medical text, and the other uses data mining on a large number of patient records. The methods 

are evaluated using 25,379 unique disease-medication pairs extracted from 100 de-identified 

longitudinal patient records of a large multi-provider hospital system. We measured recall (R), 

precision (P), and F scores for positive and negative association prediction, along with coverage 

and accuracy. While individual methods performed well, a combined stacked classifier achieved 

the best performance, indicating the limitations and unique value of each resource and method. 

In predicting positive associations, the stacked combination significantly outperformed the base-

line (a distant semi-supervised method on large medical text), achieving F scores of 0.75 versus 

0.55 on the pairs seen in the patient records, and F scores of 0.69 and 0.35 on unique pairs. 

1 Introduction 

Electronic Health Record (EHR) systems have become invaluable repositories of patient information, 

but their poor design and inadequate functionality make it difficult for physicians to assimilate the vast 

amounts of data, reducing physician productivity and negatively impacting patient care [1] [2]. Ad-

vanced clinical decision support applications can reduce the cognitive load on physicians and improve 

patient care. These applications need medical knowledge for effective reasoning. One such knowledge 

is relationships (or more abstractly, associations) between diseases and medications. While Unified 

Medical Language System (UMLS) [3] semantic network contains manually curated entity relation-

ships, it falls short in a few ways: its coverage is inadequate, the relations are binary, and it is not always 

clear how far to traverse in the network. An automated association scoring method that provides high 

coverage and accuracy is highly desirable and can be used to build a useful knowledge resource. 

There are many uses for such a method and knowledge resource in clinical applications because these 

associations are not explicitly maintained in a typical patient record. The method (or the resource) can 

be used in a patient record summary to show clinicians which medications are related to a patient’s 

active medical conditions. It can also be used in developing cohort models and for predicting disease 

likelihood and progression using probabilistic graphical models. In this paper, we present two new meth-

ods for scoring associations between diseases and medications, and assess their accuracy and coverage.  

One of the methods is based on mining ordered medications data in millions of patient records and 

leveraging the temporality of events, such as disease diagnosis and medication ordering. The data min-

ing produces statistical measures for disease and medication pairs, which are then used as features in a 

supervised machine learning algorithm for association scoring between a disease and a medication. A 

learned F1-optimized threshold is then used to classify positive and negative associations. 

The second method is based on features obtained with distributional semantics on a large medical 

text, complemented with features from UMLS. Distributional semantics is used to obtain synonyms, 

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://crea-
tivecommons.org/licenses/by/4.0/ 
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relations between words, and to develop a taxonomy of the concepts in the domain. From UMLS, se-

mantic types and relations of the entities are retrieved as features. Once again, a supervised machine 

learning model provides a score for the association, and a threshold is also learned to classify positive 

and negative associations. 

Two aspects of relations need to be considered – type and context. Given two entities, the type of 

relationship between them can be specific (such as “treats”, “prevents”, or “causes”) or it can be anon-

ymous. Further, a relationship between two given entities can be contextual in that a specific passage 

may entail a specific relationship between the entities, but this may or may not hold true in a larger 

corpus. This paper concerns itself with anonymous and context independent relationships, which we call 

associations. 

We conducted accuracy and coverage analysis using entity pairs from 100 de-identified patient rec-

ords provided to us by a large multidisciplinary hospital system. The diseases and medications of each 

patient were paired and these pairs formed the data set for this study. Medical experts manually labeled 

each unique pair in the data set. We conducted 10 x 10 cross validations, calculated standard precision, 

recall, F1 scores, and coverage measures, and plotted P-R curves. 

Results showed that the distributional semantics method provided higher recall, the data mining ap-

proach provided higher precision and the stacked ensemble of the two methods achieved the overall best 

performance. Both methods outperformed a previously reported baseline method that uses manifold 

models and distance learning on a large medical corpus.  

2 Related Work 

In general, entity associations can be found in human readable form in many sources. Medical textbooks, 

journal papers, and web content include discourse that states or implies associations. Formal documents, 

such as the FDA drug labels, are more organized textual resources. Patient records themselves are an-

other valuable source. In addition, UMLS contains relationships such as “treats” and “diagnostic-of”. 

There is a need for automated method(s) to leverage these sources. 

Many automated methods exist for relation extraction from passages in general text; a recent review 

[4] summarizes the research. The 2010 i2b2/VA challenge [5] included extraction of a specific set of 

relations from clinical notes. However, more work is needed to create a knowledge method or resource 

for clinical applications. One recent study [6], which we use as the baseline, successfully used manifold 

models and distance learning to extract seven frequent relations (defined in UMLS) from medical text 

with the intention of creating a knowledge resource, however, its coverage was limited. 

Another relevant system and method is MEDI [7], which builds an indication to prescribable medi-

cations association resource using four public resources - RxNorm, Side Effect Resource (SIDER) 2, 

MedlinePlus, and Wikipedia. The resources are treated as separate voting entities in this approach, which 

led to the conclusion that either the highest accuracy can be achieved with limited coverage (when all 

resources contain the entities) or that moderate accuracy can be achieved with a higher coverage (when 

only fewer resources contain the entities). In contrast, the methods described here automatically “learn” 

optimal use of the underlying resources. 

In [8] [9], association rule mining from EHR records was used to extract medication to disease rela-

tionships. The fundamental strategy in these studies was to use co-occurrence of medication orders and 

patient problems as a source to automatically build association rules between medications and problems. 

In one of the two methods studied here, such a co-occurrence of medications and problems in a patient 

record is extracted as one of several mined statistics. A systematic review of existing medication to 

indication (i.e. a symptom or a diagnosis) knowledge bases and their appraisal was presented in [10]. 

While an abstract appraisal is useful, here, we attempt a quantitative accuracy analysis with clinical 

decision support applications in mind.  

