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Abstract

We report on our system for the shared task on discrimination of similar languages (DSL 2016).
The system uses only byte representations in a deep residual network (ResNet). The system,
named ResIdent, is trained only on the data released with the task (closed training). We obtain
84.88% accuracy on subtask A, 68.80% accuracy on subtask B1, and 69.80% accuracy on subtask
B2. A large difference in accuracy on development data can be observed with relatively minor
changes in our network’s architecture and hyperparameters. We therefore expect fine-tuning of
these parameters to yield higher accuracies.

1 Introduction

Language identification is an unsolved problem, certainly in the context of discriminating between very
similar languages (Baldwin and Lui, 2010). This problem is tackled in the Discriminating between
Similar Languages (DSL) series of shared tasks (Zampieri et al., 2014; Zampieri et al., 2015). Most suc-
cessful approaches to the DSL shared task in previous years have relied on settings containing ensembles
of classifiers (Goutte et al., 2016). These classifiers often use various combinations of features, mostly
based on word, character, and/or byte n-grams (see, e.g., Cavnar et al. (1994), Lui and Baldwin (2012)).

We are interested in exploring a single methodological aspect in the current edition of this shared task
(Malmasi et al., 2016). We aim to investigate whether reasonable results for this task could be obtained
by applying recently emerged neural network architectures, coupled with sub-token input representa-
tions. To address this question, we explore convolutional neural networks (CNNs) and recurrent neural
networks (RNNs). Deep residual networks (ResNets) are a recent building block for CNNs which have
yielded promising results in, e.g., image classification tasks (He et al., 2015; He et al., 2016). ResNets are
constructed by stacking so-called residual units. These units can be viewed as a series of convolutional
layers with a ‘shortcut’ which facilitates signal propagation in the neural network. This, in turn, allows
for training deeper networks more easily (He et al., 2016). In Natural Language Processing (NLP),
ResNets have shown state-of-the-art performance for Semantic and Part-of-Speech tagging (Bjerva et
al., 2016). However, no previous work has attempted to apply ResNets to language identification.

2 Method

Several previous approaches in the DSL shared tasks have formulated the task as a two-step classification,
first identifying the language group, and then the specific language (Zampieri et al., 2015). Instead of
taking this approach, we formulate the task as a multi-class classification problem, with each language /
dialect representing a separate class. Our system is a deep neural network consisting of a bidirectional
Gated Recurrent Unit (GRU) network at the upper level, and a Deep Residual Network (ResNet) at the
lower level (Figure 1). The inputs of our system are byte-level representations of each input sentence,
with byte embeddings which are learnt during training. Using byte-level representations differs from
character-level representations in that UTF-8 encodes non-ascii symbols with more than one byte, which
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potentially allows for more disambiguating power. A concrete example can be found when considering
the relatively similar languages Norwegian and Swedish. Here, there are two pairs of letters which are
interchangeable: where Swedish uses ‘ä’ (C3 A4) and ‘ö’ (C3 B6), Norwegian uses ‘æ’ (C3 A6) and
‘ø’ (C3 B8). Hence, using the lower-level byte representation, we allow the model to take advantage
of the first shared byte between these characters. The architecture used in this work is based on the
sequence-to-sequence labelling architecture used in Bjerva et al. (2016), modified for the task of language
identification. Our system is implemented in Keras using the Tensorflow backend (Chollet, 2015; Abadi
et al., 2016).

Figure 1: Model architecture: ResNet with byte representations (~b), with a bi-GRU at the upper level.
The input example sequence is converted to a sequence of byte identifiers (one integer per byte, rather
than one integer per character), which are converted to a byte embedding representation. This input is
treated by the ResNet, followed by the bi-GRU, finally yielding the language id BS (Bosnian).

2.1 Gated Recurrent Unit Networks
GRUs (Cho et al., 2014) are a recently introduced variant of RNNs, and are designed to prevent van-
ishing gradients, thus being able to cope with longer input sequences than vanilla RNNs. GRUs are
similar to the more commonly-used Long Short-Term Memory networks (LSTMs), both in purpose and
implementation (Chung et al., 2014). A bi-directional GRU makes both forward and backward passes
over sequences, and can therefore use both preceding and succeeding contexts to predict a tag (Graves
and Schmidhuber, 2005; Goldberg, 2015). Bi-directional GRUs and LSTMs have been shown to yield
high performance on several NLP tasks, such as POS and semantic tagging, named entity tagging, and
chunking (Wang et al., 2015; Yang et al., 2016; Plank et al., 2016; Bjerva et al., 2016).

