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Abstract

Computational approaches for dialectometry employed Levenshtein distance to compute an ag-
gregate similarity between two dialects belonging to a single language group. In this paper, we
apply a sequence-to-sequence autoencoder to learn a deep representation for words that can be
used for meaningful comparison across dialects. In contrast to the alignment-based methods,
our method does not require explicit alignments. We apply our architectures to three different
datasets and show that the learned representations indicate highly similar results with the anal-
yses based on Levenshtein distance and capture the traditional dialectal differences shown by
dialectologists.

1 Introduction

This paper proposes a new technique based on state-of-the-art machine learning methods for analyzing
dialectal variation. The computational/quantitative study of dialects, dialectometry, has been a fruitful
approach for studying linguistic variation based on geographical or social factors (Goebl, 1993; Ner-
bonne, 2009). A typical dialectometric analysis of a group of dialects involve calculating differences
between pronunciations of a number of items (words or phrases) as spoken in a number of sites (ge-
ographical location, or another unit of variation of interest). Once a difference metric is defined for
individual items, item-by-item differences are aggregated to obtain site-by-site differences which form
the basis of further analysis and visualizations of the linguistic variation based on popular computational
methods such as clustering or dimensionality reduction. One of the key mechanisms for this type of anal-
ysis is the way item-by-item differences are calculated. These distances are often based on Levenshtein
distance between two phonetically transcribed variants of the same item (Heeringa, 2004). Levenshtein
distance is often improved by weighting the distances based on pointwise mutual information (PMI) of
the aligned phonemes (Wieling et al., 2009; Prokic, 2010).

In this paper we propose an alternative way for calculating the distances between two phoneme se-
quences using unsupervised (or self supervised) deep learning methods, namely Long Short Term Mem-
ory (LSTM) autoencoders (see Section 2 for details). The model is trained for predicting every pronun-
ciation in the data using the pronunciation itself as the sole predictor. Since the internal representation of
the autoencoder is limited, it is forced to learn compact representations of words that are useful for recon-
struction of the input. The resulting internal representations, embeddings, are (dense) multi-dimensional
vectors in a space where similar pronunciations are expected to lie in proximity of each other. Then, we
use the distances between these embedding vectors as the differences between the alternative pronun-
ciations. Since the distanced calculated in this manner are proper distances in an Euclidean space, the
usual methods of clustering or multi-dimensional scaling can be applied without further transformations
or normalizations.

There are a number of advantages of the proposed model in comparison to methods based on Lev-
enshtein distance. First of all, proposed method does not need explicit alignments. While learning
to reconstruct the pronunciations, the model discovers a representation that places phonetically similar
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Figure 1: The demonstration of LSTM autoencoder using an example pronunciation [roUz] (rose). The
encoder part represents the whole sequence as a fixed-size embedding vector, which is converted to the
same sequence by the decoder.

variants together. However, unlike other alternatives, the present method does not need pairs of pronun-
ciations of the same item. Another advantage of the model is its ability to discover potential non-linear
and long-distance dependencies within words. The use of (deep) neural networks allow non-linear com-
binations of the input features, where LSTMs are particularly designed for learning relationships at a
distance within a sequence. The model can learn properties of input that depend on non-contiguous
long-distance context features (e.g., as in vowel harmony) and it can also learn to combine features in
a non-linear non-additive way, (e.g., when the effect of vowel harmony is canceled in presence of other
contextual features).

The rest of the paper is organized as follows. In section 2, we describe our model and the reasons for
the development and employment of such a model. In section 3, we discuss our experimental settings and
the results of our experiments. We discuss our results in section 4. We conclude the paper in section 5.

2 Model

As mentioned in the previous section, the computational approaches in dialectometry compare words
using Levenshtein distance and aggregate the Levenshtein distance across concepts to project the distance
matrix on a map. In this paper, we propose the use of autoencoders (Hinton and Salakhutdinov, 2006)
based on Long Short Term Memory neural networks (LSTMs) (Hochreiter and Schmidhuber, 1997) for
capturing long distance relationships between phonemes in a word. Originally, autoencoders were used
to reduce the dimensionality of images and documents (Hinton and Salakhutdinov, 2006). Hinton and
Salakhutdinov (2006) show that the deep fully connected autoencoders, when applied to documents,
learn a dense representation that separates documents into their respective groups in two dimensional
space.

