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Abstract

This paper describes our submission (named clac) to the 2016 Discriminating Similar Lan-
guages (DSL) shared task. We participated in the closed Sub-task 1 (Set A) with two separate
machine learning techniques. The first approach is a character based Convolution Neural Net-
work with a bidirectional long short term memory (BiLSTM) layer (CLSTM), which achieved
an accuracy of 78.45% with minimal tuning. The second approach is a character-based n-gram
model. This last approach achieved an accuracy of 88.45% which is close to the accuracy of
89.38% achieved by the best submission, and allowed us to rank #7 overall.

1 Introduction

Discriminating between languages is often the first task to many natural language applications (NLP),
such as machine translation or information retrieval. Current approaches to address this problem achieve
impressive results in ideal conditions: a small number of unrelated or dissimilar languages, enough
training data and long enough sentences. For example, Simões et al. achieved an accuracy of 97%
on the discrimination of 25 languages in TED talks (Simões et al., 2014). However, in the case of
discriminating between similar languages or dialects, such as French Canadian and European French,
or Spanish varieties, the task is more challenging (Goutte and Leger, 2015). This problem is addressed
specifically in the DSL shared task at VarDial 2016 (DSL 2016). In comparison to results from Simões
et al. who achieved a 97% accuracy, the best performing system at DSL 2016 achieved only an 89.38%
accuracy.

This paper describes our system and submission at the DSL 2016 shared task. The shared task is
split into two main sub-tasks. Sub-task 1 aims at discriminating between similar languages and national
language varieties; whereas Sub-task 2 focuses on Arabic dialect identification. We will only describe
the specifics of Sub-task 1, for which we submitted results. For Sub-task 1, participants could chose
between the closed submission, where only the use of the DSL Corpus Collection, provided by the
organisers (see Section 3), was allowed; or the open task which permitted the use of any external data for
training. Participants could also submit runs for two different data sets: Set A, composed of newspaper
articles, and Set B, composed of social media data. We only participated in the closed Sub-task 1 using
Set A. Hence, our task was to discriminate between 12 similar languages and national language varieties
using only the newspaper articles provided in the DSL corpus as training set. For a full description of
all sub-tasks, see the overview paper (Malmasi et al., 2016), which also discusses data and results for all
participants.

It was our first participation to the DSL task, and registered late to the shared task. Hence our system
is the result of a 3 person-week effort. We started with very little existing code. We had experimented
previously with neural language models (NLM) and wanted to evaluate their applicability to this task.
In addition, we believed that a convolutional plus long-short term memory network (CLSTM) would be
appropriate for the task given their success in several other NLP tasks (see Section 2 for details). In the
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end, we managed to submit 3 runs: run1 and run2 consist of standard character-based n-gram models;
while run3 is the CLSTM. Our best performance was achieved by run1, with an accuracy of 88.45%
ranking it 7th among the 17 participants, and arriving very close to the top run which had an accuracy of
89.38%. Alas, our run3, the CLSTM, attained an accuracy of 78.45% but benefited from very minimal
tuning.

2 Related Work

Through the years, statistical language identification has received much attention in Natural Language
Processing. The standard technique of character n-gram modeling has traditionally been very success-
ful for this application (Cavnar and Trenkle, 1994), but other statistical approaches such as Markov
models over n-grams (Dunning, 1994), dot products of word frequency vectors (Dafmashek, 1995), and
string kernels in support vector machines (Kruengkrai et al., 2005) have also provided impressive results.
However, as noted by (Baldwin and Lui, 2010), more difficult situations where languages are similar, less
training data is available or the text to identify is short can significantly degrade performance. This is
why, more recently, much effort has addressed more difficult questions such as the language identifi-
cation of related languages in social media texts (e.g. (Zubiaga et al., 2014)) and the discrimination of
similar languages (e.g. (Zampieri et al., 2015; Malmasi et al., 2016)).

