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Abstract

In this study conducted on the occasion of the Discriminating between Similar Languages shared
task, I introduce an additional decision factor focusing on the token and subtoken level. The
motivation behind this submission is to test whether a morphologically-informed criterion can
add linguistically relevant information to global categorization and thus improve performance.
The contributions of this paper are (1) a description of the unsupervised, low-resource method;
(2) an evaluation and analysis of its raw performance; and (3) an assessment of its impact within
a model comprising common indicators used in language identification. I present and discuss
the systems used in the task A, a 12-way language identification task comprising varieties of
five main language groups. Additionally I introduce a new off-the-shelf Naive Bayes classifier
using a contrastive word and subword n-gram model (“Bayesline”) which outperforms the best
submissions.

1 Introduction

Language identification is the task of predicting the language(s) that a given document is written in. It
can be seen as a text categorization task in which documents are assigned to pre-existing categories.
This research field has found renewed interest in the 1990s due to advances in statistical approaches and
it has been active ever since, particularly since the methods developed have also been deemed relevant
for text categorization, native language identification, authorship attribution, text-based geolocation, and
dialectal studies (Lui and Cook, 2013).

As of 2014 and the first Discriminating between Similar Languages (DSL) shared task (Zampieri et
al., 2014), a unified dataset (Tan et al., 2014) comprising news texts of closely-related language varieties
has been used to test and benchmark systems. A second shared task took place in 2015 (Zampieri et al.,
2015), an analysis of recent developments can be found in Goutte el al. (2016). The documents to be
classified are quite short and may even be difficult to distinguish for humans, thus adding to the difficulty
and the interest of the task.

The present study was conducted on the occasion of the third DSL shared task (Malmasi et al., 2016).
It focuses on submissions to task A, a 12-way language identification task comprising varieties of five
main language groups: Bosnian (bs), Croatian (hr), and Serbian (sr); Argentine (es-AR), Mexican (es-
MX), and Peninsular Spanish (es-ES); Québec French (fr-CA) and Metropolitan French (fr-FR); Malay
(Bahasa Melayu, my) and Indonesian (Bahasa Indonesia, id); Brazilian Portuguese (pt-BR) and Euro-
pean Portuguese (pt-PT). Not all varieties are to be considered equally since differences may stem from
extra-linguistic factors. It is for instance assumed that Malay and Indonesian derive from a millenium-
old lingua franca, so that shorter texts have been considered to be a problem for language identification
(Bali, 2006). Besides, the Bosnian/Serbian language pair seems to be difficult to tell apart whereas Croa-
tian distinguishes itself from the two other varieties mostly because of political motives (Ljubesic et al.,
2007; Tiedemann and Ljubesi¢, 2012).
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The contributions of this paper are (1) a description of an unsupervised, low-resource method compris-
ing morphological features; (2) an evaluation and analysis of its raw performance; and (3) an assessment
of its impact in a model comprising common indicators used in language identification. In addition, I
will demonstrate that an off-the-shelf method working on the subtoken level can outperform the best
submissions in the shared task. The remainder of this paper is organized as follows: in section 2 the
method is presented, a evaluation follows in section 3, the systems used for the shared task is described
and a new baseline for task A is proposed in section 4.

2 Method

2.1 General principles

Statistical indicators such as character- and token-based language models have proven to be efficient on
short text samples, especially character n-gram frequency profiles from length 1 to 5 (Cavnar and Trenkle,
1994). In the context of the shared task, a simple approach using n-gram features and discriminative
classification achieved competitive results (Purver, 2014). Although features relying on the output of
instruments may yield useful information such as POS-features used for Spanish (Zampieri et al., 2013),
the diversity of the languages to classify as well as the prevalence of statistical methods call for low-
resource methods that can be trained and applied easily.

Morphological features are not prominent in the literature, although the indirect word stemming per-
formed by character n-grams is highlighted (Cavnar and Trenkle, 1994), and morphological ending fre-
quency mentioned as future work topic (Bali, 2006). The motivation behind this submission was to test
whether a morphologically-informed criterion can add linguistically relevant information to the global
decision and thus improve performance. This article protocols an attempt at developing an unsuper-
vised morphological model for each language present in the shared task. In order for this to be used in
competition, it has to be learned from the training data (“closed” submission track).

