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Preface

VarDial is a well-established series of workshops, attracting researchers working on a range of topics
related to the study of linguistic variation, e.g., on building language resources for language varieties and
dialects or in creating language technology and applications that make use of language closeness and
exploit existing resources in a related language or a language variant.

The research presented in the two previous editions, namely VarDial’2014, which was co-located with
COLING’2014, and LT4VarDial’2015, which was held together with RANLP’2015, focused on topics
such as machine translation between closely related languages, adaptation of POS taggers and parsers
for similar languages and language varieties, compilation of corpora for language varieties, spelling
normalization, and finally discrimination between and identification of similar languages. The latter was
also the topic of the DSL shared task, held in conjunction with the workshop.

We believe that this is a very timely series of workshops, as research in language variation is much
needed in today’s multi-lingual world, where several closely-related languages, language varieties, and
dialects are in daily use, not only as spoken colloquial language but also in written media, e.g., in SMS,
chats, and social networks. Language resources for these varieties and dialects are sparse and extending
them could be very labor-intensive. Yet, these efforts can often be reduced by making use of pre-existing
resources and tools for related, resource-richer languages.

Examples of closely-related language varieties include the different variants of Spanish in Latin America,
the Arabic dialects in North Africa and the Middle East, German in Germany, Austria and Switzerland,
French in France and in Belgium, etc. Examples of pairs of related languages include Swedish-
Norwegian, Bulgarian-Macedonian, Serbian-Bosnian, Spanish-Catalan, Russian-Ukrainian, Irish-Gaelic
Scottish, Malay-Indonesian, Turkish–Azerbaijani, Mandarin-Cantonese, Hindi–Urdu, etc.

This great interest of the community has made possible the third edition of the Workshop on NLP for
Similar Languages, Varieties and Dialects (VarDial’2016), co-located with COLING’2016.

As part of the workshop, we organized the third edition of the Discriminating between Similar
Languages (DSL) shared task, which offered an opportunity for researchers and developers to investigate
the performance of computational methods to distinguishing between closely-related languages and
language varieties, thus bridging an important gap for language identification. For the first time, the DSL
task was divided into two sub-tasks: Sub-task 1 focusing on similar languages and language varieties,
and Sub-task 2 on Arabic dialect identification.

The third edition of the DSL shared task received a very positive response from the community and a
record number of participants. A total of 37 teams subscribed to participate in the DSL shared task, 24 of
them submitted official runs, and 20 of the latter also wrote system description papers, which appear in
this volume along with a shared task report by the task organizers. These numbers represent a substantial
increase in participation compared to the 2014 and 2015 editions of the DSL task.

We further received 13 regular VarDial workshop papers, and we selected nine of them to be presented
at the workshop and to appear in this volume.

Given the aforementioned numbers, we consider the workshop a success, and thus we are organizing a
fourth edition in 2017, which will be co-located with EACL’2017.

We take the opportunity to thank the VarDial program committee and the additional reviewers for their
thorough reviews, and the DSL Shared Task participants, as well as the participants with regular research
papers, for the valuable feedback and discussions. We further thank our invited speakers, Mona Diab
and Robert Östling, for presenting their interesting work at the workshop.

The organizers: Preslav Nakov, Marcos Zampieri, Liling Tan, Nikola Ljubešić, Jörg Tiedemann, and
Shervin Malmasi
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mann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Discriminating Similar Languages with Linear SVMs and Neural Networks
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Ondřej Herman, Vit Suchomel, Vít Baisa and Pavel Rychlý . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Byte-based Language Identification with Deep Convolutional Networks
Johannes Bjerva . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

vii



Classifying ASR Transcriptions According to Arabic Dialect
Abualsoud Hanani, Aziz Qaroush and Stephen Taylor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

UnibucKernel: An Approach for Arabic Dialect Identification Based on Multiple String Kernels
Radu Tudor Ionescu and Marius Popescu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

A Character-level Convolutional Neural Network for Distinguishing Similar Languages and Dialects
Yonatan Belinkov and James Glass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

HeLI, a Word-Based Backoff Method for Language Identification
Tommi Jauhiainen, Krister Lindén and Heidi Jauhiainen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

ASIREM Participation at the Discriminating Similar Languages Shared Task 2016
Wafia Adouane, Nasredine Semmar and Richard Johansson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Comparing Two Basic Methods for Discriminating Between Similar Languages and Varieties
Pablo Gamallo, Iñaki Alegria, José Ramom Pichel and Manex Agirrezabal . . . . . . . . . . . . . . . . . . 170

Advances in Ngram-based Discrimination of Similar Languages
Cyril Goutte and Serge Léger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

Discrimination between Similar Languages, Varieties and Dialects using CNN- and LSTM-based Deep
Neural Networks

Chinnappa Guggilla . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185

Language and Dialect Discrimination Using Compression-Inspired Language Models
Paul McNamee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Arabic Language WEKA-Based Dialect Classifier for Arabic Automatic Speech Recognition Transcripts
Areej Alshutayri, Eric Atwell, Abdulrahman Alosaimy, James Dickins, Michael Ingleby and Janet

