UnibucKernel: An Approach for Arabic Dialect Identification based on
Multiple String Kernels

Radu Tudor Ionescu and Marius Popescu
University of Bucharest
Department of Computer Science
14 Academiei, Bucharest, Romania
raducu.ionesculgmail.com
popescunmarius@gmail.com

Abstract

The most common approach in text mining classification tasks is to rely on features like words,
part-of-speech tags, stems, or some other high-level linguistic features. Unlike the common
approach, we present a method that uses only character p-grams (also known as n-grams) as
features for the Arabic Dialect Identification (ADI) Closed Shared Task of the DSL 2016 Chal-
lenge. The proposed approach combines several string kernels using multiple kernel learning. In
the learning stage, we try both Kernel Discriminant Analysis (KDA) and Kernel Ridge Regres-
sion (KRR), and we choose KDA as it gives better results in a 10-fold cross-validation carried out
on the training set. Our approach is shallow and simple, but the empirical results obtained in the
ADI Shared Task prove that it achieves very good results. Indeed, we ranked on the second place
with an accuracy of 50.91% and a weighted Fj score of 51.31%. We also present improved
results in this paper, which we obtained after the competition ended. Simply by adding more
regularization into our model to make it more suitable for test data that comes from a different
distribution than training data, we obtain an accuracy of 51.82% and a weighted F score of
52.18%. Furthermore, the proposed approach has an important advantage in that it is language
independent and linguistic theory neutral, as it does not require any NLP tools.

1 Introduction

It seems natural to use words as basic units in text categorization, authorship identification, plagiarism
detection or similar text mining tasks. Perhaps surprisingly, recent results indicate that methods handling
the text at the character level can also be very effective (Lodhi et al., 2002; Sanderson and Guenter, 2006;
Kate and Mooney, 2006; Popescu and Dinu, 2007; Grozea et al., 2009; Popescu, 2011; Escalante et al.,
2011; Popescu and Grozea, 2012; Ionescu et al., 2014; Ionescu et al., 2016). By avoiding to explicitly
consider features of natural language such as words, phrases, or meaning, an approach that works at the
character level has an important advantage in that it is language independent and linguistic theory neutral.
In this context, we present a method based on character p-grams that we designed for the Arabic Dialect
Identification (ADI) Shared Task of the DSL 2016 Challenge (Malmasi et al., 2016). In this task, the
participants had to discriminate between Modern Standard Arabic (MSA) and 4 Arabic dialects, in a 5-
way classification setting. A number of 18 teams have submitted their results on the final test set, and our
team (UnibucKernel) ranked on the second place with an accuracy of 50.91% and a weighted Fy score
of 51.31%. Our best scoring system is based on combining three different string kernels via multiple
kernel learning (MKL) (Gonen and Alpaydin, 2011). The first kernel that we considered is the p-grams
presence bits kernel!, which takes into account only the presence of p-grams instead of their frequency.
The second kernel is the (histogram) intersection string kernel?, which was first used in a text mining task
by Ionescu et al. (2014), although it is much more popular in computer vision (Maji et al., 2008; Vedaldi
and Zisserman, 2010). The third kernel is derrived from Local Rank Distance’, a distance measure that

This work is licensed under a Creative Commons Attribution 4.0 International License. License details:
http://creativecommons.org/licenses/by/4.0

"We computed the p-grams presence bits kernel using the open source code provided at http://string-kernels.herokuapp.com

>We computed the intersection string kernel using the open source code provided at http://string-kernels.herokuapp.com
3We computed the Local Rank Distance using the open source code provided at http://Ird.herokuapp.com

135

Proceedings of the Third Workshop on NLP for Similar Languages, Varieties and Dialects,
pages 135-144, Osaka, Japan, December 12 2016.

was first introduced in computational biology (Ionescu, 2013; Dinu et al., 2014), but it has also shown its
application in NLP (Popescu and Ionescu, 2013; Ionescu, 2015). Although character p-grams have been
employed for ADI in several works (Darwish et al., 2014; Zaidan and Callison-Burch, 2014; Malmasi
et al., 2015), to the best of our knowledge, none of these string kernels have been previously used for
ADI. Interestingly, these kernels have also been used for native language identification (Popescu and
Ionescu, 2013; Ionescu et al., 2014; Ionescu et al., 2016), obtaining state-of-the-art performance for
several languages, including Arabic.

