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 

 

Abstract 

    In the process of learning and using Chinese, foreigners may have grammatical errors due to 

negative migration of their native languages. Currently, the computer-oriented automatic detec-

tion method of grammatical errors is not mature enough. Based on the evaluating task ----

CGED2016, we select and analyze the classification model and design feature extraction method 

to obtain grammatical errors including Mission(M), Disorder(W), Selection (S) and Redundant 

(R) automatically. The experiment results based on the dynamic corpus of HSK show that the 

Chinese grammatical error automatic detection method, which uses CRF as classification model 

and n-gram as feature extraction method. It is simple and efficient which play a positive effect 

on the research of Chinese grammatical error automatic detection and also a supporting and 

guiding role in the teaching of Chinese as a foreign language. 

1 Introduction 

As China's status is improved and its influence in the world is increasing, more and more foreigners 

begin to learn Chinese. The HSK is an international standardized test for Chinese language proficiency 

of non-native speakers. From the analysis of the examination papers for many years, we can see that 

foreigners who study Chinese often make grammatical errors such as Mission(M), Disorder(W), Selec-

tion (S) and Redundant (R), owing to their language negative migration, over-generalization, teaching 

methods, learning strategies and other reasons.  

Automatic detection of Chinese grammatical errors is really a challenge for many researchers. There 

is no space between word and word in Chinese corpus. If words in Chinese corpus are separated from 

each other, we can use combination of multiple features such as words, part of speech tagging (POS) 

and word frequency to detect grammatical errors, automatically. But errors of word segmentation and 

part of speech tagging will be accumulated in, and then have a negative effect on automatic detection of 

grammatical errors.  

Examples are as follows: 

The original sentence:                         
a) 他现在的工作是研究生物                      His present  job is studying biology 

b) 他站起身来                                              He stands up 

c) 他明天起身去北京                                  He leaves  Beijing tomorrow                        
After word segmentation: 

a) 他/现在/的/工作/是/研究/生物          His / present  / job / is / studying / biological  

b) 他站/起 /身/来                                       He stands / up  

c) 他/明天/起身/去 /北京                         He / leaves for / Beijing / tomorrow  

                                                           
 This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: 

http://creativecommons.org/licenses/by/4.0/ 
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In example a, the “研究生物 (study biology)” will arise segmentation ambiguity, in example b and c, 

“起身 (get up)” has two different way of divisions which has a bad effect on automatic detection of 

grammatical errors. In this respect, current automatic detection methods have poor performance, we 

need actively explore effective automatic detection methods which can help reduce workload of artificial 

detection and play a positive guiding role in teaching Chinese as a foreign language. With some gram-

matical errors and error cause found by these methods, teaching Chinese as a foreign language will be 

well guided. 

For many researchers, CGED evaluating task provides a platform to study automatic detection of 

Chinese grammatical errors. CGED 2016 evaluating task divides the Chinese grammatical errors into 

four categories: Mission(M), Disorder(W), Selection (S) and Redundant (R), and includes three tasks 

such as Detection Level, Identification Level and Position Level. 

In order to achieve Chinese grammatical error automatic detection, we first consider the problem of 

Chinese grammatical errors as a classification problem, and then use rule-based method, statistical learn-

ing method or the fusion of multiple classification methods. Through analysis and comparison, we use 

CRF to complete three tasks including Detection Level, Identification Level and Position Level.  

The rest of this paper is organized as follows: Section 2 briefly introduces related work in this field. 

Section 3 introduces the statistical learning method CRF and its tools. Section 4 discusses the realization 

of Chinese grammatical error automatic detection which includes data preprocessing, data feature ex-

traction, model selection and result analysis. Finally, conclusion and prospects are arranged.  

2 Related work 

In the aspect of automatic detection of grammatical errors, the study of English is more deep. 

Anubhav Gupta (2014) proposed a rule-based approach that relies on the difference in the output of two 

POS taggers, to detect verb forms, lexical and spelling errors, but fuzzy or erroneous input of the POS 

tagger could result in an erroneous output. In order to solve context-sensitive spelling correction, an 

algorithm combining Winnow variable and weighted majority voting was proposed by Andrew R. Gold-

ing (1999), but in this way we need to improve the adaptability of the algorithm to unfamiliar test sets. 