The method is based on segmentation and affix analysis. The original idea behind this simple yet
efficient principle seems to go back to Harris’ letter successor variety which grounds on transitional
probabilities to detect morpheme boundaries (Harris, 1955). The principle has proven valuable to con-
struct stem dictionaries for document classification (Hafer and Weiss, 1974), it has been used in the past
by spell-checkers (Peterson, 1980; Jones and Silverman, 1985), as it is linguistically relevant and com-
putationally efficient. Relevant information is stored in a trie (Fredkin, 1960), a data structure allowing
for prefix search and its reverse opposite in order to look for sublexicons, which greatly extends lexical
coverage. Forward (prefix) and backward (suffix) tries are used in a similar fashion, albeit with different
constraints. This approach does not necessarily perform evenly across languages; it has for example
led to considerable progress in morphologically-rich languages such as Arabic (Ben Hamadou, 1986) or
Basque (Agirre et al., 1992).

Similar approaches have been used successfully to segment words into morphemes in an unsupervised
way and for several languages. A more recent implementation has been the RePortS algorithm which
gained attention in the context of the PASCAL challenge (Keshava and Pitler, 2006; Dasgupta and Ng,
2007; Demberg, 2007) by outperforming most of the other systems. The present approach makes similar
assumptions as the work cited and adapts the base algorithm to the task at hand, that is the identification
of in- and out-of-vocabulary words and ultimately language identification. I have used this method in
previous work to overcome data sparsity in the case of retro-digitized East German corpora, an under-
resourced variety of written German, as I showed that it could trump full-fledged morphological analysis
to predict whether a given token is to be considered as part of the language or as an error (Barbaresi,
2016a). The present experiment consists of testing if an unsupervised morphological analysis of surface
forms can be useful in the context of similar language discrimination.

2.2 Current implementation

In order to build the corresponding models, a dictionary is built by observing unigrams in the training
data for each language, then prefix and suffix trees are constructed using this dictionary. An affix candi-
date list is constituted by decomposing the tokens in the training data and the residues are added to the
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list if they are under a fixed length. The 5% most frequent affixes are stored and used in the identification
phase, as relative corpus frequency is an efficient model construction principle (Dasgupta and Ng, 2007).
Parameter tuning, that is the determination of the best result for the shared task settings, is performed
empirically, in a one-against-all way with the concurrent languages. Token and affix length as well as
frequency-based thresholds and blacklists have been tested. In the end, only token and affix length con-
straints have been used, as blacklisting in the higher or lower frequency range did not lead to noticeable
improvements.

The identification algorithm aims at the decomposition into possibly known parts. It consists of two
main phases: first a prefix/suffix search over respective trees in order to look for the longest possible
known subwords, and secondly sanity checks to see if the rest could itself be an affix or a word out of
the dictionary. If o is a concatenation absent of the dictionary and if o and [ are both identified as
longest affix and in-vocabulary words, then a3 is considered to be part of the target language. If one of
the components is a word and if the other one is in the affix dictionary, then the token is also considered
valid. The segmentation can be repeated twice if necessary, it can thus identify up to 4 components.
It is performed both forward and backward since tests showed small improvements in cross-language
efficiency.

For example, the token cantalapiedra in the Spanish corpus is not necessarily in the dictionary, but
it can be decomposed into canta+lapiedra and ultimately into canta+la+piedra. The method can be
robust: especialemente for instance can be considered to be a spelling error, but it can still be decomposed
into especial+e+mente and qualifies as a word if the remaining e is in the affix list of the corresponding
variety; in this particular context this is not the case, and the token is not considered to be a valid word. In
the Malay/Indonesian corpus, the token abdul_rahman is probably a Twitter username, and its parts abdul
and rahman are both in the dictionary. If punctuation signs are added to the affix list, then this token is
correctly analyzed as part of the target language. On the opposite side, the token mempertanyakan (to put
into question, to doubt) is only present in the Indonesian corpus, and the affix memper- is more frequent
in this corpus. The model for Malay decomposes the word as mempe+r+tanyakan, because the word
mempe is seen once in the training data (which stems from a spelling error: mempe ngerusikan should be
spelled mempengerusikan and analyzed as mem+pengerusi+kan). Since r is in the affix list it concludes
that mempertanyakan is a valid word. The right decomposition would have been memper+tanyakan or
even memper+tanya+kan. This composite could easily be a valid Malay word but it is more frequent in
Indonesian. Since memper- does not occur as a token, it is not decomposed correctly. Additionally, the
model does not presently yield information about such frequency effects.