3 Methods and Experiments 

3.1 Distributional Relation Extraction (DRE) Method 

Distributional Relation Extraction (DRE) is a supervised machine learning method for discovering as-

sociations between given entity pairs using distributional semantics and UMLS. Some of its features are 

derived from distributional semantics applied to a large medical corpus, and the remaining features are 
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derived from UMLS. Let us assume that DRE is attempting to determine the strength of the association 

between two arguments, disease Hyperlipidemia and medication Simvastatin.  Figure 1 shows the fea-

tures generated for the two arguments. Note that the feature space is sparse and high dimensional. The 

feature space is described below: 

UMLS Type Features. The intuition is that the types of the arguments (in a taxonomy) are important 

constraints for association scoring, as most of the relations hold between the entities of specific types. 

For example, given the relation may_treat between two arguments, it is expected that the type of the 

first argument is a Medication, Chemical, Drug, etc. and the type of the second argument is a Disease, 

Syndrome, or Disorder. UMLS taxonomies are used to obtain one set of argument type features (the 

second set is described below). Since types in UMLS have multiple levels of granularity, DRE uses 

multi-granular features: semantic groups for coarse granularity, semantic types for medium granularity 

and MeSH (Medical Subject Heading) types for fine granularity. The type features are binary valued 

and so they have a value of 1 when present. In Figure 1, notice that for the first argument, Simvastatin, 

T1-C0003277 (with label Cholesterol Inhibitors) is the MSH type, ST1-T121 (with label Pharmacolog-

ical Substance) is the semantic type and SG1-CHEM (with label Chemicals and Drugs) is the semantic 

group. We experimented using combinations of UMLS types for the arguments, but did not see signifi-

cant performance improvement. 

Distributional Semantics (DS) Type Features. DRE features also include types induced by distribu-

tional semantics using the text corpora for the arguments, and the distributional semantics tool used here 

is called JoBimText [11], which is an open source project. The JoBimText tool provides a framework 

for creating a distributional semantics resource from large corpora, from which we obtain relations be-

tween words, similar terms or pseudo-synonyms for a word, and a taxonomy for the domain. We built 

the JoBimText resource as described in [12] by preprocessing the text corpora available for our project.  

JoBimText uses a dependency parser adapted for the medical domain [13] for identifying syntactic re-

lations, and the baseline relation extraction system mentioned earlier [6]. The JoBimText framework 

provides an API to access the resource built in this way. Unlike the UMLS types, there is only a single 

level of granularity for the DS types. But, each term may have multiple types. The DS type features are 

determined for both arguments, as shown in Figure 1. For Simvastatin, the DS type features are T1-

Medication, T1-Treatment and T1-Inhibitor. 

Relation Features. The existence of any relations between the two arguments is likely a trigger for 

other relations. For example, knowing that a drug prevents a disease is an indication for a “treats” rela-

tion as well. As mentioned above, the JoBimText tool can be used to identify relations that exist between 

the arguments in the corpus. However, a specific pair of arguments may not be mentioned together in 

the corpus (as processed by JoBimText) often enough, but pairs of similar terms may be present. When 

such expanded term pairs are considered, the relation features may provide a stronger signal. Therefore, 

in DRE, each relation argument is first expanded to its similar terms. As shown in Figure 2, Simvastatin 

is expanded to seven other medications including Atorvastatin and Statin, and Hyperlipidemia is ex-

panded to seven other diseases including Dyslipidemia and Hypercholesterolemia. The similar term ex-

pansion is done by using the JoBimText tool. The number of expanded terms are limited to the top 10 

relevant terms, based on empirical observation of optimal precision-recall trade-off in our study. Among 

the expanded term pairs, DRE finds three may_treat relations, two may_prevent relations, and one 

 
Figure 1. DRE features for Hyperlipidemia and Simvastatin. 

 
Figure 2. Example of similar terms & relations as used in DRE 
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nnMod_modnoun relation (a syntactic relation obtained by analyzing the parse tree) using JoBimText 

as shown in Figure 2. The counts for these three relations become feature values for the relation features 

as shown in Figure 1. 

Topic Similarity Features. The topic similarity between arguments can be a useful feature to detect 

semantic relations between them [14]. Topic similarity does not explain why things are related but does 

provide an indication of the presence of some relation between them. For example, Cholesterol and 

Diabetes are related, but their topic similarity is the same regardless of whether the relation is Diagnose 

or Treat. We scored the topic similarity between the two arguments using Latent Semantic Analysis 

(LSA) [15] [16]. The value of the LSA feature is equal to the LSA similarity between the two arguments. 

For the Simvastatin-Hyperlipidemia example, the value of the LSA similarity is 0.4. 

3.2 Association Data (AD) method 

The second association scoring method is based on the intuition that the historical, actual patient care 

data for a medical problem indicates clinically relevant associations between patients’ problems and 

medications/drug-classes. This method uses a set of statistical measures obtained by mining structured 

and coded data in approximately six million, longitudinal patient records as features in a supervised 

machine learning model. The features are described below. 

(In the equations below, the following notations are used: 

��/ �� = patient records with/without an order for X and diagnosis of disease D, 

��	/	��	=	patient records with/without an order for X and diagnosis of a disease other than D, 

subscript A_D means after diagnosis D, subscript B_D means before diagnosis D, 

and the time window for “at”, “before”, and “after” are specified in the feature definitions.) 

Frequency at diagnosis. The fraction of patients who received an order for the given medication or its 

drug class among the patients who have been diagnosed with a given disease. The time window for the 

order is three months before or two days after. 

���	
��
(�,�) = 	
��

�� + ��

 

Relative Frequency at diagnosis. The fraction of patients who received an order for the medication or 

its drug class among the patients who have been diagnosed with a given disease relative to the other 

diseases. The time window is the same as above. 

������	
��
(�,�) = 	
��

��

 

After versus Before diagnosis. The ratio of the number of times the medication or its drug class was 

ordered before the diagnosis of a given disease to the number of times the treatment or test was ordered 

after the diagnosis. If the after count is zero, then the ratio is set to the maximum value observed. The 

time window is three months for “after” and three months for “before”. 