The second Discriminating Similar Languages shared task (DSL 2015) aimed to discriminate between
15 similar languages and varieties, with an added “other” category. At this shared task, the best accuracy
was 95.54% and was achieved by (Malmasi and Dras, 2015). The authors used two classes of features:
character n-grams (with n=1 to 6) and word n-grams (with n=1 to 2). Three systems were submitted for
evaluation. The first was a single Support Vector Machine (SVM) trained on the features above; while
the other two systems were ensemble classifiers, combining the results of various classifiers with a mean
probability combiner. A second team at DSL 2015 relied on a two-stage process, first predicting the
language group and then the specific language variant (Goutte and Leger, 2015). This team achieved
an accuracy of 95.24%. As (Goutte et al., 2016) note, many other techniques were also used for the
task, such as TF-IDF and SVM, token-based backoff, prediction by partial matching with accuracies
achieving between 64.04% and 95.54%. An interesting experiment at DSL-2015 consisted in having two
versions of the corpora, where one corpus was the original newspaper articles; while the other substituted
named entities with placeholders. The aim was to evaluate how strong a clue named entities are in the
identification of language varieties. By relying heavily on geographic names, for example, which are
highly correlated to specific nations, it was thought that accuracy would increase significantly. However,
surprisingly, accuracy on the modified data set was only 1 to 2 percentage points lower than the original
data set for all systems (Goutte et al., 2016).

Given the recent success of Recurrent Neural Networks in many NLP tasks, such as machine trans-
lation (Bahdanau et al., 2015) and image captioning (Karpathy and Fei-Fei, 2015), we believed that an
interesting approach for the DSL task would be to use solely characters as inputs, and add the ability to
find long-distance relations within texts. Neural models are quite efficient at abstracting word meaning
into a dense vector representation. Mikolov et al. for example, developed an efficient method to repre-
sent syntactic and semantic word relationships through a neural network (Mikolov et al., 2013) and the
resulting vectors can be used in a variety of NLP tasks. For certain NLP tasks however, Convolutional
Neural Networks (ConvNets), extensively studied in computer vision, have been shown to be effective
for text classification. For example, (Zhang et al., 2015) experimented with ConvNets on commonly used
language data sets, such as topic classification and polarity detection. A key conclusion of their study
is that traditional methods, such as n-grams, work best for small data sets, whereas character ConvNets
work best for data sets with millions of instances. Since the DSL data set contained a few thousand
instances (see Section 3), we decided to give it a try. Further, it has been shown recently that augmenting
ConvNets with Reccurrent Neural Networks (RNNs) is an effective way to model word sequences (Kim
et al., 2016), (Choi et al., 2016). For this reason, we developed a neural model based on the latter method.
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3 Data Set

Because we participated in the closed task, we only used the DSL Corpus Collection (Set A) (Tan et
al., 2014) provided by the organisers. The data set contained 12 languages organised into 5 groups: two
groups of similar languages and three of national language varieties.

Group 1: Similar languages: Bosnian, Croatian, and Serbian
Group 2: Similar languages: Malay and Indonesian
Group 3: National varieties of Portuguese: Brazil and Portugal
Group 4: National varieties of Spanish: Argentina, Mexico, and Spain
Group 5: National varieties of French: France and Canada

Table 1 illustrates statistics of the shared task data set. As shown in the table, the data set is equally
divided into 12 similar languages and national language varieties with 18,000 training instances for each
language. On average, each instance is 35 tokens long and contain 219 characters.