Two kernel classifiers (Shawe-Taylor and Cristianini, 2004) were considered for the learning task,
namely Kernel Ridge Regression (KRR) and Kernel Discriminant Analysis (KDA). The KDA classifier
is sometimes able to improve accuracy by avoiding the masking problem (Hastie and Tibshirani, 2003).
In a set of preliminary experiments performed on the training set, we found that KDA gives slightly
better results than KRR. Hence, all our submissions are based on learning with KDA. Before submitting
our results, we have also tuned our string kernels for the task. First of all, we tried out p-grams of
various lengths, including blended variants of string kernels as well. The best accuracy was obtained
with blended kernels of 3 to 6 p-grams. Second of all, we have evaluated the individual kernels and
various MKL combinations. The empirical results indicate that combining kernels via MKL can help to
improve the accuracy by nearly 1%. All these choices played a significant role in obtaining the second
place in the final ranking of the ADI Shared Task. After the challenge, as we learned that the test set
comes from a different source, we further improved our models just by adding more regularization.
Interestingly, our approach treats the text documents simply as strings, since it does not involve any
linguistic processing of the text, not even tokenization. Therefore, our method is language independent
and linguistic theory neutral. Furthermore, the proposed approach is simple and effective, as it is just
based on shallow features (character p-grams).

The paper is organized as follows. Work related to Arabic dialect identification and to methods based
on string kernels is presented in Section 2. Section 3 presents the string kernels that we used in our
approach. The learning methods used in the experiments are described in Section 4. Section 5 presents
details about experiments, including parameter tuning, combining kernels and results of submitted sys-
tems. Finally, we draw our conclusion in Section 6.

2 Related Work

2.1 Arabic Dialect Identification

Arabic dialect identification is a relatively new NLP task with only a handful of works to address it (Bi-
adsy et al., 2009; Zaidan and Callison-Burch, 2011; Elfardy and Diab, 2013; Darwish et al., 2014; Zaidan
and Callison-Burch, 2014; Malmasi et al., 2015). Although it did not received too much attention, the
task is very important for Arabic NLP tools, as most of these tools have only been design for Modern
Standard Arabic. Biadsy et al. (2009) describe a phonotactic approach that automatically identifies the
Arabic dialect of a speaker given a sample of speech. While Biadsy et al. (2009) focus on spoken Arabic
dialect identification, others have tried to identify the Arabic dialect of given texts (Zaidan and Callison-
Burch, 2011; Elfardy and Diab, 2013; Darwish et al., 2014; Malmasi et al., 2015). Zaidan and Callison-
Burch (2011) introduce the Arabic Online Commentary (AOC) data set of 108K labeled sentences, 41%
of them having dialectal content. They employ a language model for automatic dialect identification on
their collected data. A supervised approach for sentence-level dialect identification between Egyptian
and MSA is proposed by Elfardy and Diab (2013). Their system outperforms the approach presented by
Zaidan and Callison-Burch (2011) on the same data set. Zaidan and Callison-Burch (2014) extend their
previous work (Zaidan and Callison-Burch, 2011) and conduct several ADI experiments using word and
character p-grams. Different from most of the previous work, Darwish et al. (2014) have found that word
unigram models do not generalize well to unseen topics. They suggest that lexical, morphological and
phonological features can capture more relevant information for discriminating dialects. As the AOC
corpus is not controlled for topic bias, Malmasi et al. (2015) also state that the models trained on this
corpus may not generalize to other data as they implicitly capture topical cues. They perform ADI ex-
periments on the Multidialectal Parallel Corpus of Arabic (MPCA) (Bouamor et al., 2014) using various

136

word and character p-grams models in order to assess the influence of topic bias. Interestingly, Malmasi
et al. (2015) find that character p-grams are “in most scenarios the best single feature for this task”, even
in a cross-corpus setting. Their findings are consistent with our results in the ADI Shared Task of the
DSL 2016 Challenge (Malmasi et al., 2016), as we ranked on the second place using solely character
p-grams. It is important to remark that the ADI Shared Task data set contains Automatic Speech Recog-
nition (ASR) transcripts of Arabic speech collected from the Broadcast News domain (Ali et al., 2016).
The fact that the data set may contain ASR errors (perhaps more in the dialectal speech segments) makes
the ADI task much more difficult than in previous studies.

