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Abstract

This paper describes an analysis of our submissions to the Dialect Detection Shared Task 2016.
We proposed three different systems that involved simplistic features, to name: a Naive-bayes
system, a Support Vector Machines-based system and a Tree Kernel-based system. These sys-
tems underperform when compared to other submissions in this shared task, since the best one
achieved an accuracy of ∼0.834.

1 Introduction

The problem of discriminating similar languages has been tackled in previous years in the context of
shared tasks (Zampieri et al., 2014; Zampieri et al., 2015b). Here, there are promising results for dialect
detection, being the best results around 95.54% and for an open challenge, the best results yield around
95.65%.

Despite these positive results, some research issues remain to be solved such as: domain adaptation,
inclusion of new languages and classifier performance in terms of processing time.

The DSL 2014 Shared Task aimed to discriminate dialects within each of these 6 groups: Group A
(Bosnian, Croatian, Serbian), Group B (Indonesian, Malay), Group C (Czech, Slovak), Group D (Brazil-
ian Portuguese, European Portuguese), Group E (Castilian Spanish, Argentine Spanish), and Group F
(American English, British English). The 2015 version of this Shared task considered the first 5 groups
plus an additional group comprising Bulgarian and Macedonian. The 2016 version (Malmasi et al., 2016)
where our systems were competing differs to previous tasks in the addition of a new variety of Spanish
language: Mexican Spanish. Additionally, a second task aims to test dialect identification systems in
Arabic language datasets.

Our submissions mainly addressed the sub-task 1 for automatically discriminating between similar
languages and language varieties. We took into account two principles: a) to design lightweight systems
given that such a system should work in an online environment, and b) to design systems that would
involve using grammatical information without the recurring to sophisticated parsers.

This paper is structured as follows: Section 2 provides a brief context for our work in the state of the
art of language detection. Section 3 describes the core of our experiments. Section 4 outlines our results
and an analysis of the relevance of the proposed methods. Finally, we conclude with Section 6.

2 Related Work

Zampieri et al. (2012) and Zampieri et al. (2013) developed a computationally efficient method for de-
tecting Spanish and French dialects, which produces highly accurate results based on a naive Bayes
method. They address dialection detection in text extracted from newspaper articles. Since one of our
systems is mainy based in this method we provide a more detailed explanation in Section 3.3.

The previous DSL shared task was hold in 2015, in for which nine systems where submitted to the
close challenge. The best system was developed by (Malmasi and Dras, 2015). It consists of an ensemble
of SVM classifiers trained with character ngrams and word unigrams and bigrams.

Other approaches were based on two stage classification, the first stage was designed to classify the
group of languages and the second stage to differentiate between dialects (Goutte and Serge, 2015; Fabra-
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Boluda et al., 2015; Acs et al., 2015). Zampieri et al. (2015a) created a system based on Support Vector
Machines that has features in form of TF-IDF and also token base back-off (Jauhiainen et al., 2015), an
interesting method that split unknown tokens (unknown in the training data sets) into character n-grams
until it is found some examples on the training data set that can be use to derived probabilities.

3 Methods

This section briefly describes the resources and methods used to develop our systems.

3.1 Datasets
The training datasets provided by the shared task organizers were created based on text from newspapers
articles. One in-domain test set and also two out of domain twitter base data sets were made available
for testing purposes; these two twitter data sets were collected in a different manner to the news dataset.

3.2 Pre-processing
Punctuation marks, brackets, parenthesis, hyphens, and multiple blank spaces were removed. Also,
sentences were standardized to be all in upper-case. This pre-processing simplifies the text and that could
be beneficial on classification tasks with scarce amount of training data, but could also lose relevant
information for the classification, for instance (Tan et al., 2012) claim that in Malaysian numbers are
written with decimal point while in Indonesian are written using colons.