The models are indeed restricted to concatenative morphology, and the fact that a stem has to be in the
dictionary is a strong limitation impeding performance (Demberg, 2007), in particular recall. However, it
has been kept here as it prevents the models from overgenerating because of differences in the languages
examined.

3 Evaluation

After empirical testing, the smallest possible token length for learning and searching is fixed to 5 char-
acters, there is no upper bound on token length, and the maximum affix length is set to 2 to provide a
safer setting overall, although affix lengths of 3 or 4 occasionally lead to better results. Despite the pos-
sibility of populating a blacklist out of common tokens present in the lower and higher frequency ranges,
experiments have not been conclusive, so that no blacklisting has been used for the task.

3.1 Raw performance

Table 1 describes the results of morphological training. The coverage displayed is the total percent-
age of words considered to be in-dictionary by the model, for the target language and for the concurrent
language(s) respectively. For Southeastern-European languages, I find a lower lexical overlap than Tiede-
mann and Ljubesi¢ (2012). The Spanish varieties have the smallest coverage spread. The assumption
that Malay and Indonesian feature more than 90% lexical similarity (Bali, 2006) is only partially con-
firmed: it seems that Indonesian has more to do with Malay than vice versa and the news samples used
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Trad. assumed Languages Coverage Benchmark (precision)
lang. type Target Concurrent Target Other | Baseline Method Bayesline
bs hr,sr 0.88 0.84 0.70 0.71 0.81
Fusional hr bs,sr 0.90 0.79 0.87 0.87 0.83
ST bs,hr 0.90 0.76 0.92 0.92 0.86
es-AR es-ES,es-MX 0.96 0.89 0.85 0.86 0.79
Fusional es-ES es-AR,es-MX 0.95 0.92 0.69 0.69 0.58
es-MX es-AR,es-ES 0.93 0.92 0.66 0.65 0.78
Fusional fr-CA fr-FR 0.97 0.87 0.92 0.92 0.95
fr-FR fr-CA 0.94 0.92 0.84 0.85 0.85
Agglutinative id my 0.95 0.85 0.98 0.97 0.98
my id 0.96 0.78 0.99 0.98 0.99
Fusional pt-BR pt-PT 0.95 0.89 0.89 0.91 0.93
pt-PT pt-BR 0.95 0.89 0.92 0.93 0.93

Table 1: Results of morphological induction on training set in terms of coverage and precision of classi-
fication on the development set. The unigram baseline and unigram Bayesline (Tan et al. 2014) are given
for comparison.

for the tests seem to be relatively easy to tell apart, since they feature the largest coverage spread. This
distinction within the Bahasa complex and the rest is reflected as being traditionally assumed in lan-
guage typology. However, finer differences do exist between fusional/inflectional languages (Dryer and
Haspelmath, 2013)!, and the results of the morphological induction phase constitute further evidence of
subtle differences, among other things on the morpholexical level.

Concerning the benchmark, the method is compared to a unigram baseline in terms of raw precision:
for each instance, potential candidates (alphabetic tokens of 5 characters and more) are analyzed and
classified as in- or out-of-vocabulary. The number of in-vocabulary tokens is divided by the number of
candidates, and the instance is classified according to the model which yields the highest proportion of
recognized tokens. This proportion has to be strictly superior to all others, which means that this indicator
(as all unigram models) can be undecided due to coverage problems, especially in short instances. Thus,
I used precision as a benchmark in order to judge cases where the indicator actually predicts something,
in other words the positive predictive value.

The precision displayed has been calculated accordingly on the development set, by using the highest
score per instance and taking language families in isolation, i.e. by reducing the 12-way classification
to a 2- or 3-way one. The method mostly achives equal or better results than the unigram baseline,
which proves that the concept is working, and that it might lead to better predictions for unseen samples.
A “Bayesline” is used as implemented for the previous DSL editions (Tan et al., 2014), it grounds on
unigrams for the sake of comparison and integrates a Naive Bayes classifier?, whereas the baseline and
my method yield “raw” results at this point. In line with expectations, the Bayesline generally achieves
better results. There are interesting discrepancies though: Argentine Spanish and Serbian seem to stand
out in a morpholexical perspective, meaning that the method could add relevant information to a global
system.