2.2 String Kernels

In recent years, methods of handling text at the character level have demonstrated impressive perfor-
mance levels in various text analysis tasks (Lodhi et al., 2002; Sanderson and Guenter, 2006; Kate and
Mooney, 2006; Popescu and Dinu, 2007; Grozea et al., 2009; Popescu, 2011; Escalante et al., 2011;
Popescu and Grozea, 2012; Ionescu et al., 2014; Ionescu et al., 2016). String kernels are a common
form of using information at the character level. They are a particular case of the more general con-
volution kernels (Haussler, 1999). Lodhi et al. (2002) used string kernels for document categorization
with very good results. String kernels were also successfully used in authorship identification (Sander-
son and Guenter, 2006; Popescu and Dinu, 2007; Popescu and Grozea, 2012). For example, the system
described by Popescu and Grozea (2012) ranked first in most problems and overall in the PAN 2012
Traditional Authorship Attribution tasks. More recently, Ionescu et al. (2016) have used various blended
string kernels to obtain state-of-the-art accuracy rates for native language identification.

3 Similarity Measures for Strings

3.1 String Kernels

The kernel function gives kernel methods the power to naturally handle input data that is not in the form
of numerical vectors, for example strings. The kernel function captures the intuitive notion of similarity
between objects in a specific domain and can be any function defined on the respective domain that is
symmetric and positive definite. For strings, many such kernel functions exist with various applications
in computational biology and computational linguistics (Shawe-Taylor and Cristianini, 2004). String
kernels embed the texts in a very large feature space, given by all the substrings of length p, and leave
it to the learning algorithm to select important features for the specific task, by highly weighting these
features.

Perhaps one of the most natural ways to measure the similarity of two strings is to count how many
substrings of length p the two strings have in common. This gives rise to the p-spectrum kernel. Formally,
for two strings over an alphabet X, s, ¢ € 3%, the p-spectrum kernel is defined as:

kp(s,t) = Z num, (s) - num, (t),

where num,(s) is the number of occurrences of string v as a substring in s.* The feature map defined
by this kernel associates a vector of dimension |X|P containing the histogram of frequencies of all its
substrings of length p (p-grams) with each string.

A variant of this kernel can be obtained if the embedding feature map is modified to associate a vector
of dimension |X|P containing the presence bits (instead of frequencies) of all its substrings of length p
with each string. Thus, the character p-grams presence bits kernel is obtained:

KM (s,t) =) iny(s) - iy (t),

vEXP

where in,(s) is 1 if string v occurs as a substring in s, and 0 otherwise.

“Note that the notion of substring requires contiguity. Shawe-Taylor and Cristianini (2004) discuss the ambiguity between
the terms substring and subsequence across different domains: biology, computer science.

137

In computer vision, the (histogram) intersection kernel has successfully been used for object class
recognition from images (Maji et al., 2008; Vedaldi and Zisserman, 2010). Ionescu et al. (2014) have
used the intersection kernel as a kernel for strings. The intersection string kernel is defined as follows:

k;(s, t) = Z min{numv(5)> numy, (t)},

vEXP

where num,(s) is the number of occurrences of string v as a substring in s.

For the p-spectrum kernel, the frequency of a p-gram has a very significant contribution to the kernel,
since it considers the product of such frequencies. On the other hand, the frequency of a p-gram is
completely disregarded in the p-grams presence bits kernel. The intersection kernel lies somewhere in the
middle between the p-grams presence bits kernel and p-spectrum kernel, in the sense that the frequency
of a p-gram has a moderate contribution to the intersection kernel. In other words, the intersection kernel
assigns a high score to a p-gram only if it has a high frequency in both strings, since it considers the
minimum of the two frequencies. The p-spectrum kernel assigns a high score even when the p-gram has
a high frequency in only one of the two strings. Thus, the intersection kernel captures something more
about the correlation between the p-gram frequencies in the two strings. Based on these comments, we
decided to use only the p-grams presence bits kernel and the intersection string kernel for ADI.

Data normalization helps to improve machine learning performance for various applications. Since
the value range of raw data can have large variation, classifier objective functions will not work properly
without normalization. After normalization, each feature has an approximately equal contribution to the
similarity between two samples. To obtain a normalized kernel matrix of pairwise similarities between
samples, each component is divided by the square root of the product of the two corresponding diagonal
components:

. K.

Kij = 72.