Group Language Code Train. Dev. Test Av. # char. Av. # token
1 1 Bosnian bs 18,000 2,000 1,000 198 31

2 Croatian hr 18,000 2,000 1,000 240 37
3 Serbian sr 18,000 2,000 1,000 213 34

2 4 Malaysian my 18,000 2,000 1,000 182 26
5 Indonesian id 18,000 2,000 1,000 240 34

3 6 Spanish (Argentina) es-AR 18,000 2,000 1,000 254 41
7 Spanish (Spain) es-ES 18,000 2,000 1,000 268 45
8 Spanish (Mexico) es-MX 18,000 2,000 1,000 182 31

4 9 Portuguese (Brazil) pt-BR 18,000 2,000 1,000 241 40
10 Portuguese (Portugal) pt-PT 18,000 2,000 1,000 222 36

5 11 French (Canada) fr-CA 18,000 2,000 1,000 175 28
12 French (France) fr-FR 18,000 2,000 1,000 216 35

Total 216,000 24,000 12,000 219 35

Table 1: Statistics of DSL 2016 Data set A. We list the number of instances across languages for the
Training, Development and Test sets. The last two columns represent the average number of characters
and average number of tokens of the training set.

Since the results of our CLSTM model (See Section 4.2) were lower than expected during the devel-
opment phase, we attempted to increase the size of the training set. Using the data set from DSL-2015,
we could find additional training data for most languages, with the exception of French. We therefore
attempted to use publicly vailable corpora for French. For Canadian French, we used the Canadian
Hansard1; whereas for France French, we used the French monolingual news crawl data set (2013 ver-
sion) from the ACL 2014 Ninth Workshop on Statistical Machine Translation2. However, upon closer
investigation, this last corpus clearly contained non-French news content, heavily referencing locations
and other international entities. Additionally, the majority of the Canadian French Hansard is translated
from English, possibly not being representative of actual Canadian French. We experimented with these
two additional data sets, but the accuracy of our models was far from our closed task equivalent. Given
our short development time, we decided to drop the open task, and train our models on only the given
DSL 2016 Data Set A.

4 Methodology

As indicated in Section 1, we experimented with two main approaches: a standard n-gram model to
use as baseline, and a convolution neural network (ConvNet) with bidirectional long-short term memory
recurrent neural network (BiLSTM), which we refer to as CLSTM.

1http://www.isi.edu/natural-language/download/hansard/
2http://www.statmt.org/wmt14/translation-task.html
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4.1 N-gram Model

Our baseline is a standard text-book character-based n-gram model (Jurafsky and Martin, 2014). Because
we used a simple baseline, the same unmodified character set (including no case-folding) is used for both
of our approaches, for easier later comparison. During training, the system calculates the frequency of
each n-gram for each language. Then, at test time, the model computes a probability distribution over all
possible languages and selects the most probable language as the output. Unseen n-grams were smoothed
with additive smoothing with α = 0.1. As discussed in Section 5, surprisingly, this standard approach
was much more accurate than our complex neural network. We experimented with different values for
n with the development set given (see Section 3). As table 2 shows, the accuracy peaks at sizes n = 7
and n = 8; while larger n-grams degrade in performance and explode in memory use. The curse of
dimensionality seriously limits this type of approach.

N-gram size Accuracy
1 0.5208
2 0.6733
3 0.7602
4 0.7523
5 0.8035
6 0.8303
7 0.8424
8 0.8474

Table 2: Accuracy across n-grams of sizes 1 to 8 with the development Set A.

4.2 Convolution Neural Network with Long Short Term Memory (CLSTM)

Our second approach is a Convolution Neural Network with a Bidirectional Long Short Term Memory
layer (CLSTM). The goal of this approach was to build a single neural model without any feature engi-
neering, solely taking the raw characters as input. Using characters as inputs has the added advantage of
detecting language patterns even with little data available. For example, a character based neural model
can predict the word running as being more likely to be in English than courir if it has seen the word run
in English training texts. In a word based model that has not seen the word in this form, running would
be represented as a random vector. Given the heavy computational requirements of training neural mod-
els and the limited time we had, we could not develop an ensemble neural model system, which could
combine the strength of diverse models.