�������������
(�, �) = 	
�
_�

��_�

 

Odds Ratio at diagnosis. The odds ratio of receiving the medication or its drug class at diagnosis rel-

ative to the diagnosis of the given disease. The time window for “at” diagnosis is 30 days before and 

two days after.	

������
��
(�,�) = 	
�� ��⁄

�� ��
⁄

 

Odds Ratio Before diagnosis. The odds ratio of receiving the given medication or its drug class rela-

tive to before/at the diagnosis of the given disease. The time window is three months for “before” di-

agnosis and 30 days before and two days after for “at” diagnosis. 	

�������������
(�,�) = 	
��_� ��_�⁄

�� ��⁄
 

Odds Ratio After versus Before diagnosis. The odds ratio of receiving the given medication or its 

drug class relative to before/after diagnosis of the given disease. The time window is three months before 

for the “before” diagnosis and three months after for the “after” diagnosis. 

������
�������������
 =	
�
_� �
_�⁄

��_� ��_�⁄
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Number of Patients Ordered. Total number of patients who received an order for the medication or its 

drug class within three months before to three months after the first diagnosis of the disease. 

�(�,�) = 	�� 

Pearson Product-Moment Correlation. This feature is the Pearson correlation value between the given 

disease (D) diagnosis and ordering the given medication or drug class (X) at the time of diagnosis. The 

Pearson product-moment correlation is calculated using the standard formula, using diagnoses data set 

{� !, " = 1. .%, where �  is 1 if D is diagnosed in the patient record "	and 0 otherwise, and for each orders 

data set {& }, " = 1. .% where &  is 1 if X is ordered in the corresponding patient record "	and 0 otherwise. 

The number of patient records in the data set is % for both data sets. 

Jaccard Index. This feature is the Jaccard index calculated between the diagnoses set and the medica-

tions set for a given disease (D) and medication (X). 
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Arguments Expansion and Feature Aggregation 

Since the arguments to relation scoring are words and phrases (terms), it is necessary to map them to a 

standardized form so that the arguments can be matched with the data in the patient records. Therefore, 

all terms are first linked to one or more UMLS concept unique identifiers (CUIs) and then diseases are 

mapped to ICD9 codes and medications to RxNORM. In most cases, these mappings are one to many. 

So, for a given pair of disease and medication terms, (0, 1), the method first generates standardized 

pairs {(0 , 12), " = 1. . 3, 4 = 1. .%}, and then the above defined statistical measures for each pair of 

standardized entities. The next step is to aggregate these n x m feature vectors into a single vector for 

the (0, 1) using the decaying sum (where �5678(9: …	9<) = ∑
>?

@?

<
 A:  ) which produces a single vector, {7B, 

..., 7C}. This process is shown in Figure 3.  

3.3 Ensemble Method 

A stacked ensemble of DRE 

and AD methods, designated 

as DRE+AD, was created. 

Individual scores are used as 

features, and a supervised 

machine learning model 

learned the optimal way to 

combine these scores and 

hence the methods and their 

sources. This approach is 

known as stacking. We used 

stacking (rather than com-

bining features from both 

sources in a single model) 

for two reasons: (1) DRE and AD are fundamentally two different approaches and we wanted to study 

them separately and in combination; (2) DRE and AD achieved optimum performance with different 

machine learning methods – AD performed well with Random Forest because it uses a small number of 

features whereas DRE uses a high dimensional feature set which makes Logistic Regression a more 

suitable and effective approach.  

3.4 Models and Training 

For AD, a random forest [17] model was built since it provided the best accuracy. For DRE, DRE+AD, 

and for threshold learning, logistic regression models were accurate and were built with the LIBLINEAR 

package [18]. The training data set contained positive and negative examples of entity pairs labeled as 

associated (positive) or not associated (negative). As discussed below, positive and negative associations 

were imbalanced in the ground truth. We randomly sampled the larger set to create balanced training 

data. 

 
Figure 3. Argument expansion and feature merging in AD; In Feature Extractor, for 

each expanded pair, the set of features described in Section 3.2 are retrieved from the 

association data which was previously mined from patient records; In Feature Mer-

ger, the feature values of all expanded pairs are aggregated using the decaying sum 

(see the text) method to create a single feature vector for the given arguments.  
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3.5 Data Preparation 

For this assessment, approximately 122,374 disease-medication pairs, were extracted automatically 

from 100 de-identified, actual patient records that were obtained under an IRB approval from a large, 

multi-specialty hospital. Data characteristics are summarized in Table 1. The diseases for each patient 

record are obtained using an automated problem list generation [19] [20] but can be replaced by the 

diagnostic codes or other means. The medications are taken from the medication orders in each patient 

record and are represented as text strings and RxNORM codes (as entered in the medication order). 

Therefore, if a patient record has D diseases in the problem list and M medications in the medication 

orders then the patient record yields 

0	&	1 disease-medication pairs. 

 Two characteristics of this data are 

worth noting: (1) It contains duplicate 

pairs; (2) Negative examples (entities that 

don’t have an association) are signifi-

cantly larger than the positive examples. 

However, the data set is representative of 

the association scoring system input in re-

alistic clinical applications. To remedy the duplication and asymmetry, we present results first without 

duplicates and later show the impact of the occurrence frequency on accuracy. Furthermore, we sepa-

rately report accuracy for positively associated pairs and negatively associated pairs in the gold standard. 

3.6 Gold Standard Development 

The gold standard required for this study was developed by senior year medical students, who were 

presented with the pairs of unique entities from the data set and were asked to indicate whether a pair 

has an association or not. A physician (an MD) gave guidelines and examples to the students for the 

manual assessment. The students were instructed to identify any direct relationship between a pair. For 

example, the instructions allowed relationships such as a medication may treat or prevent a disease, or 

may cause a disease as a side effect. From the initial trials, it became obvious that the association is 

mostly independent of a patient and therefore any duplicate pairs in the aggregated data were eliminated 

and the students were asked to assess the relationship independent of the patient record from which the 

pair was drawn. Each association was assessed by two students and any conflicts were resolved by the 

MD. The gold standard was later vetted once the automated methods were run on this data, and correc-

tions, if any, were made to the gold standard. The final gold standard contained 25,379 unique disease-

medication pairs, including 1,642 positive instances and 23,737 negative instances.  