Vi - Kjj
This is equivalent to normalizing the kernel function as follows:
_ k(Sz‘, S j)
\/k(sz‘, si) - k(sj,s;)

To ensure a fair comparison of strings of different lengths, normalized versions of the p-grams presence
bits kernel and the intersection kernel are being used. Taking into account p-grams of different length and

summing up the corresponding kernels, new kernels, termed blended spectrum kernels, can be obtained.
We have used various blended spectrum kernels in the experiments in order to find the best combination.

];Z(SZ‘, Sj)

3.2 Local Rank Distance

Local Rank Distance (Ionescu, 2013) is a recently introduced distance measure for strings that aims to
provide a better similarity than rank distance (Dinu and Manea, 2006). Local Rank Distance (LRD) has
already shown promising results in computational biology (Ionescu, 2013; Dinu et al., 2014) and native
language identification (Popescu and Ionescu, 2013; Ionescu, 2015).

In order to describe LRD, we use the following notations. Given a string x over an alphabet ., the
length of x is denoted by |z|. Strings are considered to be indexed starting from position 1, that is
x = z[1]z[2] - - - z[|z|]. Moreover, x[i : j] denotes its substring z[i]z[i + 1] - - - z[j — 1].

Local Rank Distance is inspired by rank distance (Dinu and Manea, 2006), the main differences being
that it uses p-grams instead of single characters, and that it matches each p-gram in the first string with
the nearest equal p-gram in the second string. Given a fixed integer p > 1, a threshold m > 1, and two
strings and y over X, the Local Rank Distance between z and y, denoted by Aprp(x,y), is defined
through the following algorithmic process. For each position i in z (1 < i < |z| — p + 1), the algorithm
searches for that position j iny (1 < j < |y| —p+ 1) such that z[¢ : i + p] = y[j : j + p] and
|i — j| is minimized. If j exists and |i — j| < m, then the offset |¢ — j| is added to the Local Rank
Distance. Otherwise, the maximal offset m is added to the Local Rank Distance. An important remark

138

is that LRD does not impose any mathematically developed global constraints, such as matching the ¢-th
occurrence of a p-gram in x with the ¢-th occurrence of that same p-gram in y. Instead, it is focused
on the local phenomenon, and tries to pair equal p-grams at a minimum offset. To ensure that LRD is
a (symmetric) distance function, the algorithm also has to sum up the offsets obtained from the above
process by exchanging = and y. LRD is formally defined in (Ionescu, 2013; Dinu et al., 2014).
Interestingly, the search for matching p-grams is limited within a window of fixed size. The size of

this window is determined by the maximum offset parameter m. This parameter must be set a priori and
should be proportional to the average length of the strings. We set m = 500 in our experiments, which
is about twice the average length of the ASR transcripts provided in the training set. In the experiments,
the efficient algorithm of Ionescu (2015) is used to compute LRD. However, LRD needs to be used as a
kernel function. We use the RBF kernel (Shawe-Taylor and Cristianini, 2004) to transform LRD into a
similarity measure:

A Aprp(s,t)

kYR (s, t) = e 20 ,

where s and ¢ are two strings and p is the p-grams length. The parameter ¢ is usually chosen so that
values of l;:(s, t) are well scaled. In the above equation, A;rp is already normalized to a value in
the [0, 1] interval to ensure a fair comparison of strings of different length. Hence, we set o = 1 in the
experiments. The resulted similarity matrix is then squared in order to make sure it becomes a symmetric
and positive definite kernel matrix.

4 Learning Methods

Kernel-based learning algorithms work by embedding the data into a Hilbert feature space, and searching
for linear relations in that space. The embedding is performed implicitly, that is by specifying the inner
product between each pair of points rather than by giving their coordinates explicitly. More precisely, a
kernel matrix that contains the pairwise similarities between every pair of training samples is used in the
learning stage to assign a vector of weights to the training samples. Let o denote this weight vector. In
the test stage, the pairwise similarities between a test sample = and all the training samples are computed.
Then, the following binary classification function assigns a positive or a negative label to the test sample:

g(z) = Zai k(x, x;),
1=1

where z is the test sample, n is the number of training samples, X = {x1, x2, ..., z,, } is the set of training
samples, k is a kernel function, and «; is the weight assigned to the training sample x;.