2.2 Deep Residual Networks
Deep Residual Networks (ResNets) are built up by stacking residual units. A residual unit can be ex-
pressed as:

yl = h(xl) + F(xl,Wl),
xl+1 = f(yl),

(1)

where xl and xl+1 are the input and output of the l-th layer, Wl is the weights for the l-th layer, and
F is a residual function (He et al., 2016), e.g., the identity function (He et al., 2015), which we also
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use in our experiments. ResNets can be intuitively understood by thinking of residual functions as paths
through which information can propagate easily. This means that, in every layer, a ResNet learns more
complex feature combinations, which it combines with the shallower representation from the previous
layer. This architecture allows for the construction of much deeper networks. ResNets have recently
been found to yield impressive performance in both image recognition and NLP tasks (He et al., 2015;
He et al., 2016; Östling, 2016; Conneau et al., 2016), and are an interesting and effective alternative to
simply stacking layers. In this paper we use the assymetric variant of ResNets as described in Equation
9 in He et al. (2016):

xl+1 = xl + F(f̂(xl),Wl). (2)

Our residual block, using dropout and batch normalization (Srivastava et al., 2014; Ioffe and Szegedy,
2015), is defined in Table 1. In the table, merge indicates the concatenation of the input of the residual
block, with the output of the final convolutional layer.

type patch/pool size

Batch normalization + ReLu + Dropout (p = 0.5)
Convolution 8
Batch normalization + ReLu + Dropout (p = 0.5)
Convolution 4
Merge
Maximum pooling 2

Table 1: Residual block overview.

2.3 System Description
We represent each sentence using a byte-based representation (Sb). This representation is a 2-
dimensional matrix Sb ∈ Rs×db , where s is the zero-padded sentence length and db is the dimensionality
of the byte embeddings. Byte embeddings are first passed through a ResNet in order to obtain a repre-
sentation which captures something akin to byte n-gram features.1 The size of n is determined by the
convolutional window size used. We use a convolutional window size with length 8, meaning that for
each byte in the input, the ResNet can learn a suitable representation incorporating up to 8 bytes of con-
text information. These overlapping byte-based n-gram features are then passed through to the bi-GRU,
which yields a sentence level representation. The softmax layer applied to the bi-GRU output is then
used in order to obtain the network’s predicted class per input.

2.3.1 Hyperparameters
The hyperparameters used by the system were tuned on an altogether different task (semantic tagging),
and adapted for the current task. The dimensionality of our byte embeddings, db, is set to 64. Our
residual block is defined in Section 2.2. We use rectified linear units (ReLUs) for all activation functions
(Nair and Hinton, 2010), and apply dropout with p = 0.1 to both input weights and recurrent weights in
the bi-GRU. All GRU layers have 100 hidden units.

All experiments were run with early stopping monitoring validation set loss, using a maximum of 50
epochs, and a batch size of 100. Optimisation is done using the ADAM algorithm (Kingma and Ba,
2015), with the categorical cross-entropy loss function as training objective.

For the B tasks, we train the model in the same way as for the A tasks. Only a handful of instances
(n ≈ 5) per B run are classified as belonging to a language which the B group does not contain. These
cases are automatically converted to being in the class hr. For the B tasks, we also perform a simple
clean-up of the data. We first remove all hyperlinks, hashtags and usernames from the text with a simple
regex-based script. We then remove all tweets classified as English. We submitted three runs for each
subtask. The system used for runs 1, 2 and 3 contain five, four and three residual blocks respectively.

1Note that bytes are passed through the ResNet one by one, yielding one representation per byte, rather than as a whole
sequence, which would yield a single representation per sentence.
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3 Results

Test Set Track Run Accuracy F1 (micro) F1 (macro) F1 (weighted)

A closed Baseline 0.083
A closed run1 0.8462 0.8462 0.8415 0.8415
A closed run2 0.8324 0.8324 0.8272 0.8272
A closed run3 0.8488 0.8488 0.8467 0.8467

B1 closed Baseline 0.020
B1 closed run1 0.682 0.682 0.6802 0.6802
B1 closed run2 0.676 0.676 0.6708 0.6708
B1 closed run3 0.688 0.688 0.6868 0.6868