Anoop Kunchukuttan (2014) proposed two enhancements based on statistical machine translation for 

all types of errors. Although it is possible to use a simple set of methods to increase recall rate, it also 

leads to a decrease in precision. 

Relevant works related to Chinese grammatical error detection are much less compared with that of 

English. Chi Hsin Yu and Hsin-Hsi (2012) proposed a classifier based on CRF model to detect Chinese 

text disorder. Shuk-Man Cheng (2014) proposed a support vector machine model to further explore the 

problem of word order reordering. Yang Xiang and Xiaolong Wang (2015) used an ensemble learning 

method which learns and trains the corpus to identity the grammatical errors and error types, but the 

detection of the error location is not ideal. Xiupeng Wu and Peijie Huang (2015) used a hybrid model 

that integrates rule-based and N-gram statistical method to detect the Chinese grammatical errors, which 

can identify the error types well and point out error position, but rules are needed summarizing manually. 

Lung-Hao Lee and Liang-Chih Yu (2014) introduced a sentence-level detection system that integrates 

multiple rules and N-gram statistical features. Generally speaking, relevant rule are needed in most of 

the Chinese grammatical error automatic detection summarizing manually, and these existing methods 

on the error position are not ideal at present. 

3 CRF 

3.1  CRF model 

CRF (Random Field Conditional) is a distinguished indirect graph model. In an indirect graph G =
(V, E), where V be the set of end point, E be the set of indirect edges, Y = {𝑌v|v ∈ V },  that is, each node 

in V corresponds to a random variable which is in the range of possible tag set {y}. If we observe the 

sequence X as a condition and each random variable 𝑌𝑣 satisfies the following Markov characteristic: 

p(𝑌𝑣|X, 𝑌𝑤 , w ≠ v) = p(𝑌𝑣|X, 𝑌𝑤 , w~v)                      (1) 

where denotes that two nodes are adjacent in graph G, then (X, Y) is a conditional random field. Model 

diagram is shown in Figure 1. 
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Fig.1 Schematic diagram of conditional random field model 

 

For the first time, Lafferty introduced CRF into natural language processing, and the choice of CRF 

potential function is greatly influenced by the maximum entropy model, and first-order chain structure 

is applied to construct the CRF model. In graph G = (V, E), the largest group which is the edge in graph 

G contains only two adjacent nodes.  

We define the form of each potential function as follows: 

 ∅𝑦𝑐
(𝑦𝑐) = exp (∑ 𝜆𝑘𝑘 𝑓𝑘(𝑐, 𝑦|𝑐, 𝑥))                       (2) 

Where 𝑦|𝑐 denotes the random variable corresponding to the node in the C group, 𝑓𝑘(𝑐, 𝑦|𝑐, 𝑥) is a 

Boolean feature function, then p (y | x) is: 

p(y|x) =
1

𝑍(𝑥)
exp (∑ ∑ 𝜆𝑘𝑘𝑐𝜖𝐶 𝑓𝑘(𝑐, 𝑦𝑐 , 𝑥))           (3) 

where 𝑍(𝑥) is the normalization factor. 

𝑍(𝑥) = ∑ exp (∑ ∑ 𝜆𝑘𝑘𝑐𝜖𝐶 𝑓𝑘(𝑐, 𝑦𝑐 , 𝑥))𝑦                  (4) 

3.2 CRF ++ tool selection 

CRF-based tools are currently available such as crf++, flexcrf, pocket crf.  

First of all, crf++ is the first order crf, flexcrf is the second order crf, because n-order crf training time 

required (p is the number of markers, T is the first order crf training time, N is the order), so compared 

with crf++, flexcrf needs more training time. 

 Second, pocket crf does not provide a command line, and there is only one example that shows how 

to complete the training and testing, and pocket crf does not identify the space, so pocket crf string input 

file must be strictly separated by 0x09. In contrast, crf++ has a command line, and can ignore all spaces 

and 0x09 between the columns. So in this experiment, we use the CRF++ tool 0.58 version1. 