The input to the model is the raw text where each character in an instance has been mapped to its one-
hot representation. Each character is therefore encoded as a vector of dimension d, where d is a function
of the maximum number of unique characters in the corpus. Luckily, the languages share heavily in
alphabets and symbols, limiting d to 217. A fixed number of characters l is chosen from each instance.
Since our texts are relatively short, as observed by the character average column in Table 1, we set l to
256. Shorter texts are zero padded, while longer instances are cut after the first 256 characters. Our input
matrix A is thus a d × l matrix where elements Aij ∈ {0, 1}. The input feeds into three sequences of
convolutions and max-pooling. We used temporal max-pooling, the 1D version equivalent in computer
vision. Our ConvNet parameters are heavily based on (Zhang et al., 2015)’s empirical research who
observed that the temporal max-pooling technique is key to deep convolutional networks with text. We
further improved results on our development set by stacking the ConvNet with a Bidirectional LSTM
(BiLSTM). The BiLSTM effectively takes the output of the ConvNet as its input. As shown in Table 3,
the two LSTM layers are merged by concatenation and followed by a fully connected layer with 1024
units. ReLU is used as activation function and loss is measured on cross-entropy and optimized with
the Adam algorithm (Kingma and Ba, 2015). The system is built as a single neural network with no
pre-training. We could not test much wider networks due to lack of computing capability. However, as
experienced by (Zhang et al., 2015), it seems that much wider networks than our own would result in
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little, if any, performance improvement. The model is built in Keras3 and TensorFlow4.

Layer Type Features Kernel Max-pooling
1 Convolutional 256 7 3
2 Convolutional 256 7 3
3 Convolutional 256 3 3
4 LSTM (left) 128 - -
5 LSTM (right) 128 - -
6 Dense 1024 - -

Table 3: Layers used in our neural network. The Features column represents the number of filters for
the convolutional layers and hidden units for LSTM and Dense layers. Layers 4 and 5 are merged by
concatenation to form the BiLSTM layer. Dropout was added between layer 6 and the output layer (not
listed in the table).

With the development set provided, the accuracy of the CLSTM approach reached 82% on average
which was below but comparable to the n-gram model. Additionally, our tests on the development set
showed that adding the BiLSTM on top of our ConvNet does indeed increase performance. We were
able to improve accuracy by 2 to 3% on average, with little additional computing time.

5 Results and Discussion

We submitted 3 runs for the closed test Set A: run1 – the N-gram of size 7, run2 – the N-gram of
size 8, and run3 – the CLSTM model. Table 4 shows the overall results of all 3 runs on the official test
set. As the table shows, the standard n-gram model significantly outperformed the CLSTM model. It
is interesting to note that the difference between the two n-grams is negligible. This was also observed
during training (see Section 4.1). Recall from Table 2 that the accuracy peaked at sizes n = 7 and n = 8
on the development set reaching 84.74%. The 3.71% increase with the test set was a welcome surprise.
On the other hand, the CLSTM performed about 3.55% lower during the test than it did at training time,
decreasing from an average of 82% to 78.46%. Overall, as Table 5 shows, our run1 (labeled clac)
ranked #7 with respect to the best runs of all 17 participating teams.

Run Description Accuracy F1 (micro) F1 (macro) F1 (weighted)
Run 1 N-gram 7 0.8845 0.8845 0.8813 0.8813
Run 2 N-gram 8 0.8829 0.8829 0.8812 0.8812
Run 3 CLSTM 0.7845 0.7845 0.7814 0.7814

Table 4: Results of our 3 submissions on test set A (closed training).

Table 6 shows the confusion matrix for our best run, the N-gram of size 7. For comparative purposes,
we have added the confusion matrix in Table 7 for our third and lesser performing model, the CLSTM.
As shown in Tables 6 and 7, for all language groups the N-gram performed significantly better than
the CLSTM. However, with both models, misclassifications outside of a language group are sparse and
statistically insignificant. This may indicate that a two-stage hierarchical process, as proposed by (Goutte
and Leger, 2015), is not necessary for the models we propose.