The advantage of using the dual representation induced by the kernel function becomes clear if the
dimension of the feature space m is taken into consideration. Since string kernels are based on character
p-grams, the feature space is indeed very high. For instance, using 5-grams based only on the 28 letters
of the basic Arabic alphabet will result in a feature space of 28° = 17,210, 368 features. However, our
best model is based on a feature space that includes 3-grams, 4-grams, 5-grams and 6-grams. As long as
the number of samples n is much lower than the number of features m, it can be more efficient to use the
dual representation given by the kernel matrix. This fact is also known as the kernel trick (Shawe-Taylor
and Cristianini, 2004).

Various kernel methods differ in the way they learn to separate the samples. In the case of binary
classification problems, kernel-based learning algorithms look for a discriminant function, a function
that assigns +1 to examples belonging to one class and —1 to examples belonging to the other class.
For the ADI experiments, we used the Kernel Ridge Regression (KRR) binary classifier. Kernel Ridge
Regression selects the vector of weights that simultaneously has small empirical error and small norm in
the Reproducing Kernel Hilbert Space generated by the kernel function. KRR is a binary classifier, but
Arabic dialect identification is usually a multi-class classification problem. There are many approaches
for combining binary classifiers to solve multi-class problems. Typically, the multi-class problem is bro-
ken down into multiple binary classification problems using common decomposing schemes such as:

139

EGY GLF LAV NOR MSA
Trainset 1578 1672 1758 1612 999
Test set 315 256 344 351 274

Table 1: The sample distribution per class for the ADI Shared Task training and test sets.

one-versus-all and one-versus-one. We considered the one-versus-all scheme for our Arabic dialect clas-
sification task. There are also kernel methods that take the multi-class nature of the problem directly into
account, for instance Kernel Discriminant Analysis. The KDA classifier is sometimes able to improve
accuracy by avoiding the masking problem (Hastie and Tibshirani, 2003). In the case of multi-class ADI,
the masking problem may appear, for instance, when an Arabic dialect A is somehow related to two other
Arabic dialects B and C, in which case the samples that belong to class A can sit in the middle between
the samples of classes B and C. In this case, the class in the middle is masked by the other two classes,
as it never dominates. KDA can solve such unwanted situations automatically, without having to identify
what dialects are related by any means, such as geographical position or quantitative linguistic analysis.
More details about KRR and KDA are given in (Shawe-Taylor and Cristianini, 2004).

S Experiments and Results

5.1 Data Set

The ADI Shared Task data set (Ali et al., 2016) contains Automatic Speech Recognition (ASR) tran-
scripts of Arabic speech collected from the Broadcast News domain. The task is to discriminate between
Modern Standard Arabic (MSA) and 4 Arabic dialects, namely Egyptian (EGY), Gulf (GLF), Levan-
tine (LAV), and North-African or Maghrebi (NOR). Table 1 shows the sample distribution per class for
the training and the test sets. As the samples are not evenly distributed, an accuracy of 22.79% can be
obtained with a majority class baseline. Another important aspect is that the training and the test set
are taken from different sources, and this could alter the performance of a classifier. However, we were
unaware of this fact before the submission deadline.

5.2 Parameter Tuning and Implementation Choices

In our string kernels approach, ASR transcripts are treated as strings. Because the approach works at
the character level, there is no need to split the texts into words, or to do any NLP-specific processing
before computing the string kernels. The only editing done to the texts was the replacing of sequences
of consecutive space characters (space, tab, and so on) with a single space character. This normalization
was needed in order to prevent the artificial increase or decrease of the similarity between texts, as a
result of different spacing.

In order to tune the parameters and to decide what kernel learning method works best, we fixed 10
folds in order to evaluate each option in a 10-fold cross-validation (CV) procedure on the training set.
We first carried out a set of preliminary experiments to determine the range of p-grams that gives the
most accurate results in the 10-fold CV procedure. We fixed the kernel method to KRR based on the
Local Rank Distance kernel (I%RD) and we evaluated all the p-grams in the range 2-7. The results are
illustrated in Figure 1. Interestingly, the best accuracy (64.97%) is obtained with 4-grams. Furthermore,
experiments with different blended kernels were conducted to see whether combining p-grams of differ-
ent lengths could improve the accuracy. More precisely, we evaluated combinations of p-grams in three
ranges: 3-5, 4-6 and 3-6. In the end, the best accuracy (66.43%) was obtained when all the p-grams with
the length in the range 3-6 were combined. Hence, we used blended kernels with p-grams in the range
3-6 in the subsequent experiments.