3.2 Impactin a composite system

The morphological criterion is not meant to be used by itself, but rather as a part of a combination of
features which are learned and weighted by statistical learning techniques as usually done in the literature
(Goutte et al., 2016). Since the criterion does not systematically lead to an unequivocal result, it will be
treated as a sparse feature by the models. The question is now to determine both the impact and the

"http://wals.info/chapter/26

2CountVectorizer (analyzer='word’, ngram.range=(1,1)),followed by a multinomial Naive Bayes clas-
sifier
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Language Morphology Char 4-grams Word bigrams
LM RF LM RF LM RF

bS skskosk sk X k skskesk *

hI' . * * kekok *

Sr skskosk % skskosk k %

es-AR ok * . . o .

CS-ES kook X skk skkosk *

es—MX skskesk sk * k skskesk

fI'—CA * sk skskosk sk skskesk

fI'—FR kekok Hsksk * kskok

my skskesk sk skskosk % ksk

pt-PT skskok K3k kskosk ksk skskok

Table 2: Results of relevance tests on development set
Linear model (LM) significance levels: 0 “***” (.001 “**” (0.01 “*” 0.05 “> 0.1 “” 1
Random Forest (RF) relative feature importances: > 80% “***” > 60% “**” > 40% “*” > 20% “.”

potential for generalization of the morphological criterion presented in this article, all the more since the
closed training sets are restricted in size.

To test for variable significance, two distinct classification models are applied. The first one consists of
a regression analysis using a linear model, from a family of models commonly used to classify data and
select variables (Friedman et al., 2009), and previously used for classification of web documents in web
corpus construction (Barbaresi, 2015). The second one resides in random forests (Breiman, 2001). It has
been shown that in spite of their variability they can be used for interpretation, with respect to variable
importance, and also for feature selection in terms of model efficiency (Genuer et al., 2010). Previous
editions of the shared task have highlighted that higher-order character n-grams and lower-order word
n-grams allow for an efficient combination of accuracy and efficiency (Goutte et al., 2014; Malmasi and
Dras, 2015). Following from these results, character 4-grams and word bigrams are taken as a reference
for relevance tests.

Table 2 shows that word bigrams are the most relevant indicator according to the linear model, the
morphological criterion is used the most by the random forests. Overall, the most relevant feature is the
morphological criterion, although it is not equally important across all languages (especially for 3-way
concurrencies) and although the overall model is well-balanced. In fact, nearly all if not all the features
tend to be used even after feature selection by both methods, which means that the criterion introduced
here qualifies as relevant input from a statistical point of view and may be used as a sparse feature to
discriminate similar languages.

4 Shared task systems

The systems described in this section have been submitted as team XAC (Cross-Academies). An addi-
tional Bayesline is introduced, used as a system component. It only became apparent after the release of
the gold dataset that it actually performs better on it than all other features and, most importantly, better
than the other competing systems.

After significance tests conducted as described above, a combination of features has been used to set
up a classification system for the DSL shared task. The instances in the data are tokenized using the
SoMadJo tokenizer (Proisl and Uhrig, 2016), which achieves state-of-the-art accuracies on both web and
CMC data for German. As it is rule-based, it is deemed efficient enough for the languages of the shared
task. The features used comprise instance statistics such as length or number of capital letters and most
importantly the following series of continuous variables yielded by models trained for each language
variety: the normalized morphological criterion (feature scaling by standardization); character and word
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n-grams language models perplexities on lowercase tokenized text, respectively character 5-grams with
Kneser-Ney smoothing (Kneser and Ney, 1995) as computed by OpenGrm (Roark et al., 2012); and
word 2-, 3-, and 4-grams with modified Kneser-Ney smoothing as computed by KenLM (Heafield, 2011;
Heafield et al., 2013); the online learning toolkit Vowpal Wabbit (Langford et al., 2007; Langford et
al., 2009), which achieved the best performance when used separately on the development set; and
probabilities given by the Bayesline proposed below (as a Naive Bayes classifier yields probabilities for
each category). It was not clear in the development data that this new Bayesline would perform better
when applied alone on the gold set, the combination appeared to lead to the best overall performance.