4 CRF-based automatic detection of Chinese grammatical errors 

According to the above discussion, we choose CRF as the statistical learning method and CRF++ as 

the tool of automatic detection. Through data preprocessing, feature selection, training and cross vali-

dation, the automatic detection result of test data, result analysis are given. 

4.1 Data preprocessing 

The main work of data preprocessing is to preprocessing the training data set of CGED 2016, and 

then the training corpus format is adjusted to the input format required by CRF++. The correct sentences 

and the wrong sentences are extracted from the corpus according to artificial annotation, and then the 

corpus are automatically marked according to the wrong position and the wrong type.  

Example of original training corpus: 

<DOC> 

<TEXT id="200405109523100360_2_6x2"> 

                                                           
1 https://code.google.com/archive/p/crfpp/downloads. 
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妈妈对爸爸劝戒烟的原因就是我的健康。非吸烟者比吸烟者得病率更高，这个所有的人知道。 

</TEXT> 

<CORRECTION> 

妈妈劝爸爸戒烟的理由就是我的健康。非吸烟者比吸烟者得病率更高，这个所有的人都知道。 

</CORRECTION> 

<ERROR start_off="3" end_off="3" type="R"></ERROR> 

<ERROR start_off="4" end_off="6" type="W"></ERROR> 

<ERROR start_off="10" end_off="11" type="S"></ERROR> 

<ERROR start_off="39" end_off="39" type="M"></ERROR> 

</DOC> 

Preprocessed training corpus: 

妈/C  妈/C  对/R  爸/W  爸/W  劝/W  戒/C  烟/C  的/C  原/S  因/S  就/C  是/C  我/C  的/C  

健/C  康/C  。/C  非/C  吸/C  烟/C  者/C  比/C  吸/C  烟/C  者/C  得/C  病/C  率/C  更/C  高

/C  ，/C  这/C  个/C  所/C  有/C  的/C  人/C  知/M  道/C  。/C 

妈/C  妈/C  劝/C  爸/C  爸/C  戒/C  烟/C  的/C  理/C  由/C  就/C  是/C  我/C  的/C  健/C  康

/C  。/C  非/C  吸/C  烟/C  者/C  比/C  吸/C  烟/C  者/C  得/C  病/C  率/C  更/C  高/C  ，/C  

这/C  个/C  所/C  有/C  的/C  人/C  都/C  知/C  道/C  。/C 
Note:  1. /C, /M, /W, /S, /R represent Correct, Mission, Disorder, Selection and Redundant. 

      2. punctuation, letters, etc. are also followed by the corresponding label. 

4.2 Feature Selection 

In practice, the feature selection directly affects the performance of the model. The more features are 

selected, the more time is required when the feature is analyzed and the model is trained, may be the 

more complex the model is. Therefore, selecting better features not only can simplify the model, but 

also can reduce the running time. In the statistical machine learning method CRF, this experiment adopts 

feature length of 5 and 7, then uses bi-gram and tri-gram model to extract features. We conduct cross 

validation for two kinds of sequence length features, and results are shown in the table1. 

Sequence length 5 7 

False Positive Rate 0.0518 0.0811 

 

Detection Level 

Precision 0.7192 0.6623 

Recall 0.1284 0.1489 

F1-Score 0.2179 0.2431 

 

Identification Level 

Precision 0.6142 0.5588 

Recall 0.0798 0.0962 

F1-Score 0.1413 0.1641 

 

Position Level 

Precision 0.3981 0.4286 

Recall 0.0332 0.0569 

F1-Score 0.0612 0.1005 

Table 1 cross validation results 

 

Through the comparison of Precision, Recall and F1-Score, False Positive Rate has an increase of 

2.93% when the sequence length is 7, but there are different levels of promotion in the recall rate of 

Detection Level, Identification Level and Position Level, F1 is also better than the sequence length 5. 