3.7 Experiments, Accuracy Metrics, and Analysis 

We used a 10 x 10 cross validation to conduct accuracy analysis. The model was always trained using 

an equal number of positive and negative pairs, but the model is tested on the imbalanced set. The results 

are reported for the aggregate of all 10-fold cross validation iterations. 

In the experiments, we tested the performance of four methods: the baseline method described earlier, 

DRE, AD, and a stacked ensemble of DRE and AD. Each experiment involved obtaining the association 

scores for each of the four methods for the entity pairs in the test set, using a threshold to determine if 

the association is positive or negative as per the method.  Association scores range from 0 to 1, and a 

scored association is positive if the predicted score is greater than or equal to the threshold, and negative 

otherwise. Using the gold standard, we then computed true positives, false positives, false negatives, 

and true negatives, from which we computed standard precision (P), recall (R), and F score (F1) for 

positive and negative associations. Note that if a method has no coverage for an entity pair, then a zero 

score is returned by the method and hence results in a negative association.  

F1 scores for positive associations were determined and plotted at threshold values from 0.1 to 0.9, 

in intervals of 0.1. We also plotted the precision-recall curves and compared areas under the curves. The 

threshold values that optimize F1 for each method were obtained and used in the final performance 

comparison of the methods.  

As one may recall from Section 3.5, the data contains multiple instances of some problem-medication 

pairs since the entity pairs are extracted from 100 patient records. For example, several patients may 

Table 1. Description of the data used in this study. 
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have been diagnosed with Diabetes and many of them may be prescribed Metformin as a treatment, in 

which case, the entity pair Diabetes-Metformin may occur several times in the data. Using the frequency 

of such occurrences in the original data as a weighting function, we determined weighted accuracy of 

the methods. 

4 Results and Discussion 

4.1 Coverage 

Table 2 shows the coverage for the baseline and AD methods. Coverage is the percentage of the entity 

pairs in the data for which the underlying methods and sources entail a positive or negative association. 

DRE, as it uses UMLS CUIs and types as some of its features, always returns non-empty values for the 

features. On the other hand, AD and the baseline method end up with all empty features, for at least 

some entity pairs. For example, if a medication is never prescribed for a disease, the patient records 

would never have any data for it. 

For the positive associations, AD has a very high cov-

erage (88%), but the baseline method has only 43% cov-

erage. This reflects in the baseline method’s poor accu-

racy in predicting positive associations. For the negative 

associations, both have poor coverage but it does not 

matter as much since the default score of 0.0 would end 

up being a correct prediction for negative associations. 

4.2 Accuracy, Thresholds, and P-R Curves 

First, consider the positive association at the optimum threshold values, as shown in Table 3. For the 

unique (i.e. unweighted) pairs, DRE performed slightly better than AD with an F1 score of 0.60 com-

pared to an F1 score of 

0.56 for AD. Both meth-

ods performed signifi-

cantly better than the 

baseline, which achieved 

an F1 score of only 0.35. 

The stacked method of 

DRE and AD performed 

better than the individual 

methods, achieving an F1 score of 0.69. Among the individual methods, AD had higher precision (0.62) 

and DRE had higher recall (0.66).  

When weighted entity pairs are considered, which represent the frequency of occurrence of the entity 

pairs in the patient records we used for this study, the performance pattern of the methods generally 

remained unchanged. DRE and AD performed significantly better than the baseline; each achieving an 

F1 score of 0.67. The stacked ensemble achieved the highest F1 score of 0.75. All methods achieved 

higher precision than recall. We handled the imbalanced nature of the dataset by learning a threshold 

value that optimizes the F1 score for positive associations, which is considered one of the effective ways 

to deal with imbalanced datasets [21]. The optimum thresholds are shown in Table 3 for the various 

methods, and Figure 4 shows how the F1 score varies with the threshold for the methods.  

An ablation study of feature groups 

for the unique (i.e. unweighted) positive 

pairs is shown in Table 4. We removed 

(ablated) a selected group of logically re-

lated features and determined the accu-

racy which would show the importance 

of the feature group to the model. For 

AD, using either drug-class or individual 

drugs alone in calculating feature scores 

achieved the same accuracy, but when 

used together they improved the overall 

Table 2. Coverage for the baseline and AD methods 

 

Table 3. Accuracy analysis of the methods in predicting the positive associations 

 

Table 4. An ablation study of accuracy for unique (unweighted) positive pairs 
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accuracy. For DRE, the distributional semantics (DS) features with argument expansion achieved accu-

racy close to the best DRE accuracy, and argument expansion by itself contributed significantly to the 

accuracy of the DS features. However, the UMLS features alone achieved the lowest F1 score, although 

they were useful in improving recall.  

In predicting negative associations, all methods achieved very high performance for both unweighted 

and weighted cases. This result merely reflects the fact that all methods return 0.0 when the underlying 

sources provide no information for the arguments, which happens to correctly predict a negative asso-

ciation. It is good to see that the default in these cases does no harm because a knowledge resource or 

method needs to handle all scenarios well in clinical applications. 

 Precision-recall curves for the methods are shown in Figure 5. As precision improves, recall reduces, 

at different rates for the different algorithms, which reflects in the area under the curve (AUC) metrics. 

The ability of the ensemble method to improve precision while not losing recall as rapidly is helped by 

AD and resulted in the overall high F1 score.  