Classification is performed using existing implementations by the scikit-learn toolkit (Pedregosa et al.,
2011). Random forests (Breiman, 2001) were used in the two first runs because of encouraging results
on the development set, but they were outperformed by a gradient boosting classifier (Friedman, 2001)
on the test set as shown in Table 3 (run 3), probably because of the robustness of this method, which
is known to perform well with heterogeneous features. The baseline is calculated according to the DSL
Bayesline (Tan et al., 2014) as described above, with an adapted setting to focus on character 4-grams.>

The best run was ranked 8th out of 17 teams on the task A in closed training, i.e. without using external
resources or past DSL data, with an accuracy of 0.879; the baseline of the first edition was 0.859 and the
best ranked submission reached an accuracy of 0.893. The confusion matrix on Figure 1 hints at a lower
classification accuracy concerning the three-way concurrencies, Spanish in particular. I hypothesize
that statistical models reach their limits here, especially concerning the Mexican Spanish, which is both
heavily influenced by other varieties and not homogeneous enough, so that frequency information cannot
be used reliably. Finally, the results on the gold set are not in line with the development set, where cross-
validated accuracies around 0.92 have been observed. The systems used may have been too complex or
not well-weighted.

Confusion Matrix
bs
0.9
es-ar
es-es 0.8
es-mx 0.7
fr-ca 0.6
2 s |
r-fr
< 0.5
2 hr
’_ |
40.4
id
my 10.3
pt-br 40.2
pt-pt o1
Sr
— 0.0

Predicted label

Figure 1: Confusion matrix for test set A (closed training)
In view of this I would like to introduce a refined version of the Bayesline (Tan et al., 2014) in the
form of a similar off-the-shelf Naive Bayes classifier using a contrastive subword n-gram model*, which
3Count\/ectorizer (analyzer='char’, ngram.range=(4,4))

‘TfidfVectorizer (analyzer='char’, ngram.range=(2,7), strip-accents=None,
lowercase=True) followed by MultinomialNB (alpha=0.005), adapted from https://web.archive.org/web/2016-

217



outperforms the best teams for task A (with an accuracy of 0.902), even without taking the development
data into consideration (accuracy of 0.898). This shows that meaningful word and subword features can
give a boost to existing systems, even if they are based on simple extraction methods and/or used alone.

Run Accuracy F1 (micro) F1 (macro) F1 (weighted)
Reference Bayesline 0.859 0.859 0.858 0.858
run 1 0.861 0.861 0.860 0.860
run 2 0.870 0.870 0.869 0.869
run 3 0.879 0.879 0.879 0.879
Proposed Bayesline  0.902 0.902 0.902 0.902

Table 3: Results for test set A (closed training). Bayeslines inspired by Tan et al. (2014)

Finally, I wish to bring to the reader’s attention that I tried to gather web texts for an open submis-
sion using existing techniques (Barbaresi, 2013; Barbaresi, 2016b) and focusing on top-level domains.
Although the quality of corpora did not seem to be a problem apart from the Bosnian domain (.ba), the
variation contained in web texts was not a good match for the news texts of the shared task. As observed
in previous editions, performance decreased as further texts were included, so that no open submission
was made.

5 Conclusion

I have presented a method to build an unsupervised morphological model for all the languages of the
shared task. The resulting segmentation analysis is not the most efficient feature in itself, but I have
shown that this criterion qualifies as relevant input from a statistical point of view and may be used as
a sparse feature to discriminate similar languages. A reasonable hypothesis is that it adds new linguis-
tically motivated information, dealing with the morpho-lexical logic of the languages to be classified,
also yielding insights on linguistic typology. Unevenly distributed characteristics across the languages
account for noise which is filtered accordingly by the models.

Meaningful subword features could well give a boost to existing systems, even if they are based on
simple extraction methods. In fact, an off-the-shelf Naive Bayes classifier using a contrastive word and
subword n-gram model outperforms the best submission for classification across 12 languages, which
casts the best possible light on this topic. In this respect, future work includes a refinement of feature
extraction processes on this level, especially concerning frequency, whose role in linguistically relevant
units is more difficult to assess, probably because more training data is needed than for character n-grams.

The efficiency of the proposed Bayesline as well as the difficulty to reach higher scores in open training
could be explained by artificial regularities in the test data. The results for the Malay/Indonesian pair
are striking, this clear distinction does not reflect the known commonalities between these varieties.
This seems to be an artifact of the data which feature standard language of a different nature than the
continuum “on the field”, that is between both countries and within Indonesia. The conflict between
in-vitro and real-world language identification has already been emphasized in the past (Baldwin and
Lui, 2010), it calls for the inclusion of web texts into the existing task reference.
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