Watson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

An Unsupervised Morphological Criterion for Discriminating Similar Languages
Adrien Barbaresi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

QCRI @ DSL 2016: Spoken Arabic Dialect Identification Using Textual Features
Mohamed Eldesouki, Fahim Dalvi, Hassan Sajjad and Kareem Darwish . . . . . . . . . . . . . . . . . . . . . 221

Tuning Bayes Baseline for Dialect Detection
Hector-Hugo Franco-Penya and Liliana Mamani Sanchez . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

Vanilla Classifiers for Distinguishing between Similar Languages
Sergiu Nisioi, Alina Maria Ciobanu and Liviu P. Dinu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

N-gram and Neural Language Models for Discriminating Similar Languages
Andre Cianflone and Leila Kosseim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

viii



Conference Program

Monday, December 12, 2016

9:00–9:10 Opening

9.10–9.30 Discriminating between Similar Languages and Arabic Dialect Identification: A
Report on the Third DSL Shared Task
Shervin Malmasi, Marcos Zampieri, Nikola Ljubešić, Preslav Nakov, Ahmed Ali
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Abstract

We present the results of the third edition of the Discriminating between Similar Languages
(DSL) shared task, which was organized as part of the VarDial’2016 workshop at COLING’2016.
The challenge offered two subtasks: subtask 1 focused on the identification of very similar lan-
guages and language varieties in newswire texts, whereas subtask 2 dealt with Arabic dialect
identification in speech transcripts. A total of 37 teams registered to participate in the task, 24
teams submitted test results, and 20 teams also wrote system description papers. High-order
character n-grams were the most successful feature, and the best classification approaches in-
cluded traditional supervised learning methods such as SVM, logistic regression, and language
models, while deep learning approaches did not perform very well.

1 Introduction

The Discriminating between Similar Languages (DSL) shared task on language identification was first
organized in 2014. It provides an opportunity for researchers and developers to test language identifica-
tion approaches for discriminating between similar languages, language varieties, and dialects. The task
was organized by the workshop series on NLP for Similar Languages, Varieties and Dialects (VarDial),
which was collocated in 2014 with COLING, in 2015 with RANLP, and in 2016 again with COLING.

In its third edition, the DSL shared task grew in size and scope featuring two subtasks and attracting
a record number of participants. Below we present the task setup, the evaluation results, and a brief
discussion about the features and learning methods that worked best. More detail about each particular
system can be found in the corresponding system description paper, as cited in this report.

2 Related Work

Language and dialect identification have attracted a lot of research attention in recent years, covering
a number of similar languages and language varieties such as South-Slavic languages (Ljubešić et al.,
2007), English varieties (Lui and Cook, 2013), varieties of Mandarin in China, Taiwan and Singapore
(Huang and Lee, 2008), Malay vs. Indonesian (Ranaivo-Malançon, 2006), Brazilian vs. European Por-
tuguese (Zampieri and Gebre, 2012), and Persian vs. Dari (Malmasi and Dras, 2015a), to mention just a
few. The interest in this aspect of language identification has motivated the organization of shared tasks
such as the DSL challenge, which allowed researchers to compare various approaches using the same
dataset.

Along with the interest in similar languages and language variety identification, we observed sub-
stantial interest in applying natural language processing (NLP) methods for the processing of dialectal
Arabic with special interest in methods to discriminate between Arabic dialects. Shoufan and Al-Ameri
(2015) presented a comprehensive survey on these methods including recent studies on Arabic dialect
identification such as (Elfardy and Diab, 2014; Darwish et al., 2014; Zaidan and Callison-Burch, 2014;

This work is licensed under a Creative Commons Attribution 4.0 International License. License details:
http://creativecommons.org/licenses/by/4.0/
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Tillmann et al., 2014; Malmasi and Dras, 2015a). Methods for Arabic dialect detection present signif-
icant overlap with methods proposed for similar language identification. For this reason, in the 2016
edition of the DSL challenge we offered a subtask on Arabic dialect identification.

Below, we discuss some related shared tasks including the first two editions of the DSL challenge.

2.1 Related Shared Tasks
Several shared tasks related to the DSL task have been organized in recent years. Two examples are
the ALTW language identification shared task (Baldwin and Lui, 2010) on general-purpose language
identification, and the DEFT 2010 shared task (Grouin et al., 2010), which focused on language variety
identification of French texts with a temporal dimension. In the DEFT 2010 shared task, systems were
asked to predict when and where texts were published. The DEFT 2010 shared task is most similar to our
DSL task, but is limited to French language varieties, while our task is multilingual and includes several
groups of similar languages and language varieties.