Unlike standard deep learning techniques which learn the neural network weights for the purpose of
classification, autoencoders do not require any output label and learn to reconstruct the input. Typical
autoencoders feature a hour-glass architecture where the lower half of the hour glass architecture is used
for learning a hidden representation whereas, the upper half of the architecture (a mirror of the lower
half) learns to reconstruct the input through back-propagation. The learned intermediate representation
of each word is a concise representation its pronunciation. The network is forced to use information-
dense representations (by removing or reducing redundant features in the input) to be able to construct
the original pronunciation. These representations, which are similar to well-known word embeddings
(Mikolov et al., 2013; Pennington et al., 2014) in spirit, can then be used for many tasks. In our case,
we use the similarities between these internal vector representations for quantifying the similarities of
alternative pronunciations. Although the lengths of the pronunciations vary, the embedding representa-
tions are fixed. Hence each pronunciation is mapped to a low dimensional space, Rk, such that similar
pronunciations are mapped to close proximity of each other.

In this paper, we employ a LSTM based autoencoder (cf. figure 1) to learn an internal representation
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of a word. The LSTM autoencoder has two parts: encoder and decoder. The encoder part transforms the
input sequence (x1, . . . xT ) to a hidden representation h ∈ Rk where, k is a predetermined dimensional-
ity of h. The decoder is another LSTM layer of length T . The ht = h representation at each time step t

is fed to a softmax function ( ehtj∑
k ehtk

) that outputs a x̂t ∈ R|P | length probability vector where P is the
set of phonemes in the language or the language group under investigation.

In this paper, we represent a word as a sequence of 1-hot-|P | vectors and use the categorical cross-
entropy function (−∑

t xtlog(x̂t) + (1− xt)log(1− x̂t)) where xt is a 1-hot vector and x̂t is the output
of the softmax function at timestep t) to learn both the encoder and decoder LSTM’s parameters.

We tested with both unidirectional (
−→
h ) and bidirectional encoder representations in our experiments.

The bidirectional encoder consists of a bidirectional LSTM where the input word is scanned in both
directions to compute a concatenated

−→
h

⊕←−
h which is then fed to a decoder LSTM layer for recon-

structing the input word.
The model we use is different from the seq2seq model of Sutskever et al. (2014) in that the seq2seq

model supplies the hidden representation of the input sequence to predict the first symbol in a target
sequence and then uses the predicted target symbol as an input to the LSTM layer to predict the current
symbol. Our architecture, is simpler than the seq2seq model due to the following reasons:

1. Unlike seq2seq, we work with dialects of a single language which do not require explicit language
modeling that features in cross-language sequence learning models.

2. Our model is essentially a sequence labeling model that learns a dense intermediate representation
which is then used to predict the input sequence. Moreover, unlike neural machine translation, the
source and target sequences are identical, hence, have the same length in our case.

The motivation behind the use of autoencoders is that a single autoencoder network for all the site data
would learn to represent similar words with similar vectors. Unlike Levenshtein distance, the LSTM
autoencoders can learn to remember and forget the long distance dependencies in a word. The general
idea is that similar words tend to have similar representations and a higher cosine similarity. By training
a single autoencoder for the whole language group, we intend to derive a generalized across-concept
representation for the whole language group.

Once the network is trained, we use the similarities or differences between internal representations
of different pronunciations to determine similarities or differences between alternative pronunciations.
Since embeddings are vectors in an Euclidean space, similarity can easily be computed using cosine of
the angle between these vectors. Then, we use Gabmap (Nerbonne et al., 2011; Leinonen et al., 2016)
for analyzing the distances and visualizing the geographic variation on maps. Since Gabmap requires
a site-site distance matrix to visualize the linguistic differences between sites, we convert the cosine
similarity to a distance score by shifting a similarity score by 1.0 followed by a division by 2.0. The
shifted similarity score is then subtracted from 1.0 to yield a distance score. The distance for a site pair
is obtained by averaging the word distances across concepts. In case of synonyms, we pick the first word
for each concept.