3.3 Naive Bayes, bi-gram language model
Our best system is a re-creation of the lightweight naive bayes bi-gram-word classification model de-
scribed in (Zampieri et al., 2015a; Zampieri et al., 2013; Zampieri et al., 2012; Zampieri and Gebre,
2012; Tiedemann and Ljubešić, 2012; Baldwin and Lui, 2010) for detecting Spanish dialects, Portuguese
dialects (from Brazil or Portugal), between Bosnian, Croatian and Serbian, and other languages. This
model has been extensively tested in different scenarios in the aforementioned works and we deemed it
was a good starting point for our experiment and it seemed less demanding in terms of processing times.
Its implementation was also described in language identification studies (Tiedemann and Ljubešić, 2012).

The formula used to calculate the likelihood of a given text belonging to a language or dialect L is:

P (L|text) = argmaxL

N∑
i=1

log(Pl(ni|L)) + log(P (L))) (1)

where N is the number of n-grams, Pl(ni|L) is the Laplace probability of the ni n-gram appearing on
the language model L and P (L) is the ratio of the number of n-grams used to build the language model
L divided by the total amount of n-grams used to build all language models.

Pl(ng|L) =
C(ng|L) + α

N +B
(2)

where α = 1. C(ng|L) is the number of times the n-gram ng appears on the text used to build the
language model L. N is the total number of n-grams extracted from the text used to build L, and B is
the total number of unique n-grams found at the text used to build the language model L.

The best results on the discerning western languages development data set where reach using bi-grams,
therefore bi-grams models where used to for both tasks.

3.4 SVM
Support Vector Machines are among the most used algorithms for classification problems. Baldwin and
Lui (2010) successfully used SVMs in language identification. It was also used in previous shared tasks
in different setups (Purver, 2014; Zampieri et al., 2015a; Malmasi and Dras, 2015).

Each unique word on the train data set was assigned a unique index. Using these indexes, a sparse
vector was created for each sentence of the training and testing data set. Words which did not appear
on the training data set were ignored. The appearance of a word was flagged as a single occurrence
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on the projected vector independently of how many times that word appeared on the sentence. For this
experiment the multi-class setup of lib-SMV was used.

4 Analysis of Results

This shared task is about classifying sentences, and context plays a crucial role. Nonetheless, the authors
think it is worth to discuss the importance of dialect detection when the dialect of a short piece of
language cannot be detected by neither humans or machines.

Two scenarios appear likely: a) such piece of language is standard amongst language variations and
understood by the great majority of native speakers of the corresponding language, or b) It is too specific
in a dialect and in a register within that dialect that there is there is no body of comparison that allows
detection.

For the second case, let us consider the domain register of the dataset used during the training phase
of the experiments.

4.1 Training times

The naive Bayes model is quickly trained because it just requires to calculate n-grams probabilities and
has a linear computational cost (see Table 1). SVM is has a quadratic computational time, and the training
time is measured in hours or minutes, except for the Arabic data set, which is measured in seconds due
to its small size.

All experiments were done in a laptop with an Intel Core i7-5600U processor at 2.60GHz with 2 Cores
and 16GB of RAM.

Method Sub-task Set unigrams bigrams
SVM 1 train 5.5 hours 5 hours
SVM 2 train 30 seconds 12 seconds
SVM 1 dev 20 minutes 14 minutes
Bayes 1 train 11 seconds 17 seconds
Bayes 2 train <1 second <1 second
Bayes 1 dev <1 second <1 second

Table 1: Training times for both training datasets: Sub-task 1(for Roman Alphabet Languages) and
Sub-task 2 (for the Arabic language)

5 Overview

The official results for our submissions are shown in Table 2. They correspond to two of the systems
described in Section 3. This table shows the accuracy, micro and macro and weighted F1 for each of the
submitted classifications. Test set A is the in-domain composed by text from newspaper articles. Test
datasets B1 and B2 are composed by text extracted from twitter microposts, in two different ways. Test
set C is composed by Arabic text extracted by Automatic Speech Recognition.