Language identification on Twitter and other platforms of user-generated content is a popular research
direction (Ljubešić and Kranjčić, 2015). This interest has motivated the shared task on Language Identi-
fication in Code-Switched Data (Solorio et al., 2014), which focused on tweets containing a mix of two
or more languages, and the TweetLID shared task (Zubiaga et al., 2014; Zubiaga et al., 2015), which
targeted language identification of tweets focusing on English and on languages spoken on the Iberian
peninsula, namely Basque, Catalan, Spanish, and Portuguese.

The most recent related shared task is the task on geolocation prediction in Twitter (Han et al., 2016).1

The organizers of this task provided a large training set collected from one million users, and asked to
predict the location of each user (user-level prediction) and of each tweet (tweet-level prediction).

2.2 Previous Editions of the DSL Task
For the first edition of the DSL task (Zampieri et al., 2014), we compiled v1.0 of the DSL corpus collec-
tion (DSLCC), which contained excerpts of newspaper texts written in thirteen languages divided into
the following groups: Group A (Bosnian, Croatian, Serbian), Group B (Indonesian, Malay), Group C
(Czech, Slovak), Group D (Brazilian Portuguese, European Portuguese), Group E (Peninsular Spanish,
Argentinian Spanish), and Group F (American English, British English).2

Team Closed Open System Description Paper
NRC-CNRC 0.957 - (Goutte et al., 2014)
RAE 0.947 - (Porta and Sancho, 2014)
UMich 0.932 0.859 (King et al., 2014)
UniMelb-NLP 0.918 0.880 (Lui et al., 2014)
QMUL 0.906 - (Purver, 2014)
LIRA 0.766 - -
UDE 0.681 - -
CLCG 0.453 - -
Total 8 2 5

Table 1: Results for the DSL 2014 shared task: accuracy.

Eight teams developed systems and submitted results for this first edition of the task. All eight teams
participated in the closed track, which was limited to training on the DSL corpus only, and two teams
took part in the open track, which also allowed using external resources; five teams submitted system
description papers. The results are summarized in Table 1, where the best-performing submissions, in
terms of accuracy, are shown in bold.3

The best score in the closed submission track was achieved by the NRC-CNRC team (Goutte et al.,
2014), which used a two-step classification approach: they first predicted the language group, and then

1https://noisy-text.github.io/2016/geo-shared-task.html
2Group F was excluded from the official evaluation results due to a number of republications present in the dataset.
3For a comprehensive discussion of the first two editions of the DSL shared task, see (Goutte et al., 2016).
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discriminated between the languages from this predicted language group. Members of this team also
participated in 2015 under the name NRC. UMich (King et al., 2014) and UniMelb-NLP (Lui et al., 2014)
were the only teams that compiled and used additional training resources and the only teams to make
open submissions. However, their open submissions performed worse than their closed submissions:
accuracy dropped from 93.2% to 85.9% for UMich, and from 91.8% to 88.0% for UniMelb-NLP.

For the 2015 edition of the task (Zampieri et al., 2015b), we created v2.0 of the DSLCC, which
included the following languages and language varieties grouped by similarity: Bulgarian vs. Macedo-
nian, Bosnian vs. Croatian vs. Serbian, Czech vs. Slovak, Malay vs. Indonesian, Brazilian vs. European
Portuguese, Argentinian vs. Peninsular Spanish, and a group of various other languages,4 which were
included to emulate a more realistic language identification scenario. We had two test datasets. Test set
A contained the original unmodified text excerpts, while in test set B we replaced the capitalized named
entities by placeholders. The results for the participating systems in the 2015 edition of the DSL task are
presented in Table 2; again, the best submissions are shown in bold. We can see that the 2015 edition of
the task attracted more submissions compared to 2014.

Team Closed A Closed B Open A Open B System Description Paper
BOBICEV 0.941 0.922 - - (Bobicev, 2015)
BRUNIBP 0.937 - - - (Ács et al., 2015)
INRIA 0.839 - - - -
MAC 0.955 0.940 - - (Malmasi and Dras, 2015b)
MMS* 0.952 0.928 - - (Zampieri et al., 2015a)
NLEL 0.640 0.628 0.918 0.896 (Fabra-Boluda et al., 2015)
NRC 0.952 0.930 0.957 0.934 (Goutte and Léger, 2015)
OSEVAL - - 0.762 0.753 -
PRHLT 0.927 0.908 - - (Franco-Salvador et al., 2015)
SUKI 0.947 0.930 - - (Jauhiainen et al., 2015)
Total 9 7 3 3 8

Table 2: Results for the DSL 2015 shared task: accuracy.

The best-performing system in the open submission track, that of MAC, used an ensemble of SVM
classifiers and achieved 95.5% accuracy on test set A and 94.0% accuracy on test set B. Unlike in the
2014 edition, in which open submissions performed substantially worse than closed ones, this time this
was not the case, e.g., for the NRC team. However, the additional resource they used was external only
technically; in fact, it was the previous version of the DSL corpus.5

Moreover, the use of two test sets allowed us to evaluate the impact of named entities. In the 2014
edition of the task, we had noticed that names of people, places, and organizations could be quite helpful
for discriminating texts from different geographical locations, e.g., Argentinian vs. Peninsular Spanish,
and we were worried that this is what systems critically relied on, i.e., that they were focusing on country
of origin rather than language variety prediction. However, the results for test set A vs. B in 2015 show
that the influence of named entities was not as great as we feared, and that the participating systems
were able to capture lexical and, in some cases syntactic, variation using n-gram models even when the
original named entities were not present.