3 Experiments and Results

3.1 Data

We test the system with data from three different languages, English, Dutch and German. The English
data comes from Linguistic Atlas of the Middle and South Atlantic States (LAMSAS; Kretzschmar
(1993)) The data includes 154 items from 67 sites in Pennsylvania. The data is obtained from Gabmap
site,1 and described in Nerbonne et al. (2011).

The Dutch dialect data is form the Goeman-Taeldeman-Van Reenen Project (Goeman and Taelde-
man, 1996) which comprises 1876 items collected from more than 600 locations in the Netherlands and

1http://www.gabmap.nl
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Flanders between 1979–1996. It consists of inflected and uninflected words, word groups and short sen-
tences. The data used in this paper is a subset of the GTRP data set and consist of the pronunciations of
562 words collected at 613 locations. It includes only single word items that show phonetic variation.

German dialect data comes from the project ‘Kleiner Deutscher Lautatlas – Phonetik’ at the
‘Forschungszentrum Deutscher Sprachatlas’ in Marburg. The data was recorded and transcribed in the
late 1970s and early 1990s (Göschel, 1992). In this study, we the data from Prokić et al. (2012) which is
a subset of the data that consists of the transcriptions of 40 words that are present at all or almost all 186
locations evenly distributed over Germany.

3.2 Experimental setup

In our experiments, we limit T , the length of the sequence processed by the LSTM, to 10 for Dutch and
German dialect datasets and 20 for Pennsylvanian dataset. We trained our autoencoder network for 20
epochs on each dataset and then used the encoder to predict a hidden representation of length 8 for each
dataset. We used the continuous vector representation to compute the similarities between words. We
used a batch size of 32 and the Adadelta optimizer (Zeiler, 2012) to train our neural networks. All our
experiments were performed using Keras (Chollet, 2015) and Tensorflow (Abadi et al., 2016).

3.3 Results

In this section we first present an example visualization of the learned word representations in the hidden
dimensions of LSTM autoencoders. To present the model’s success in capturing geographical variation,
we present visualizations from three different linguistic areas. The maps and the MDS plots in this
section were obtained using Gabmap.

3.4 Similarities in the embedding space

Figure 2 presents first two dimensions of the PCA projection of the embedding vectors for alternative
pronunciations of German word acht ‘eight’. As the figure shows, similar pronunciations are closer to
the each other in this projection.

Although the representation in Figure 2 show that similar pronunciations are close to each other in this
projection, we note that the vector representation are already dense. As a result, unlike many data sets
with lots of redundancy, the first two PCA components does not contain most of the information present
in all 8 dimensions used in this experiment. The first two PCA component above only explains 50% of
the total variation. Hence, half of the variation is not visible in this graph, and some of the similarities
or differences shown in the figure may be not be representative of their actual similarities or differences.
However, as the analyses we present next confirm, the distances between these representations in the
unreduced 8 dimensional space captures the geographical variation well.

3.4.1 Pennsylvanian dialects
An interesting dialect region often analyzed in the literature is the Pennsylvanian dialects. We visualize
the distances between sites by reducing the distances using MDS and projecting it on a map for both uni-
directional and bidirectional LSTM autoencoders and for a typical Levenshtein distance analysis (using
Gabmap with default settings). Figure 3 presents a shaded map where shades represent the first MDS di-
mension. The reduction to a single dimension preserves 88%, 90% and 96% of the original distances for
unidirectional LSTM, Levenshtein distance and bidirectional LSTM, respectively. The results are again
similar to the earlier analyses (Nerbonne et al., 2011). Here all analyses indicate a sharp distinction
between the ‘Pennsylvanian Dutch’ area and the rest of Pennsylvania. This distinction is even sharper
in the maps produced by the LSTM autoencoders. However, within each group distances indicated by
the LSTM autoencoders are smaller, hence, transitions are smoother. The famous ‘Route 40’ boundary
is also visible in all analyses, however, it is sharper in the classical Levenshtein distances in comparison
to the LSTM autoencoders.