4.3 Discussion 

While each of the two methods we evaluated achieved a reasonable level of accuracy, the ensemble 

method achieved the best performance. The two sources and methods complement each other, forming 

a more effective method for association scoring. DRE relies on carefully written medical text and man-

ually curated knowledge resources, while AD relies on statistical measures of patient care data. The 

intrinsic nature of the resources used by the methods reflects in the performance of the methods on 

certain types of entities. For example, DRE is better at coverage on rare diseases, such as scoring the 

pair hypophosphatemic rickets and calcitriol, and for over the counter (OTC) medications. AD performs 

better than DRE when not all medications within a class are equally used to treat a problem. For example, 

for the pair migraine and headache syndromes and Inderal la, DRE scored 0.007 whereas AD scored 

0.773, which is a true positive.  

5 Conclusion 

To reduce the cognitive load on physicians in using large amounts of data in the modern EHR systems, 

it is necessary to imbue clinical applications with fundamental medical knowledge, such as the relation-

ships between diseases and medications. This paper presented two new methods that used different ways 

of extracting features (distributional semantics and data mining) and two different content sources (large 

medical context and patient records) for the task. We compared the accuracy of these distinctly different 

approaches and their ensemble with a baseline method published previously. The results showed that an 

ensemble provides an accurate relation scoring system because of individual methods leveraging differ-

ent content sources and feature extraction. It can be used as an on-demand scoring system, or as a method 

to generate association scores for a large set of entities a priori for later use in clinical decision support 

applications. The methods introduced here are promising, and can be expanded in the future to score 

specific relations such as “treats” and “prevents”, and to score relations between other types of clinical 

data.  

Figure 4. Threshold vs. F1 scores 

 
Figure 5. Precision-Recall Curves 
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Abstract 

Author name disambiguation (AND) in publication and citation resources is a well-known 

problem. Often, information about email address and other details in the affiliation is missing. 

In cases where such information is not available, identifying the authorship of publications 

becomes very challenging. Consequently, there have been attempts to resolve such cases by 

utilizing external resources as references. However, such external resources are heterogeneous 

and are not always reliable regarding the correctness of information.  To solve the AND task, 

especially when information about an author is not complete we suggest the use of new 

features such as journal descriptors (JD) and semantic types (ST). The evaluation of different 

feature models shows that their inclusion has an impact equivalent to that of other important 

features such as email address. Using such features we show that our system outperforms the 

state of the art. 

 

1 Introduction 

A frequent task for researchers is searching for relevant publications or citations. These resources are 

often queried by the name of an author. According to Dogan et al. (2009) queries based on Author 

Name are most frequent in PubMed and make approximately 36% of all queries. However, author 

names can be highly ambiguous, which complicates any author search and posterior analysis. 

Although some online literature resources partially disambiguate author names-for example, PubMed 

started to rank authors according to the likelihood that they are relevant to a user author name query 

since 2012 (Liu et al., 2014) - this is not yet an established practice.  Moreover, when querying for 

particular topics or subjects in PubMed it is very challenging for a user to figure out the key authors 

relevant to the query and PubMed does not offer any aid in that respect. 
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Several articles regarding Author Name Disambiguation (AND) solutions in MEDLINE have been 

published, e.g. (Smalheiser and Torvik, 2009; Torvik et al., 2005; M. Song et al., 2015; Liu et al., 

2014; Li et al., 2012; Warner, 2010; Treeratpituk and Giles, 2009). However, the AND problem is not 

yet satisfactorily solved. Alternatively, unique identifiers for authors such as those from Scopus or 

ORCID (Haak et al., 2012) have been created in order to disambiguate names in publications. 

However, a unique author identifier is not a requisite for publishing (Smalheiser and Torvik, 2009). 

Moreover, some existing unique identifiers assigned to authors by citation or abstract databases such 

as Scopus or arXiv Author ID (Warner, 2010) are based on an automatic information extraction 

mechanism and often are not validated by the authors themselves, and therefore can contain errors.   

The majority of the methods described in (Torvik et al., 2005; M. Song et al., 2015; Liu et al., 

2014; Li et al., 2012; Warner, 2010; Treeratpituk and Giles, 2009) base their disambiguation methods 

on author personal data from MEDLINE records such as name, affiliation, co-authorship and e-mail 

address (Torvik et al., 2005; M. Song et al., 2015; Liu et al., 2014; Cota et al., 2010).  While 

information regarding an author’s last name and first name is an essential part of a scientific article, 

information regarding the author’s affiliation is not always provided by MEDLINE. As an example, 

(Liu et al., 2014) mentions that information about affiliation was available only in 53% of the 

publications they considered. Beyond personal data, information such as MeSH terms and keywords 

has also been used for disambiguation. According to (Liu et al., 2014), the availability of MeSH terms 

in MEDLINE is ~ 91%, which is larger, in the sense of publication coverage, than the availability of 

affiliation information. 

Commonly, disambiguation methods estimate author publications within the same “equivalence 

set,” where each set is defined by all the authors that share the same last name and first initial. This 

means that author publications need to be grouped first by last name and first initial (Torvik and 

Smalheiser, 2009; Liu et al., 2014; M. Song et al., 2015; Cota et al., 2010). We will refer to such 

equivalence sets as “namespaces.” Thus, identifying the namespaces is the initial and most important 

step for AND. Thereafter, the methods to disambiguate authorship can vary depending on the features 

used, which are selected to calculate inter-publication similarity. Evidently, the process of assigning 

an author’s publication to a namespace may affect the overall results of the disambiguation.  

Usually authors tend to publish their work in specific journals, conferences, workshops, etc. 

depending on the topics of the journals and the research domain of the author. However, in the era of 

translational research it becomes problematic to strictly define which topics belong to which author. 

This can be done, for example, through the analysis of the keywords or MeSH terms used in the 

author’s publications or by creating author-journal similarity profiles (Torvik et al., 2005; Y. Song et 

al., 2007). However, when the paper has several authors, the identification of the main topics of 

interest of each author/co-author becomes challenging. Moreover, publications written by specialists 

from different domains collaborating on a common project may include key terms from different 

fields/domains.  We propose, instead, to use journal descriptors (JDs) to aid in AND instead of 

keywords mentioned in the publication. The JDs add more detail by describing the different 

specialties associated to the articles. They can identify not only the main domain of an article but also 

secondary ones. 