3 Task Setup

Here, we describe the setup of the 2016 DSL shared task: the subtasks, the tracks, and the data.

3.1 General Setup

This year, the DSL challenge included two subtasks:

4This group of languages included Catalan, Russian, Slovene, and Tagalog.
5The NLEL team reported a bug in their closed submission, which might explain their low performance in this track.
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• Subtask 1: Discriminating between Similar Languages and Language Varieties
For this subtask, we compiled a new version of the DSL corpus, which included for the first time
French language varieties, namely Hexagonal French vs. Canadian French, and further excluded
pairs of similar languages that proved to be very easy to discriminate between in previous editions
(e.g., Czech vs. Slovak and Bulgarian vs. Macedonian).

• Subtask 2: Arabic Dialect Identification
This subtask focused on discriminating Arabic dialects in speech transcripts. We used the dataset
compiled by Ali et al. (2016), which contained Modern Standard Arabic (MSA) and four Arabic
dialects: Egyptian (EGY), Gulf (GLF), Levantine (LAV), and North African (NOR).

As in previous editions of the DSL task, we allowed teams to use external data. We therefore divided
each subtask in two tracks:

• Closed: using only the corpora provided by the organizers;

• Open: using any additional data.6

Participation this year increased substantially compared to previous years, as the statistics in Table 3
show. We believe that this is due to the addition of an Arabic subtask as well as to the out-of-domain
tweet test sets for the English subtask.

Year Venue (Sub-)tasks Subscriptions Submissions Papers
2014 VarDial at COLING 1 22 8 5
2015 LT4VarDial at RANLP 1 24 10 8
2016 VarDial at COLING 2 37 24 20

Table 3: The evolution of the DSL task from 2014 to 2016.

3.2 Data
In this section, we present the datasets we used this year. For subtask 1, we compiled v3.0 of DSLCC
with a new language variety (French) as well as out-of-domain test sets with tweets, and for subtask 2,
we use a corpus of Arabic transcribed speeches presented in (Ali et al., 2016).

3.2.1 Subtask 1 Data
We compiled a new version 3.0 of DSLCC, following the methodology we used in previous years (Tan et
al., 2014).7 The resulting corpus contains short newspaper texts written in twelve languages and language
varieties. Table 4 shows the languages included in the DSL v3.0 grouped by similarity.

We provided participants with 20,000 instances per language variety divided into 18,000 instances for
training and 2,000 for development. Most language groups included in v3.0 were also present in v1.0
and v2.0. We further added French from Canada and from France, as well as Mexican Spanish.8

We used three test sets for subtask 1: one in-domain (A), and two out-of-domain (B1 and B2). Test set
A contained journalistic data including 1,000 instances per language sampled from the same distribution
as for the DSLCC v3.0. It is also comparable to the test sets released in DSLCC v1.0 and v2.0.

We further created test sets B1 and B2 in order to evaluate the performance of the participating systems
on out-of-domain data. Each of the two datasets included 100 Twitter users per language/variant, and
a varying number of tweets per user. Note that these test sets cover only two groups of closely-related
languages: South-Slavic (Bosnian, Croatian, Serbian) and Portuguese (Brazilian and European).

We used the TweetGeo (Ljubešić et al., 2016) and TweetCat (Ljubešić et al., 2014) tools for data col-
lection. TweetGeo allows us to collect geo-encoded tweets over a specified perimeter via the Twitter

6For subtask 1, using previous versions of the DSL corpus also made a submission open.
7The dataset is available at http://ttg.uni-saarland.de/resources/DSLCC
8Mexican Spanish was already present for the unshared task in 2015, but now it is part of the main DSL shared task.
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Train and Dev. Testing
Language/Variety Class Instances Tokens A Tokens B1 Tokens B2 Tokens
Bosnian bs 20,000 743,732 1,000 37,630 100 209,884 100 170,481
Croatian hr 20,000 874,555 1,000 42,703 100 179,354 100 119,837
Serbian sr 20,000 813,076 1,000 41,153 100 181,185 100 124,469
Indonesian id 20,000 831,647 1,000 42,192 — — — —
Malay my 20,000 618,532 1,000 31,162 — — — —
Brazilian Portuguese pt-BR 20,000 988,004 1,000 49288 100 151,749 100 19,567
European Portuguese pt-PT 20,000 908,605 1,000 45173 100 134,139 100 13,145
Argentine Spanish es-AR 20,000 999,425 1,000 50,135 — — — —
Castilian Spanish es-ES 20,000 1,080,523 1,000 53,731 — — — —
Mexican Spanish es-MX 20,000 751,718 1,000 47,176 — — — —
Canadian French fr-CA 20,000 772,467 1,000 38,602 — — — —
Hexagonal French fr-FR 20,000 963,867 1,000 48,129 — — — —
Total 240,000 10,346,151 12,000 527,074 500 856,331 500 323,030

Table 4: DSLCC v3.0: the languages included in the corpus grouped by similarity. Note that a test
example in test set A is an excerpt of text, whereas in test sets B1 and B2 it is a collection of multiple
tweets by the same user (with 98.88 and 50.47 tweets per user on average for B1 and B2, respectively).