As shown in Tables 6 and 7, the major difficulty for our models was the classification of the Spanish
varieties in Group 3. It seems that the addition of Mexican Spanish is a significant challenge to dis-
criminating national varieties of Spanish. At DSL 2015, (Goutte and Leger, 2015) were able to classify
European Spanish and Argentine Spanish with an 89.4% accuracy, lower than for other languages. Given
the low variability among the best performing systems (see Table 5), and the lower performance with re-
spect to previous iterations of the DSL shared task, this was likely a challenge for all systems at DSL
2016.

3https://keras.io/
4https://www.tensorflow.org/
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Rank Team Run Accuracy F1 (weighted)
1 tubasfs run1 0.8938 0.8937
2 SUKI run1 0.8879 0.8877
3 GWU LT3 run3 0.8870 0.8870
4 nrc run1 0.8859 0.8859
5 UPV UA run1 0.8833 0.8838
6 PITEOG run3 0.8826 0.8829
7 clac run1 0.8845 0.8813
8 XAC run3 0.8790 0.8786
9 ASIREM run1 0.8779 0.8778
10 hltcoe run1 0.8772 0.8769
11 UniBucNLP run2 0.8647 0.8643
12 HDSL run1 0.8525 0.8516
13 Citius Ixa Imaxin run2 0.8525 0.8501
14 ResIdent run3 0.8487 0.8466
15 eire run1 0.8376 0.8316
16 mitsls run3 0.8306 0.8299
17 Uppsala run2 0.8252 0.8239

Table 5: Results for all systems, data set A, closed track. Our system “clac” ranked 7th.

Group
1 2 3 4 5

Group Code bs hr sr my id es-ar es-es es-mx pt-br pt-pt fr-ca fr-fr F1

1
bs 674 182 142 1 1 0.75
hr 76 911 11 1 1 0.86
sr 54 15 928 1 1 1 0.89

2 my 992 8 0.99
id 13 985 1 1 0.99

3
es-ar 927 58 15 0.83
es-es 92 875 29 2 2 0.81
es-mx 219 218 563 0.70

4 pt-br 956 44 0.95
pt-pt 54 946 0.95

5 fr-ca 972 28 0.93
fr-fr 2 1 3 109 885 0.92

Table 6: Confusion matrix for the n-gram of size 7, test Set A. We also add the F1 score in the last
column.

6 Conclusion

Although, it still achieved an accuracy of 78.46% with very little tuning and training set, we are disap-
pointed in the performance of the CSLTM. Based on the empirical study of (Zhang et al., 2015), character
based ConvNets performed in line with traditional methods with data sets in the hundreds of thousands,
and better with data sets in the millions. Since the shared task data set size was in between, it was not
clear which approach would perform best. We believe that a deep neural network can outperform the
traditional n-gram model for this task, but only once the data set size is dramatically increased and given
more time to experiment on the network parameters and structure. Since only raw texts are necessary,
i.e. containing no linguistic annotations, increasing the data set does not constitute a problem.

As future work, we would like to explore once again the open task. With the addition of Mexican
Spanish, France French and Canadian French, discriminating similar languages continues to be a chal-
lenge. In Table 5 we see how the top 7 teams are within a 1% spread, but all below 90% accuracy. We
believe that with a very large data set, a neural model could automatically learn key linguistic patterns to
differentiate similar languages and possibly perform better than the current iteration of our CLSTM.
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Group
1 2 3 4 5

Group Code bs hr sr my id es-ar es-es es-mx pt-br pt-pt fr-ca fr-fr F1

1
bs 697 172 129 1 1 0.67
hr 249 726 23 1 1 0.75
sr 130 43 826 1 0.83

2 my 909 91 0.94
id 23 975 1 1 0.94

3
es-ar 2 816 87 93 2 0.71
es-es 1 173 633 190 1 1 1 0.62
es-mx 304 309 385 1 1 0.46

4 pt-br 1 1 847 150 1 0.83
pt-pt 1 4 183 811 1 0.83

5 fr-ca 972 28 0.90
fr-fr 1 1 1 1 178 818 0.88

Table 7: Confusion matrix for the CLSTM, test Set A. We also add the F1 score in the last column.
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