Test Set Run Accuracy F1 (micro) F1 (macro) F1 (weighted)
A run1(Bayes) 0.8377 0.8377 0.8317 0.8317
A run2(SVM) 0.5848 0.5848 0.5802 0.5802
B1 run1(Bayes) 0.806 0.806 0.5667 0.7934
B1 run2(SVM) 0.594 0.594 0.3949 0.4739
B2 run1(Bayes) 0.74 0.74 0.4543 0.7268
B2 run2(SVM) 0.588 0.588 0.3394 0.543
C run1(Bayes) 0.3584 0.3584 0.3492 0.3455

Table 2: Results for all runs (for the closed track)

Table 3 shows the confusion matrix for the in-domain test set A per language. When a word cannot
be identified as belonging to any language model the system classifies as “bs” by default, that is why the
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Figure 1: Accuracy graph for Lidstone smoothing factor (development data set)

first column (predicted bs) shows more false positives than other languages. This confusion table shows
that the system classifies the language of a sentence with an accuracy of about 99.5%.

bs+hr+sr es fr id-my pt
bs+hr+sr 2994 3 1 1 1
es 3 2994 1 1 1
fr 9 1 1989 0 1
id-my 7 2 2 1988 1
pt 3 1 1 0 1995

Table 3: Language confusion matrix

Table 4 shows the confusion matrix for all dialects. Table 5 shows Precision, Recall and F1 of each
dialect, in domain test set. Here the Indonesian and Malasian (Group B) show the highest F1-scores, and
Bosnian, Croatian and Serbian (group A) show the lowest F1-scores.

Table 6 shows the confusion matrix for the twitter testing data sets B1 and B2, the tables are simplified
because there are only testing samples for group D:Portuguese and group A: Bosnian, Croatian and
Serbian, rows corresponding to other dialects where removed as only contain zeros, but those dialects
may appear in the column section to identify false positives, which in this case are es-es, fr-fr and id.

B1 bs es-ar es-es es-mx fr-ca fr-fr hr id my pt-br pt-pt sr
bs 500 2 247 251
es-ar 861 126 12 1
es-es 2 70 909 16 1 1 1
es-mx 191 350 459
fr-ca 863 137
fr-fr 6 1 46 943 3 1
hr 78 1 871 50
id 5 1 1 2 976 14 1
my 2 40 958
pt-br 1 945 54
pt-pt 2 1 1 95 901
sr 79 1 52 1 1 866

Table 4: Confusion matrix results
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Figure 2: Accuracy graph for Lidstone smoothing factor for A (in-domain test).

Figure 3: Accuracy graph for Lidstone smoothing factor for B1 (first out-of-domain twitter data set)

Figure 4: Accuracy graph for Lidstone smoothing factor for B2 (second out-of-domain twitter data set)
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bs es-ar es-es es-mx fr-ca fr-fr hr id my pt-br pt-pt sr
Precision 50 86 91 46 86 94 87 98 96 95 90 87
Recall 43 43 40 49 49 46 43 49 50 48 48 43
F1 46 58 55 47 62 62 57 65 65 63 63 57

Table 5: Precision, Recall and F1 of each dialect, in domain test set (in percentages)

Predicted
bs-hr-sr dialects Portuguese Others

B1 bs hr sr pt-br pt-pt es-es fr-fr id
bs 36 6 56 . . 1 . 1
hr 2 90 8 . . . . .
sr 1 . 99 . . . . .
pt-br . . . 99 1 . . .
pt-pt . . . 21 79 . . .
B2 bs hr sr pt-br pt-pt es-es fr-fr id
bs 34 7 57 . . 1 . 1
hr 4 87 9 . . . . .
sr 1 . 99 . . . . .
pt-br 3 . . 88 9 . . .
pt-pt 2 . . 34 62 1 1 .

Table 6: Simplified confusion matrix for the twitter test datasets B1 and B2.