Stream API. We set up one perimeter over the South-Slavic speaking countries, another one over Por-
tugal, and a final one over Brazil. We then collected data over a period of one month. Once ready, we
filtered the users by number of tweets collected per user and by language the user predominantly used.
Finally, we used the TweetCat tool to collect whole timelines for users matching the following crite-
ria: the user has posted at least five tweets (otherwise language identification would be hard), and the
language(s) given langid.py’s prediction are (hr, sr, bs) for the first variant and (pt) for the second one.

We then proceeded to manual annotation. We had a single human annotator for each language/variety
group. The annotation procedure was the following: the annotator read one tweet after the other, start-
ing with the most recent tweet, and marking the tweet at which he made the decision about the lan-
guage/variety used by the Twitter user. In the South-Slavic group, the average number of analyzed
tweets per user was 70.5 for Bosnian, 51.5 for Croatian, and 49 for Serbian. In the Portuguese group,
these were 6 for European Portuguese, and 8 for Brazilian Portuguese. While part of the difference
between the two groups may be due to different criteria the two annotators used, the differences inside
groups show important trends, e.g., that identifying Bosnian users requires on average 40% more tweets
compared to identifying Serbian or Croatian ones.

Having the information about the number of tweets that were needed for a human decision enabled
us to prepare the harder B2 test set in which only that minimum number of tweets was included. On
the other hand, the B1 test set, being a proper superset of B2, contained much more tweets per user,
and we had to cap the overall number of tweets in the dataset at 50,000 due to restrictions of the Twitter
Developer Agreement.

It is important to stress that no filtering over the user timeline (such as removing tweets written in
different languages or with no linguistic information) was performed, offering thereby a realistic setting.

3.2.2 Subtask 2 Data
For the Arabic subtask, we used transcribed speech in MSA and in four dialects (Ali et al., 2016):
Egyptian (EGY), Gulf (GLF), Levantine (LAV), and North African (NOR). The data comes from a
multi-dialectal speech corpus created from high-quality broadcast, debate and discussion programs from
Al Jazeera, and as such contains a combination of spontaneous and scripted speech (Wray and Ali, 2015).
We released 7,619 sentences for training and development, without a train/dev split;9 a breakdown for
each dialect is shown in Table 5. We further used 1,540 sentences for evaluation. We extracted text from
ten hours of speech per dialect for training, and from two hours per dialect for testing.

9http://alt.qcri.org/resources/ArabicDialectIDCorpus/varDial_DSL_shared_task_2016_
subtask2

5



Note that even though the origin of our data is speech, in our corpus we only used written transcripts.
This makes the task hard as it may be difficult, or even impossible in certain contexts, to determine
unambiguously the dialect of a written sentence if it contains graphemic cognates common across mul-
tiple dialects of colloquial and of Standard Arabic. This ambiguity is less pronounced in the presence of
speech signal. Thus, we plan to make available acoustic features in future challenges.

Training Testing
Dialect Dialect Examples Words Examples Words
Egyptian EGY 1,578 85K 315 13K
Gulf GLF 1,672 65K 256 14K
Levantine LAV 1,758 66K 344 14K
Modern Standard MSA 999 49K 274 14K
North African NOR 1,612 52K 351 12K
Total 7,619 317K 1,540 67K

Table 5: The Arabic training and testing data.

3.3 Evaluation
Regarding evaluation, in the previous editions of the DSL task, we used average accuracy as the main
evaluation metric. This was because the DSL datasets were balanced with the same number of examples
for each language variety. However, this is not true for this year’s Arabic dataset, and thus we added
macro-averaged F1-score, which is the official score this year.

Moreover, following common practice in other shared tasks, e.g., at WMT (Bojar et al., 2016), this
year we carried out statistical significance tests using McNemar’s test in order to investigate the variation
of performance between the participating systems. Therefore, in all tables with results, we rank teams in
groups taking statistical significance into account,10 rather than using absolute performance only.

4 Results for Subtask 1: DSL Dataset

A total of 17 teams participated in the shared task. Table 6 shows statistics about the participating teams.