2 Methods 

 

In this section we describe the features we used and their provenance for creating “author profiles.” 

By an author profile we mean an array with the following values associated to a particular 

publication: 1) Last name, 2) First name, 3) Initials, 4) Publication ID (PMID), 5) Year of publication, 

6) Language of the publication, 7) Title of the publication, 8) Abstract, 9) MeSH terms,  and 10) 

Affiliation. 

2.1 MEDLINE information 

Initially, all information available in MEDLINE regarding the author of each publication was 

extracted. This information includes the following: 1) last name, 2) full first name, 3) initials, 4) 
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affiliation, 5) co-authors, 6) order of the author in the author list, 7) language of the publication, 8) 

MeSH terms, 9) abstract and 10) title. 

Information regarding organization, city, country as well as email address were extracted from the 

author’s affiliation. To extract the email address from the affiliation, a regular expression was used. In 

order to extract the organization name, the Stanford named-entity recognizer (NER) based on the 7-

class model (Finkel et al., 2005) was used. This model has been trained on the MUC6 

(https://catalog.ldc.upenn.edu/LDC2003T13) and MUC7 training data 

(https://catalog.ldc.upenn.edu/LDC2001T02). The model recognizes location, organization, person, 

date, money, percent and time information in text. The choice of this NER algorithm can be explained 

by its better performance compared to OpenNLP (Dlugolinský et al., 2013). Since affiliation 

information is usually represented as a short text string it was important to choose the NER model 

which could recognize entities with a better accuracy in such strings. A preliminary test of 3-, 4- and 

7-class models for organization and location entities showed that the 7-class model outperformed 

other models. Then, each recognized organization was classified according to its type: 1) University, 

2) School, 3) Ministry, 4) Institute, 5) Commercial Company, 6) Centre and 7) Hospital, as well as 

according to the type of the main descriptor of the organization. The following types of descriptors 

were used: 1) Chemistry, 2) Biology, 3) Psychology, 4) Health, 5) Medicine/Medical, 6) Pediatric, 7) 

Surgery, 8) Genetic, 9) Infection, 10) Agriculture, 11) Entomology, 12) Biotechnology, 13) 

Neurology, 14) Psychology, 15) Pharmacology, 16) Toxicology, 17) Nutrition and 18) Dentistry. An 

organization belongs to one or another type of descriptor if there is a match between the name of the 

organization and the name of one of the above descriptors. The organization types and descriptors 

represent qualitative information and were manually selected based on their observed frequency in the 

affiliation field. They were mapped to a numeric representation, e.g. types from 1 to 7 and descriptors 

from 1 to 18. 

The Stanford NER was not used for country and city recognition, since the process to identify those 

entities in such short texts was error-prone. Instead, a dictionary-based method was used. The names 

of countries and cities were extracted from http://www.geonames.org/. This resource provides a list of 

city names in different languages. Each city name in the list is mapped to the country name. Thus, we 

could identify a country associated to the affiliation even in cases where the country name was 

missing in the affiliation.  

2.2 Journal Descriptors and Semantic Types 

Frequently, the first author in collaborative publications is the principal contributor in the research 

work. Other authors can present expertise from different domains. Therefore it is insufficient to 

measure the similarity of text taken from titles and abstracts for the purpose of AND.  To complement 

this, we used additional descriptors to further define the content of the work. For this purpose a JDI 

(Journal Descriptor Indexing) tool (Humphrey et al., 2006) developed at the National Library of 

Medicine (NLM) was used. This tool returns a ranked list of journal descriptors (JD) or UMLS 

Semantic Types (ST) corresponding to biomedical descriptors as an output to a given text. Ranked 

items in the output have a score in a range from 0 to 1. There are overall 122 JDs and 135 STs.  
 

Rank Score Journal Descriptor Descriptor 

PMID 

24782557 

PMID 

24481031 
PMID 

24782557 

PMID 

24481031 
PMID 

24782557 

PMID 

24481031 

1 0.0178087 0.1916517 JD148 JD148 Pulmonary 

Medicine 

Pulmonary 

Medicine 

2 0.0140019 0.0257541 JD100 JD129 Radiology Pathology 

3 0.0113613 0.0206357 JD023 JD144 Communicable 

Diseases 

Neoplasms 

Table 1. Journal Descriptors as output of the JDI tool. 
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Originally this tool was developed for text categorization purposes with the goal of improving 

information retrieval.  For the AND task an abstract, a title and MeSH terms of articles were provided 

as an input to JDI. As an example the title, abstract and MeSH terms of the articles with PubMed ID 

24481031 and 24782557 were used as input to the JDI tool and the output based on documents counts 

(Humphrey et al., 2006) is represented either as journal descriptors or semantic types in Tables 1 and 

2. In this case the articles were published in the journals “American College of Chest Physicians” and 

“Respiratory Care,” respectively. Both publications share only one MeSH term – “Humans”, which is 

too common and appears in most publications. As it can be seen, the JDs and STs derived from these 

publications are more descriptive.  

 

Preliminary experiments showed that in most cases the top 3 JDIs have an assigned score much higher 

than the other JDIs returned. Thus, only the top 3 results were used as an additional feature to describe 

the domain of a publication. 
 

 

Rank Score UMLS Type Semantic Type 

PMID 

24782557 

PMID 

24481031 
PMID 

24782557 

PMID 

24481031 
PMID 

24782557 

PMID 

24481031 

1 0.5323717 0.6212719 T046 T203 Pathologic 

Function 

Drug Delivery 

Device 

2 0.5264287 0.4946694 T185 T082 Classification Spatial Concept 

3 0.5214509 0.4894958 T169 T046 Functional 

Concept 

Pathologic 

Function 

Table 2. Semantic Types as output of the JDI tool. 