Further experiments were also performed to establish what type of kernel works better, namely the
blended p-grams presence bits kernel (l%gi 16), the blended p-grams intersection kernel (/;:{316), or the ker-

nel based on LRD (12:3{{%6[)). These different kernel representations are obtained from the same data. The
idea of combining all these kernels is natural when one wants to improve the performance of a classifier.
When multiple kernels are combined, the features are actually embedded in a higher-dimensional space.
As a consequence, the search space of linear patterns grows, which helps the classifier to select a better

140

The 10-fold CV accuracy rate
(2] D (0] [¢2] (o] [¢2]
S = K o & o

a
©
T

[¢)]
0

6 7 8

-
N

3 4 5
The length of p—grams

Figure 1: Accuracy rates of the KRR based on the LRD kernel with p-grams in the range 2-7. The results
are obtained in a 10-fold cross-validation carried out on the training set.

Kernel KRR KDA

70/1

Fs—s 65.89% 66.18% Dialects | EGY GLF LAV NOR MSA
Fso 65.74% 66.28% EGY | 171 30 50 34 21
ksZe 66.43% 66.54% GLF 45 112 49 22 28
B+ kS 65.96% 66.42% LAV | 43 68 167 36 30
Iy A 66.64% 67.17% NOR | 50 75 40 171 15
kg + kERP 66.81% 67.12% MSA | 21 34 24 18 177
70/1 AR 1.LRD 07 07 . .

kslo T ks o+ ks 66.98% 67.37% Table 3: Confusion matrix (on the test set) of

Table 2: Accuracy rates of different blended string ~ KDA based on the sum of the blended p-grams
kernels combined with either KRR or KDA. The re- presence bits kernel and the blended intersec-
sults are obtained in a 10-fold cross-validation car- tion kernel. The regularizat.ion parameter is set
ried out on the training set. The best result is high- 10 0.8, so the F} score of this model is 52.18%.
lighted in bold.

discriminant function. The most natural way of combining two kernels is to sum them up. Summing
up kernels or kernel matrices is equivalent to feature vector concatenation. The kernels were evaluated
alone and in various combinations, by employing either KRR or KDA for the learning task. All the
results obtained in the 10-fold CV carried out on the training set are given in Table 2.

The empirical results presented in Table 2 reveal several interesting aspects about the proposed meth-
ods. Regarding the two kernel classifiers, it seems that KDA gives consistently better results, although
the difference in terms of accuracy is almost always less than 0.5%. The individual kernels obtain fairly
similar results. Perhaps surprisingly, the best individual kernel is the kernel based on Local Rank Dis-
tance with an accuracy of 66.43% when it is combined with KRR, and an accuracy of 66.54% when it is
combined with KDA. Each and every kernel combination yields better results than each of its individual
components alone. For both KRR and KDA, the best accuracy is actually obtained when all three kernels
are combined together. Indeed, KRR reaches an accuracy of 66.98% when the blended p-grams presence
bits kernel, the blended intersection kernel and the blended LRD kernel are summed up. With the same
kernel combination, KDA yields an accuracy of 67.37%. As KDA gives consistently better results in
the 10-fold CV procedure, we decided to submit three KDA models for the test set. The first submission
(runl) is based on the LRD kernel, which seems to be the best one among the individual kernels, although
previous works (Ionescu et al., 2014; Ionescu et al., 2016) indicate that the other two kernels obtain better
results on native language identification. Influenced by these previous works, we also decided to give
a fair chance to the blended p-grams presence bits kernel and the blended intersection kernel. Hence,
the second submission (run2) is based on the sum between l%g/_ 16 and k5 4. Finally, our third submission
(run3) is based on the sum of all three kernels, as this combination yields the best overall accuracy in the
10-fold CV procedure carried out on the training set.

141

Method Reg. Accuracy F; (macro) F; (weighted) Submitted
KDA and k5P 01 49.29% 49.43% 49.54% Yes (runl)
KDA and k5% + k5 ¢ 04 50.84% 51.09% 51.23% Yes (run2)
KDA and k375 + kS g + EXBP 02 50.91% 51.21% 51.31% Yes (run3)
KDA and k5P 0.2 49.35% 49.51% 49.59% No
KDA and k9% + k56 0.8 51.82% 52.00% 52.18% No
KDA and k% + k5 ¢ + kP 04 51.49% 51.52% 51.66% No
KRR and k7P 107% 50.19% 49.55% 49.72% No
KRR and kY + k5 g 107% 52.21% 51.73% 51.99% No
KRR and k5% + kS ¢ + B¥BZP 107* 51.88% 51.39% 51.56% No

Table 4: Results for test set C (closed training) of various models based on string kernels. Some models
that have not been submitted for the challenge are also included. For each model, the regularization
parameter used to control the trade-off between overfitting and underfitting is reported as well.