Team A (Closed) A (Open) B (Closed) B (Open) System Description Paper
andre X (Cianflone and Kosseim, 2016)
ASIREM X (Adouane et al., 2016)
Citius Ixa Imaxin X X X X (Gamallo et al., 2016)
eire X X (Franco-Penya and Sanchez, 2016)
GW LT3 X X (Zirikly et al., 2016)
HDSL X X —
hltcoe X X (McNamee, 2016)
mitsls X (Belinkov and Glass, 2016)
nrc X X X X (Goutte and Léger, 2016)
PITEOG X X X (Herman et al., 2016)
ResIdent X X (Bjerva, 2016)
SUKI X X X X (Jauhiainen et al., 2016)
tubasfs X X (Çöltekin and Rama, 2016)
UniBucNLP X X (Ciobanu et al., 2016)
Uppsala X X —
UPV UA X X —
XAC X X (Barbaresi, 2016)
Total 17 3 14 4 14

Table 6: Teams participating in subtask 1 (here, we group test sets B1 and B2 under B).

10This means that systems not significantly different to the top system are also assigned rank 1, and so on.
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4.1 Results on Test Set A
We received submissions by 17 teams for the closed training training condition. The results and a brief
description of the algorithm and of the features used by each team are shown in Table 7. Note that the
teams were allowed to submit up to three runs, and here we only show the results for the best run from
each participating team. The best results in the closed condition were achieved by the tubasfs team with
F1-score of 89.38% and by the SUKI team with F1-score of 88.77% (both ranked first, as they are not
statistically different). A group of five teams scored between 88.14% and 88.70%, and they were all
ranked second (as they were not statistically different).

Rank Team Run Accuracy F1 Approach
1 tubasfs run1 0.894 0.894 SVM, char n-grams (1-7)

SUKI run1 0.888 0.888 Lang. models, word uni-, char n-grams (1-6)
2 GW LT3 run3 0.887 0.887 Hierarchical log. regression, char/word n-grams

nrc run1 0.886 0.886 Two-stage probabilistic and SVM, char 6-grams
UPV UA run1 0.883 0.884 String kernels and kernel discriminant analysis
PITEOG run3 0.883 0.883 Chunk-based language model
andre run1 0.885 0.881 Language models, char n-grams

3 XAC run3 0.879 0.879 Unsupervised morphological model
ASIREM run1 0.878 0.878 SVM, char 4-grams
hltcoe run1 0.877 0.877 Prediction by partial matching, char 5-grams

4 UniBucNLP run2 0.865 0.864 Hierarchical log. reg. w/ word 1/2-grams
5 HDSL run1 0.853 0.852 SVM, word and char n-grams

Citius Ixa Imaxin run2 0.853 0.850 Naive Bayes, word unigrams
ResIdent run3 0.849 0.846 Deep neural net with byte embeddings

6 eire run1 0.838 0.832 Naive Bayes, char bigrams
mitsls run3 0.830 0.830 Character-level convolutional neural network

7 Uppsala run2 0.825 0.824 Word-level convolutional neural network

Table 7: Results for subtask 1, test set A, closed training condition.

Rank Team Run Accuracy F1 Approach
1 nrc run1 0.890 0.889 Two-stage probabilistic and SVM, char 6-grams

SUKI run1 0.884 0.884 Lang. models, word uni-, char n-grams (1-7)
2 Citius Ixa Imaxin run2 0.871 0.869 Naive Bayes, word unigrams

Table 8: Results for subtask 1, test set A, open training condition.

The open training track for test set A attracted only three teams as shown in Table 8. For the first
two teams, the difference compared to their closed submission is marginal: nrc gained less than half a
point absolute in terms of accuracy and F1, while SUKI lost about the same. However, the third team,
Citius Ixa Imaxin, managed to gain about two points absolute in both measures.

Overall, we observe that the teams used a wide variety of algorithms and features, which are summa-
rized in the results tables. They are also described in more detail in the corresponding system description
papers. Note that some teams, such as ResIdent and Uppsala, used neural network-based approaches,
but their results were not competitive to those that used simpler, standard classifiers such as SVM and
logistic regression.

4.2 Results on Test Sets B1 and B2
The results of the participating teams on test set B1 (out-of-domain, tweets) for the closed training
condition are shown in Table 9. Once again, we group the submissions based on statistical significance.
Three teams shared the first place, namely GW LT3, nrc, and UniBucNLP, with an F1-score ranging
from 89.69% to 91.94%.
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Rank Team Run Accuracy F1 Approach
1 GW LT3 run1 0.920 0.919 Log. reg. with char/word n-grams

nrc run1 0.914 0.913 Two-stage probabilistic and SVM, char 6-grams
UniBucNLP run1 0.898 0.897 Log. reg. w/ word 1/2-grams

2 UPV UA run2 0.888 0.886 String kernels and kernel discriminant analysis
tubasfs run1 0.862 0.860 SVM, char n-grams (1-7)

3 eire run1 0.806 0.793 Naive Bayes, char bigrams
PITEOG run1 0.800 0.793 Expectation maximization, word unigrams

4 Citius Ixa Imaxin run1 0.708 0.713 Dictionary-based ranking method
ResIdent run3 0.688 0.687 Deep neural net with byte embeddings
HDSL run1 0.698 0.686 SVM, word and char n-grams
Uppsala run2 0.682 0.685 Word-level convolutional neural network
SUKI run3 0.688 0.672 Lang. models, word uni-, char n-grams (1-8)

5 XAC run2 0.618 0.594 Unsupervised morphological model
6 hltcoe run1 0.530 0.510 Prediction by partial matching, char 5-grams

Table 9: Results for subtask 1, test set B1, closed training condition.