5.1 Lidstone smoothing factor
With Lidstone smoothing factor α set to one, the probability formula results in the Laplace probability,
however with α < 1 the probability results in Lidstone smoothing (Tan et al., 2012).

Extensive experimentation using Laplace probability has been carried out (α = 1) (Baldwin and Lui,
2010; Tan et al., 2012; Zampieri and Gebre, 2012; Zampieri et al., 2013; Zaidan and Callison-Burch,
2014), but non as far as the authors of this article know using an optimization of Lidstone smoothing.

An investigation carried out after the submission deadline for the experiment using the development
set, shows that an accuracy of 80.4% for uni-grams using Laplace probabilities could be improved to
82.0% (increment of 1.6%) with Lidstone smoothing using an alpha value of α = 0.01.

The tuning of the parameter α seems to improve the uni-grams language model more than the bi-grams
language model to the extent that the uni-gram model outperforms the bi-gram one. This is an important
observation because it was believed that the bi-gram model outperforms the uni-gram model, and that is
what happens with α = 1, this is why the results of the bi-gram model where submitted to the shared
task evaluation.

Figure 1 shows how the accuracy changes along with the parameter α. The smallest the α value the
higher weight of infrequent words on the results of the experiment.

It is a plausible hypothesis that uni-gram models are less likely to capture name entities that consist
on multiple words and therefore not only outperforms the bi-gram model but also adapts better to new
domains. This expectation is not observed on the results show on other data sets, for instance Figure 2
shows a similar trend by the crossing point from which uni-grams outperform bi-grams 10−1.6 is much
lower than the one suggested by the development set 10−0.6. Also the out of domains data sets, B1 shows
a graph for which bi-grams always outperform uni-grams (See Figure 3), and B2, shows opposite trends
as the in-domain testing set (see Figure 3).

6 Concluding Remarks

Observations on the tuning of the smoothing factor (Section 3.3) are important contributions of this work.
This results indicates that with proper selection of the α parameter the word base uni-gram model tends
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to outperforms the word base bi-gram model. This is important because previous published research used
the default parameter α = 1 and it looks like bi-gram word base models outperform uni-gram models,
where the results shown on this article point otherwise. Uni-gram word base models can have smaller
dictionaries which probably are less attached to the training set domain and that could lead to better
domain adaptation, this hypothesis needs further investigation.

The optimal value for the alpha parameter seems to be substantially lower than the default set on
Laplace probabilities, about α = 0.01 for words uni-grams and α = 0.2 for words bi-grams, where the
crossing point from which the uni-grams model outperform the bi-grams model is α = 0.25 (10−0.6)
this values are derivative from the development set.

This article re-produces a successfully naive Bayes language classifier approach for the automatic
classification. The system was trained with for two different groups of languages, the first task contains
twelve different languages or dialects group in five different clusters according to their similarity. The
groups are: Group A (Bosnian, Croatian, and Serbian), Group B (Malay and Indonesian), Group C
(Portuguese: Brazil and Portugal), Group D (Spanish: Argentina, Mexico, and Spain), Group E (French:
France and Canada).

Classifying sentences among this groups of languages is not a novel task if analysed on individual
groups but what is novel is to discriminate with all twelve groups together, except on previous shared
tasks.

As an interesting observation using naive Bayes about 4.2% of the in-domain test set of Argentinian-
Spanish is classified as Castilian-Spanish, where almost no Argentinian-Spanish samples are classified
as Mexican-Spanish (0.4%). However with the SVM model, this trend is reversed, with SVM still 3%
of Argentinian-Spanish samples are misclassified as Spanish, and 13% are misclassified as Mexican-
Spanish.

Regarding the second task, classifying Arabic languages/dialects, the results obtained using naive
Bayes differ in great manner from the naive Bayes system described in (Zaidan and Callison-Burch,
2014) where the accuracy for each dialect ranges between 69.1% to 86.5%. The data sets are not the
same, but the difference could be due to a problem on encoding Arabic characters.

References
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