5.3 Results and Discussion

Table 4 presents our results for the Arabic Dialect Identification Closed Shared Task (test set C) of the
DSL 2016 Challenge, along with a few systems that were not submitted for the task. Among the three
submissions, the best performance is obtained when all three kernels are combined and KDA is used for
learning. The submitted systems were ranked by their weighted F score, and among the 18 participants,
our best model obtained the second place with a weighted F score of 51.31%. Nevertheless, the winning
solution is marginally better, with a difference of 0.0078% in terms of the weighted F} score.

A very important remark is that all our submitted systems obtain significantly lower results on the test
set than in the 10-fold CV procedure carried out on the training set. This could be explained by the fact
that the test set comes from a different distribution. As described by Ali et al. (2016), it actually seems
that the training and the test sets come from different sources. In this context, regularization plays an
important role, as it can be used to reduce the overfitting of the training data. A straightforward exper-
iment, in which we simply double the regularization parameter of KDA, proves that all our submitted
models yield better results when they are forced to fit less of the training data. Our best weighted F
score (52.18%) on the test set is obtained by the KDA based on the sum of the blended p-grams presence
bits kernel and the blended intersection kernel. The confusion matrix of this model is given in Table 3.
For this model, it takes about 12 minutes to compute the two kernels, train the KDA classifier and predict
the labels on a computer with Intel Core i7 2.3 GHz processor and 8 GB of RAM using a single Core.

Since the training and the test sets come from different distributions, the ADI task can also be regarded
as a cross-corpus evaluation task. An interesting remark is that Ionescu et al. (2014) have used KRR and
KDA in a cross-corpus setting for native language identification, and they have found that KRR is more
robust in such a setting. Thus, we have also included results with KRR instead of KDA, while using the
same kernels. The KRR based on the sum of the blended p-grams presence bits kernel and the blended
intersection kernel is the best KRR model on the test set, with a weighted F} score of 51.99%.

6 Conclusion

We have presented a method based on character p-grams for the Arabic Dialect Identification (ADI)
Shared Task of the DSL 2016 Challenge (Malmasi et al., 2016). Our team (UnibucKernel) ranked on
the second place with a weighted F} score of 51.31%. As we learned that the training and the test sets
come from different distributions (Ali et al., 2016), we were able to further improve our results after the
challenge to a weighted F} score of 52.18%, which is better than the winning solution (51.32%). To
improve the results even further, more advanced techniques suitable for the cross-corpus setting, such as
semi-supervised or transfer learning, can be employed in future work.

Acknowledgments

The authors have equally contributed to this work. They thank the reviewers for helpful comments.

142

References

Ahmed Ali, Najim Dehak, Patrick Cardinal, Sameer Khurana, Sree Harsha Yella, James Glass, Peter Bell, and
Steve Renals. 2016. Automatic dialect detection in arabic broadcast speech. Proceedings of Interspeech, pages
2934-2938.

Fadi Biadsy, Julia Hirschberg, and Nizar Habash. 2009. Spoken Arabic Dialect Identification Using Phonotactic
Modeling. Proceedings of the EACL 2009 Workshop on Computational Approaches to Semitic Languages,
pages 53-61.

Houda Bouamor, Nizar Habash, and Kemal Oflazer. 2014. A Multidialectal Parallel Corpus of Arabic. Proceed-
ings of LREC, pages 1240-1245, may.

Kareem Darwish, Hassan Sajjad, and Hamdy Mubarak. 2014. Verifiably Effective Arabic Dialect Identification.
Proceedings of EMNLP, pages 1465-1468.

Liviu P. Dinu and Florin Manea. 2006. An efficient approach for the rank aggregation problem. Theoretical
Computer Science, 359(1-3):455-461.

Liviu P. Dinu, Radu Tudor Ionescu, and Alexandru I. Tomescu. 2014. A rank-based sequence aligner with
applications in phylogenetic analysis. PLoS ONE, 9(8):e104006, 08.

Heba Elfardy and Mona T. Diab. 2013. Sentence Level Dialect Identification in Arabic. Proceedings of ACL,
pages 456—461.