Rank Team Run Accuracy F1 Approach
1 nrc run1 0.948 0.948 Two-stage probabilistic and SVM, char 6-grams
2 SUKI run3 0.822 0.815 Lang. models, word uni-, char n-grams (1-8)

PITEOG run1 0.800 0.815 Expectation maximization, word unigrams
4 Citius Ixa Imaxin run1 0.664 0.634 Dictionary-based ranking method

Table 10: Results for subtask 1, test set B1, open training condition.

Rank Team Run Accuracy F1 Approach
1 GW LT3 run1 0.878 0.877 Log. reg. with char/word n-grams

nrc run1 0.878 0.877 Two-stage probabilistic and SVM, char 6-grams
UPV UA run2 0.858 0.857 String kernels and kernel discriminant analysis

2 UniBucNLP run2 0.838 0.838 Hierarchical log. reg. w/ word 1/2-grams
tubasfs run1 0.822 0.818 SVM, char n-grams (1-7)

3 PITEOG run1 0.760 0.757 Expectation maximization, word unigrams
eire run1 0.740 0.727 Naive Bayes, char bigrams

4 Citius Ixa Imaxin run1 0.686 0.698 Dictionary-based ranking method
ResIdent run2 0.698 0.694 Deep neural net with byte embeddings
Uppsala run2 0.672 0.675 Word-level convolutional neural network
HDSL run1 0.640 0.626 SVM, word and char n-grams
SUKI run1 0.642 0.623 Lang. models, word uni-, char n-grams (1-6)

5 XAC run2 0.576 0.552 Unsupervised morphological model
hltcoe run2 0.554 0.513 Prediction by partial matching, char 5-grams

Table 11: Results for subtask 1, test set B2, closed training condition.

Rank Team Run Accuracy F1 Approach
1 nrc run1 0.900 0.900 Two-stage probabilistic and SVM, char 6-grams
2 SUKI run2 0.796 0.791 Lang. models, word uni-, char n-grams (1-8)
3 PITEOG run1 0.728 0.759 Expectation maximization, word unigrams

Citius Ixa Imaxin run1 0.692 0.695 Dictionary-based ranking method

Table 12: Results for subtask 1, test set B2, open training condition.
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Note that the higher results obtained on test set B1 compared to test set A are somewhat misleading:
test set B1 is out-of-domain and is thus generally harder, but it also involves less languages (five for test
set B1 as opposed to twelve for test set A), which makes it ultimately much easier.

In Table 10 we present the results for the four teams that participated under the open training condition
for test set B1, i.e., using external data. We can see that the nrc team performed best with an F1 score
of 94.80%. This result is a few percentage points better than the 91.34% F1-score obtained by nrc in
the closed training condition, which indicates that the use of additional training data was indeed helpful.
This is an expected outcome as no suitable training data has been provided for test sets B1 and B2, which
contain tweets, and are out of domain compared to the training data (newspaper texts).

Table 11 shows the results on test set B2 under the closed training condition. As expected, this test set
turned out to be more challenging than test set B1, and this was the case for almost all teams. Moreover,
we can see that there was some minor variation in the ranks of teams on B1 and on B2 (closed training
condition), e.g., the UniBucNLP team was ranked among the first on B1, but for B2 it switched places
with the UPV UA team.

Finally, Table 12 presents the results on test set B2 in the open training condition. Once again, the
results of nrc were higher here than in the closed training condition.

4.3 Open Training Data Sources
Collecting additional training data is a time-consuming process. Therefore, in line with our expectations
given our past experience in the previous editions of the DSL task, we received far fewer entries in the
open training condition for both subtasks.

For subtask 1, a total of four teams used additional training data across the three test sets. According
to the system description papers, the data was compiled from the following sources:

• Citius Ixa Imaxin augmented the training data with the corpus released in the second edition of the
DSL task in 2015.

• nrc augmented the provided training data with the corpora from the two previous DSL shared tasks
(DSLCC v1.0 and DSLCC v2.1), plus additional text crawled from the web site of the newspaper
La Presse from Quebec.

• PITEOG used their own custom web-based corpus, with no further details provided.

• SUKI created an additional dataset using web pages in the Common Crawl corpus.

5 Results for Subtask 2: Arabic Dialect Identification

The eighteen teams that participated in subtask 2 along with the reference to their system description
papers are shown in Table 13.11

5.1 Results on Subtask C
The results obtained by the teams that participated in the closed training condition are shown in Table
14. The best results were obtained by MAZA, UnibucKernel, QCRI, and ASIREM, which achieved an
F1-score ranging between 49.46% and 51.32%, and thus shared the first place. The MAZA team proposed
an approach based on SVM ensembles, which was also ranked first in the 2015 edition of the DSL task
(Malmasi and Dras, 2015b), which confirms that SVM ensembles are a suitable method for this task.
The UnibucKernel team approached the task using string kernels, which were previously proposed for
native language identification (Ionescu et al., 2016).