 

2.3 Supervised classifiers 

We transform the AND problem to a binary classification task in which a classifier predicts whether 

the authors of two different publications are the same person.  For this purpose, four well-known 

supervised algorithms (SVM, Random Forest, k-NN and J48) were used to do the classification as 

well as to evaluate the impact of the features based on Journal Descriptor and Semantic Type to the 

overall disambiguation performance. These classification algorithms are frequently used in data 

mining and text-mining tasks (Fernández-Delgado et al., 2014). They have also been used by (Han et 

al., 2004; Treeratpituk and Giles, 2009; M. Song et al., 2015) for the AND task. The J48 algorithm is 

a java implementation of the C4.5 algorithm (Quinlan, 2014). All features were normalized according 

to range of 0 to 1. 

2.3.1 Similarity pairs 

An author profile is represented as an array of values extracted from MEDLINE (name, affiliation, 

year of publication, etc.), journal descriptors and semantic types. Author profiles are grouped by 

namespaces. For each namespace, the profiles are compared in a pairwise manner, so that each pair of 

profiles is represented as a vector of similarity scores between the two profiles. Table 3 shows the 

process used to transform the discrete values of two profiles into a numeric similarity vector. A Jaro-

Winkler algorithm was used to calculate similarity scores for first names of authors. The choice of this 

algorithm can be explained by its good performance on short strings (M. Song et al., 2015). We chose 

the SoftTFIDF Jaro-Winkler method to calculate a similarity score for the organizations due to its 

better performance on longer strings and the fact that it is a less time-consuming algorithm (Cohen et 

al., 2003). Finally, organization type and journal descriptor were mapped to numeric values and the 

difference between them was used in the similarity vector. 
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Profile Values Similarity Vector Features 

Full First Name Jaro-Winkler score (Full_First_Namea,,Full_First_Nameb) 

Initials Boolean score (Initialsa,, Inititalsb) 

Co-Authors # of shared co-author names 

MeSH terms # of shared MeSH terms 

JDI (3 entities) # of shared descriptors or semantic types 

City 

 

“1”  (Citya = Cityb), “0” (Citya ≠ Cityb) 

Country “1” (Countrya = Countryb), “0” (Countrya ≠ Countryb) 

Language “1” (Langa = Langb),  “0”  (Langa ≠ Langb) 

Year |Yeara – Yearb| 

Organisation 

 

SoftTFIDF Jaro-Winkler score (Organisationa,Organisationb) 

Email “1” (emailA = emailB), “0” (emailA ≠ emailB) 

Type and Descriptor 

of Organisation  

diff (Typea Descriptora, Typeb, Descriptorb) 

Table 3. Similarity vector used to compare the profiles of two authors a and b. 

3 Data 

To evaluate the classifiers, a curated corpus for author name disambiguation was used (M. Song et al., 

2015). The dataset contains 2,875 publications authored by 385 first authors with 431 author name 

variants. In less than half of the publications information about emails is present. Furthermore, the 

majority of the names are of Western origin. Each author in the list has a unique ID assigned by the 

dataset providers. To date, this is the only known dataset for AND in MEDLINE which is manually 

curated. 

Since the original dataset only consist of author names, PubMed IDs and author IDs, it was 

necessary to extract all additional relevant information from the MEDLINE corpus. Our final dataset 

is based on the 2014 MEDLINE/PubMed Baseline Database Distribution. Because the authors 

considered are only first authors, affiliations are available for the majority of them.  

There are articles in 5 different languages in the dataset (denoting the main language of the article’s 

full text, not of the abstract): English, Japanese, Chinese, German and French. The earliest 

publications are dated from 1967 and the most recent from 2013.  

After transformation of pairs of author profiles to similarity vectors, less than a quarter of them 

belonged to the positive class, i.e. they correspond to the same authors. 

4 Results 

In this section we present results for each classifier using 10-fold cross-validation. Further, we 

provide the results of the classifiers from (M. Song et al., 2015) for comparison. Then, we show 

evaluation scores for the features used in the disambiguation process to rank them according to their 

contribution. 

4.1 Classifier performance 

Tables 4-7 show the results obtained by the classifiers. These results are based on three models used 

to train the classifiers with the following features: (1) Medline features and journal descriptors 

(MF+JD) obtained with the JDI tool, (2) MF and semantic types (MF+ST) and (3) MF, JD and ST 

(MF+JD+ST). Additionally we provide the results of the Named Entity Recognizer-based model 

(NER-based model) and Baseline model described in (Song, Kim et al. 2015). Song’s NER model is 

based on MEDLINE features such as author name, co-authors, affiliation and keywords extracted 

from article title and journal title. Additionally, Song’s NER model relied on the output of the 

Stanford NER algorithm, which identified organizations, locations and emails in the affiliation text. 
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Thus, detected entities were transformed into features. Song’s Baseline model (M. Song et al., 2015) 

is based on first author name, article title, and publication venue.  
 

Metrics MF+JD MF+ST MF+JD+ST NER-Based Baseline 

Precision 0.986 0.975 0.987 0.9776 0.8348 

Recall 0.992 0.961 0.994 0.9545 0.8501 

F-Measure 0.989 0.9675 0.990 0.9657 0.8423 

Table 4. Results of the J48 classifier. 

 

Metrics MF+JD MF+ST MF+JD+ST NER-Based Baseline 

Precision 0.9785 0.9785 0.991 0.9884 0.8349 

Recall 0.9685 0.9725 0.996 0.9634 0.8499 

F-Measure 0.973 0.978 0.993 0.9756 0.8322 

Table 5. Results of the Random Forest classifier. 

 

Metrics MF+JD MF+ST MF+JD+ST NER-Based Baseline 

Precision 0.985 0.956 0.987 0.9723 0.8253 

Recall 0.988 0.951 0.977 0.9595 0.8412 

F-Measure 0.986 0.9535 0.982 0.9656 0.8330 

Table 6. Results of the k-NN classifier. 