B2 closed Baseline 0.020
B2 closed run1 0.684 0.684 0.6788 0.6788
B2 closed run2 0.698 0.698 0.6942 0.6942
B2 closed run3 0.664 0.664 0.6524 0.6524

Table 2: Results for all runs in subtasks A, B1 and B2 (closed training).

es-ar es-es es-mx fr-ca fr-fr id my pt-br pt-pt hr bs sr

es-ar 824 77 94 0 1 1 0 2 1 0 0 0
es-es 90 778 127 0 1 0 0 1 2 0 1 0
es-mx 210 269 520 0 0 0 0 1 0 0 0 0

fr-ca 0 0 0 956 44 0 0 0 0 0 0 0
fr-fr 0 0 0 93 905 0 0 1 0 1 0 0

id 0 0 0 0 0 951 48 0 0 0 0 1
my 0 0 0 0 0 30 970 0 0 0 0 0

pt-br 0 0 1 0 0 0 0 891 107 1 0 0
pt-pt 0 1 0 0 0 0 0 78 920 0 1 0

hr 0 0 0 0 0 0 0 0 0 823 150 27
bs 0 0 0 0 1 0 0 1 0 143 730 125
sr 0 0 0 0 1 0 0 0 0 15 67 917

Table 3: Confusion matrix, closed run 3, on test set A. The x-axis indicates predicted labels, and the
y-axis indicates true labels.

We evaluate our system in subtasks A, B1 and B2. Subtask A contains data for five language groups,
with two to three languages in each group (Tan et al., 2014). Subtask B1 and B2 contain data for a
subset of the languages in subtask A, compiled from Twitter. Subtask B1 contains the amount of tweets
necessary for a human annotator to make reliable judgements, whereas B2 contains the maximum amount
of data available per tweet.

For subtasks A and B1, run 3 results in the best accuracy on test, whereas run 2 results in the best
accuracy on B2. The results are shown in Table 2. Table 3 and Table 4 contain confusion matrices for
the results in subtask A and B respectively.

4 Discussion

Judging from the confusion matrices in Section 3, our system has very low confusion between language
groups. However, confusion can be observed within all groups. Although the system achieves reasonable
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B1 B2

pt-br pt-pt hr bs sr pt-br pt-pt hr bs sr

pt-br 74 24 1 0 1 54 40 3 2 1
pt-pt 31 67 1 0 1 15 80 5 0 0

bs 0 0 60 31 9 0 0 75 20 5
hr 1 0 20 62 17 0 0 31 56 13
sr 4 0 5 10 81 2 0 8 6 84

Table 4: Confusion matrix, closed run 3 on test set B1 (left) and closed run 2 on test set B2 (right). The
x-axis indicates predicted labels, and the y-axis indicates true labels.

performance, there is a large gap between our system and the best performing systems (e.g. Çöltekin and
Rama (2016), who obtain 89.38% accuracy on task A, 86.2% on B1, and 82.2% on B2). This can to
some extent be explained by limitations caused by our implementation.

The largest limiting factor can be found in the fact that we only allowed our system to use the first ca.
384 bytes of each training/testing instance. For the training and development set, and subtask A, this was
no major limitation, as this allowed us to use more than 90% of the available data. However, for subtasks
B1 and B2, this may have seriously affected the system’s performance. Additionally, we restricted our
system to using only byte embeddings as input. Adding word-level representations into the mix, would
likely increase system performance.

We also observed considerable differences in development accuracy when changing hyperparameters
of our network in relatively minor ways. For instance, altering the patch sizes used in our CNNs had
a noticeable impact on validation loss. However, altering the amount of residual blocks used, did not
have a large effect on results. The neural network architecture, as well as most of the hyperparameters,
were tuned on an altogether different task (semantic tagging), and adapted for the current task. Further
fine tuning of the network architecture and hyperparameters for this task would therefore likely lead to
narrowing the performance gap.

5 Conclusions

We implemented a language identification system using deep residual networks (ResNets) coupled with a
bidirectional Gated Recurrent Unit network (bi-GRU), using only byte-level representations. In the DSL
2016 shared task, we achieved reasonable performance, with 84.88% accuracy on subtask A, 68.80%
accuracy on subtask B1, and 69.80% accuracy on subtask B2. Although acceptable performance was
achieved, further fine tuning of input representations and system architecture would likely improve per-
formance.
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