Hugo Jair Escalante, Thamar Solorio, and Manuel Montes-y-Gémez. 2011. Local histograms of character n-grams
for authorship attribution. Proceedings of ACL: HLT, 1:288-298.

Mehmet Gonen and Ethem Alpaydin. 2011. Multiple Kernel Learning Algorithms. Journal of Machine Learning
Research, 12:2211-2268, July.

Cristian Grozea, Christian Gehl, and Marius Popescu. 2009. ENCOPLOT: Pairwise Sequence Matching in Linear
Time Applied to Plagiarism Detection. Proceedings of 3rd PAN WORKSHOP, page 10.

Trevor Hastie and Robert Tibshirani. 2003. The Elements of Statistical Learning. Springer, corrected edition, July.

David Haussler. 1999. Convolution Kernels on Discrete Structures. Technical Report UCS-CRL-99-10, Univer-
sity of California at Santa Cruz, Santa Cruz, CA, USA.

Radu Tudor Ionescu, Marius Popescu, and Aoife Cahill. 2014. Can characters reveal your native language? A
language-independent approach to native language identification. Proceedings of EMNLP, pages 1363—-1373,
October.

Radu Tudor Ionescu, Marius Popescu, and Aoife Cahill. 2016. String kernels for native language identification:
Insights from behind the curtains. Computational Linguistics, 42(3):491-525.

Radu Tudor Ionescu. 2013. Local Rank Distance. Proceedings of SYNASC, pages 221-228.

Radu Tudor Ionescu. 2015. A Fast Algorithm for Local Rank Distance: Application to Arabic Native Language
Identification. Proceedings of ICONIP, 9490:390-400.

Rohit J. Kate and Raymond J. Mooney. 2006. Using String-kernels for Learning Semantic Parsers. Proceedings
of ACL, pages 913-920.

Huma Lodhi, Craig Saunders, John Shawe-Taylor, Nello Cristianini, and Christopher J. C. H. Watkins. 2002. Text
Classification using String Kernels. Journal of Machine Learning Research, 2:419-444.

Subhransu Maji, Alexander C. Berg, and Jitendra Malik. 2008. Classification using intersection kernel support
vector machines is efficient. Proceedings of CVPR.

Shervin Malmasi, Eshrag Refaee, and Mark Dras. 2015. Arabic Dialect Identification using a Parallel Multidi-
alectal Corpus. Proceedings of PACLING, pages 209-217, May.

Shervin Malmasi, Marcos Zampieri, Nikola Ljubesi¢, Preslav Nakov, Ahmed Ali, and Jorg Tiedemann. 2016.
Discriminating between similar languages and arabic dialect identification: A report on the third dsl shared
task. Proceedings of the 3rd Workshop on Language Technology for Closely Related Languages, Varieties and
Dialects (VarDial).

143

Marius Popescu and Liviu P. Dinu. 2007. Kernel methods and string kernels for authorship identification: The
federalist papers case. Proceedings of RANLP, September.

Marius Popescu and Cristian Grozea. 2012. Kernel methods and string kernels for authorship analysis. CLEF
(Online Working Notes/Labs/Workshop), September.

Marius Popescu and Radu Tudor Ionescu. 2013. The Story of the Characters, the DNA and the Native Language.
Proceedings of the Eighth Workshop on Innovative Use of NLP for Building Educational Applications, pages
270-278, June.

Marius Popescu. 2011. Studying translationese at the character level. Proceedings of RANLP, pages 634—639,
September.

Conrad Sanderson and Simon Guenter. 2006. Short text authorship attribution via sequence kernels, markov
chains and author unmasking: An investigation. Proceedings of the 2006 Conference on Empirical Methods in
Natural Language Processing, pages 482-491, July.

John Shawe-Taylor and Nello Cristianini. 2004. Kernel Methods for Pattern Analysis. Cambridge University
Press.

Andrea Vedaldi and Andrew Zisserman. 2010. Efficient additive kernels via explicit feature maps. Proceedings of
CVPR, pages 3539-3546.

Omar F. Zaidan and Chris Callison-Burch. 2011. The Arabic Online Commentary Dataset: An Annotated Dataset
of Informal Arabic with High Dialectal Content. Proceedings of ACL: HLT, 2:37-41.

Omar F. Zaidan and Chris Callison-Burch. 2014. Arabic dialect identification. Computational Linguistics,
40(1):171-202.

144