To visualize the groups of sites with more than two dimensions we also present first two MDS dimen-
sions plotted in Figure 4. In all figures, the group of the dots at the bottom parts of the graphs represent
sites in the ‘Pennsylvanian Dutch’ area. As also indicated by Figure 3, the grouping is clearer between
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Figure 2: PCA analysis of the dense representation of the German word acht ‘eight’.

this area and the rest in the LSTM autoencoder output but not as strong in the results with Levenshtein
differences.

3.4.2 Dutch dialects

Figure 5 presents the multi-dimensional scaling (MDS) applied to distances based on both unidirectional
and bidirectional LSTM autoencoder in comparison to classical Levenshtein distance. The distances in
the first three dimensions of MDS are mapped to RGB color space. The correlation between the dis-
tances in the first three dimensions and the distances in the unreduced space are 89% for Levenshtein
and unidirectional LSTM autoencoder, and 94% for the bidirectional LSTM autoencoder. All methods
yield similar results which are also in-line with previous research (Wieling et al., 2007). The colors indi-
cate different groups for Frisian (north west), Low Saxon (Groningen and Overijsel, north east), Dutch
Franconian varieties (middle, which seem to show gradual changes from North Holland to Limburg), and
Belgian Brabant (south east) and West Flanders (south west).

Although the overall results seem similar, the visualization in Figure 5 indicate that the distances based
on both LSTM autoencoders indicate a smoother change compared to the Levenshtein distance.
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Figure 3: MDS analysis of Pennsylvanian dialects. The shades represent only the first MDS dimension.
The distances are based on distances of bidirectional recurrent autoencoder representations (left), unidi-
rectional (middle) and aggregate Levenshtein distance (right). Note that the colors are arbitrary, only the
differences (not the values) are meaningful.

Figure 4: First two MDS dimensions plotted against each other for the Pennsylvania data. Distances
are based on concatenated bidirectional LSTM autoencoder representation (left), unidirectional LSTM
encoder (middle) and classical aggregate Levenshtein difference (right).

Figure 5: MDS analysis of Dutch dialects. First three MDS dimensions are mapped to RGB color
space. The distances are based on distances of bidirectional recurrent autoencoder representations (left),
unidirectional (middle) and aggregate Levenshtein distance (right). As in figure 3 the colors are arbitrary,
only the differences (not the values) are meaningful.
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Figure 6: MDS analysis of the German dialects. The shades represent only the first MDS dimension.
The distances are based on distances of bidirectional recurrent autoencoder representations (left), unidi-
rectional (middle) and aggregate Levenshtein distance (right).

3.4.3 Dialects of Germany
Figure 6 presents similar analyses for dialects of Germany. Similar to Pennsylvania data, we only vi-
sualize the first MDS dimension, with correlations with the original distances 62%, 68% and 70% for
unidirectional LSTM, bidirectional LSTM and Levenshtein distances, respectively. The MDS maps of
the German dialects show the traditional two-way classification along the North-South dimension. The
unidirectional autoencoder shows a higher transition boundary as compared to the bidirectional autoen-
coder. This seems to be in line with the observation that autoencoders represent a smoother transition in
comparison to Levenshtein distance.

4 Discussion

The results of the above visualization show that sequence-to-sequence autoencoders capture similar in-
formation to that of pair-wise Levenshtein distance. The autoencoders only require list of words in a
uniformly transcribed IPA format for learning the dense representation as compared to the pair-wise ap-
proach adopted in Levenshtein distance. We hypothesize that the dense representation of a word causes
the smooth transition effect that is absent from the maps of Levenshtein distance. Our experiments
suggest that the autoencoders require few thousands of words to train and the visualizations of the site
distances correlate well with the traditional dialectological knowledge. An advantage of autoencoders is
that they do not require explicit alignment and can train to reconstruct the input.

5 Conclusions

In this paper, we introduced the use of LSTM autoencoders for the purpose of visualizing the shifts in
dialects for three language groups. Our results suggest that LSTM autoencoders can be used for visu-
alizing the transitions across dialect boundaries. The visualizations from autoencoders correlate highly
with the visualization produced with the standard Levenshtein distance (used widely in dialectometry).
LSTM autoencoders do not require explicit alignment or a concept based weighting for learning realis-
tic distances between dialect groups. In the future, we aim to apply the LSTM autoencoders to speech
recordings of dialects for the purpose of identifying dialect boundaries.
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