 

 

The results achieved on the MF+JD+ST model show a recall which is slightly higher than the 

precision. In the results of the NER-model the precision has a tiny prevalence over the recall. In Table 

7, the precision achieved on models MF+ST and MF+JD+ST is a little greater than the recall, though 

it is the opposite for the model MF+JD. 
 

Metrics MF+JD MF+ST MF+JD+ST NER-Based Baseline 

Precision 0.964 0.949 0.9695 0.9541 0.8353 

Recall 0.991 0.894 0.905 0.8385 0.8478 

F-Measure 0.977 0.9185 0.9335 0.8870 0.8414 

Table 7. Results of the SVM with RBF kernel. 

 

4.2 Features Contribution 

The information gain feature provided by WEKA was used in order to compute the value of a feature 

attribute by measuring the information gain with respect to the class. The ranked list of features and 

their impact according to the information gain is shown in Tables 8 and 9. 

The value of the information gain of semantic types is less than that of journal descriptors; see 

Table 8 and Table 9. In both tables the value of the co-author, year and MeSH-terms features are 

almost equivalent.  
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Profile Features Rank Value  

Full First Name 1 0.310439 

Organisation 2 0.292023 

Email 3 0.214672 

JDIs 4 0.202067 

Type and Descriptor of Organization  5 0.183693 

Co-Authors 6 0.152621 

City 7 0.022 

Initials 8 0.01097 

Year 9 0.010227 

Language 10 0.000584 

Country 11 0.000532 

MeSH Terms 12 0.0 

Table 8. Ranked list of the information gain of features with respect to the class in the MF+JD model. 

 

Profile Features Rank Value  

Organization 1 0.35203    

Full First Name 2 0.287596 

Email 3 0.255492    

Type and Descriptor of Organization 4 0.20955    

Co-Authors 5 0.154428    

Semantic Types  6 0.119648   

City 7 0.034587    

Year 8 0.010847 

Initials 9 0.009418 

Country 10 0.006007    

Language 11 0.000532   

MeSH Terms 12 0.0 

Table 9. Ranked list of the information gain of features with respect to the class in the MF+ST model. 

5 Discussions  

The evaluation was performed on the dataset in three different ways: (1) MF+JD, (2) MF+ST and (3) 

MF+JD+ST. Moreover, we have compared the results to the ones obtained by (M. Song et al., 2015) 

on the Baseline and NER-based models.  Our evaluation results show that the classifiers J48 and 

Random Forest performed better than the rest. Random Forest provided slightly better results, but in 

terms of time it was slower than J48. This can be explained by the number of training trees used in the 

process. The comparison of overall results to Song’s NER-Model shows that a significant difference 

in scores is achieved by our SVM algorithm. However, compared to other classifiers, SVM is less 

efficient for the AND task and most time-consuming. These results could be explained by the low 

dimensionality of our data, since SVM performs better on highly dimensional data 

The results show also that the MF+JD+ST model outperformed the other models using features 

based on the topics or descriptors rather than on the keywords or MeSH terms. Nevertheless, the 

results of the MF+ST model differ from those of the MF+JD. Despite the assumption that the 

semantic description of the publication would better represent the content, the semantic types and the 

model MF+ST did not add significant improvement over the MF+JD results. Possible reasons for 

these results include the fact that the results of the model MF+JD are already sufficiently good, and 

also that semantic types offer a better characterization of papers than keywords. Surprisingly, the 

MeSH terms, according to the feature estimation results, showed no impact on the disambiguation 

model. The information gain of feature attributes also shows that even though the ST-based feature 
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has a higher impact compared to year, language and location, it only brings slight improvements to 

the classification results based on the results from the MF+JD+ST model. 

The assumption that the location of the author can help disambiguate two profiles was not 

confirmed. It is not rare when authors change their affiliation and consequently their location. 

However, in cases where the location of two profiles is identical it suggests that these profiles share 

the same authorship. An email address, nonetheless, is more significant than a location. The 

evaluation of features surprisingly showed that journal descriptors and topics are as useful as email 

addresses for the disambiguation process. Considering that information about the email address of the 

author is often missing, then the feature based on the journal descriptor and topics can still be used to 

disambiguate an ambiguous author name. 
 

6 Conclusion 

In this paper we have introduced new disambiguation features such as journal descriptors and 

semantic types, which were not previously used for Author Name Disambiguation. Classification was 

done with the four most used classifiers for the AND task. The achieved results were compared to 

state-of-the-art results and it was shown that journal descriptors are as helpful in the disambiguation 

process as email addresses.  Regarding the unexpected value of the MeSH Terms for the 

classification, the impact of the semantic types to the model can be explained by their nature. Unlike 

MeSH terms, they are automatically generated for each articles and their granularity is greater.  

It is worth mentioning that the results of the evaluation are achieved on the so-called gold standard 

dataset provided by (M. Song et al., 2015). To date, this is the only dataset which is manually verified. 

One of the disadvantages of this dataset is that it consists of only first authors of publications. 

Consequently, the results may be less competitive if datasets consists not only of first authors but also 

of co-authors.  Indeed, in MEDLINE the information about affiliation of co-authors is frequently 

missing. Moreover, the dataset is biased towards Western types of last names, e.g. Smith, Cohen, 

Taylor. However, the statistics of most frequent author names in MEDLINE show that they are of 

Asian origin, for example Wang, Zhang, etc. If we consider that, in the 1990 edition of the Guinness 

Book of World Records, Zhang was the most common last name in the world, then the 

disambiguation of certain Asian author names seems extremely challenging. Thus, the classifier 

models trained on the gold-standard dataset are not necessarily applicable to the AND task for the 

entire MEDLINE, where non-first authors have missing affiliation and most frequent names are 

ethnicity-sensitive to the name-matching process (Treeratpituk and Giles, 2012; Jimenez-Contreras et 

al., 2002; Louppe et al., 2015; Kim and Cho, 2013).  
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