4.3 Results and analysis 

The results of the closed test with the training data of CGED2016 are shown in Table 2. Considering 

the influence of the size of the training data on the model, we add 2015 TOCFL training data to 2016 

HSK training data for closed test, the results are shown in Table 2. 
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Training corpus 2016 HSK data  2015 TOCFL and  

2016 HSK data  

False Positive Rate 0.0759 0.0596 

 

Detection Level 

Precision 0.7055 0.6515 

Recall 0.1323 0.1361 

F1-Score 0.2227 0.2252 

 

Identification Level 

Precision 0.6258 0.5516 

Recall 0.0923 0.0896 

F1-Score 0.1609 0.1541 

 

Position Level 

Precision 0.4381 0.3414 

Recall 0.0430 0.0377 

F1-Score 0.0784 0.0680 

Table 2 closed test results 

 

We compare and analyze the closed results, and then select the HSK data of 2016 and TOCFL data 

of 2015 as training data, as shown in Table 3. 

 

 

Training corpus 

 

Correct 

 

Error  

Sum  
R S M W 

2016 HSK 10072 5532 10942 6619 1691 20144 

2015 TOCFL 2205 430 849 620 306 4410 

Table 3 Training data distribution table 
Note: 1. Each of these error statements may contain multiple types of errors or include multiple identical types of errors. 

     2. 2015 TOCFL corpus is converted to HSK for use 

 

In the three results we submitted, SKY_Run2.txt and SKY_Run3.txt are generated by model which 

is strained by feature template with the sequence length of 5 and 7. These two submitted results have 

best performance on all three tasks, especially False Positive Rate, Accuracy and Precision indicators, 

but work badly in recall rate. Our team achieved the lowest false positive rate of 0.0481 in 2016 CGED 

evaluating task.  

The evaluation results are as follows: 

Submission results SKY_Run1.txt SKY_Run2.txt SKY_Run3.txt 

False Positive Rate 0.0695 0.0481 0.0559 

 

Detection Level 

Accuracy 0.6523 0.6579 0.6659 

Precision 0.8326 0.8746 0.8652 

Recall 0.3614 0.3505 0.3750 

F1-Score 0.5040 0.5005 0.5232 

 

Identification 

Level 

Accuracy 0.6605 0.6765 0.6849 

Precision 0.8235 0.8821 0.8744 

Recall 0.2732 0.2972 0.3815 

F1-Score 0.4132 0.4446 0.4669 

 

Position Level 

Accuracy 0.6073 0.6376 0.6477 

Precision 0.6153 0.7054 0.7144 

Recall 0.1783 0.2217 0.2430 

F1-Score 0.2765 0.3373 0.3627 

Table 4 Evaluation results 

 

From the analysis of the results, we can see that feature templates with two kinds of sequence length 

use bigram and trigram models to extract features and select more features, thus greatly improve Preci-

sion, but have a serious impact on recall rate. 

As for Position Level task, SKY_Run3.txt plays better than SKY_Run2.txt, and has good perfor-

mance on Accuracy, Precision, Recall and F1-Score indicators, so feature template with sequence length 
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7 plays better. When the length of the sequence becomes longer, the effect of position level task is better. 
But if the length is too long, the learning process will become difficult and the model will become more 

complex. Compared with the first two tasks, the results in Position Level are not ideal. Since the open 

source tool based on the statistical machine learning method CRF only supports chained sequences, 

when the sequence length is 5 and 7, the long sentences can’t be analyzed on the whole, which affects 

the automatic detection of Chinese grammatical errors. 

5 Conclusion and prospect 

In this paper, we use statistical learning method CRF and n-gram feature extraction method to achieve 

Chinese grammatical error automatic detection. It can be seen from the evaluation results that the CRF 

model has a good performance in the automatic detection of Chinese grammatical errors, especially 

False Positive Rate and Precision. But in the overall quantity of Chinese grammatical errors, the errors 

that are detected are too few, which affects the overall performance. 

In general, CRF has great potential in automatic detection of Chinese grammatical errors. Compared 

with HMM (Hidden Markov Model), it has no strict independence assumption, and its feature design is 

flexible. Compared with the regular method, it can predict more flexible grammatical errors. It is also 

simpler than multiple classifier fusion methods. The only thing we need to do is to manually mark the 

corpus for CRF learning. In the following work, we will collect more corpus of Chinese grammatical 

errors to improve the performance of the model, and we will also consider mutual information and other 

methods for feature extraction. 
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