Table 15 shows the results obtained by the three teams that participated in subtask 2 under the open
training condition. They showed very different performance (statistically different), and saw very differ-
ent outcomes when using external training data.

11We acknowledge that team MAZA included two DSL shared task organizers. Yet, the team had no unfair advantage, and
competed under the exactly same conditions as the other participants.
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Team C (Closed) C (Open) System Description Paper
AHAQST X (Hanani et al., 2016)
ALL X (Alshutayri et al., 2016)
ASIREM X X (Adouane et al., 2016)
cgli X (Guggilla, 2016)
Citius Ixa Imaxin X (Gamallo et al., 2016)
eire X (Franco-Penya and Sanchez, 2016)
GW LT3 X X (Zirikly et al., 2016)
HDSL X —
hltcoe X (McNamee, 2016)
MAZA X (Malmasi and Zampieri, 2016)
mitsls X (Belinkov and Glass, 2016)
PITEOG X (Herman et al., 2016)
QCRI X X (Eldesouki et al., 2016)
SUKI X (Jauhiainen et al., 2016)
tubasfs X (Çöltekin and Rama, 2016)
UCREL X —
UnibucKernel X (Ionescu and Popescu, 2016)
UniBucNLP X (Ciobanu et al., 2016)
Total 18 3 15

Table 13: The teams that participated in subtask 2 (Arabic).

Rank Team Run Accuracy F1 Approach
1 MAZA run3 0.512 0.513 Ensemble, word/char n-grams

UnibucKernel run3 0.509 0.513 Multiple string kernels
QCRI run1 0.514 0.511 SVM, word/char n-grams
ASIREM run1 0.497 0.495 SVM, char 5/6-grams

2 GW LT3 run3 0.490 0.492 Ensemble, word/char n-grams
mitsls run3 0.485 0.483 Character-level convolutional neural network
SUKI run1 0.488 0.482 Language models, char n-grams (1-8)
UniBucNLP run3 0.475 0.474 SVM w/ string kernels (char 2-7 grams)
tubasfs run1 0.475 0.473 SVM, char n-grams (1-7)

3 HDSL run1 0.458 0.459 SVM, word and char n-grams
PITEOG run2 0.461 0.452 Expectation maximization, word unigrams

4 ALL run1 0.429 0.435 SVM, char trigrams
cgli run3 0.438 0.433 Convolutional neural network (CNN)
AHAQST run1 0.428 0.426 SVM, char trigrams
hltcoe run1 0.412 0.413 Prediction by partial matching, char 4-grams

5 Citius Ixa Imaxin run1 0.387 0.382 Dictionary-based ranking method
5 eire run1 0.358 0.346 Naive Bayes, char bigrams
6 UCREL run2 0.261 0.244 Decision tree (J48), word frequencies

Table 14: Results for subtask 2 (Arabic), closed training condition.

Rank Team Run Accuracy F1 Approach
1 ASIREM run3 0.532 0.527 SVM, char 5/6-grams
2 GW LT3 run3 0.491 0.493 Ensemble, word/char n-grams
3 QCRI run1 0.379 0.352 SVM, word/char n-grams

Table 15: Results for subtask 2 (Arabic), open training condition.
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The best-performing system proposed by the ASIREM team achieved higher results in the open vs. the
closed training condition (52.74% vs. 49.46% F1-score); the second-best system by the GW LT3 team
performed very similarly in the two conditions (an F1-score of 49.29% for open and 49.22% for closed
training); and the third team, QCRI, actually performed much better in the closed training condition
than in the open one (51.12% vs. 35.20% F1-score). This variation can be explained by looking at the
additional training data these teams used, which we will do in the next subsection.

5.2 Open Training Data Sources
The three teams who participated in the open training condition used the following sources:

• ASIREM used 18,000 documents (609,316 words) collected manually by native speakers from social
media. This yielded results that outperformed the best system in the closed training track, thus
demonstrating that out-of-domain training data can be quite useful for this task.

• The GW LT3 team made use of dialectal dictionaries and data they collected from Twitter, which
also worked quite well.

• The QCRI team used a multi-dialect, multi-genre corpus of informal written Arabic (Zaidan and
Callison-Burch, 2011).

6 Approaches and Trends

6.1 Features
Almost all teams relied on standard word and character n-grams. Key trends here were that character n-
grams outperformed their word-based counterparts, and that higher-order n-grams (5-, 6- and 7-grams)
did very well. In fact, the top teams in all categories made use of high-order n-grams. The two teams
that were ranked first in test set A used only character n-grams of order 1–7, which demonstrates that
combining the n-grams of different orders can be useful.

6.2 Machine Learning Approaches: Traditional vs. Deep Learning Methods
When analyzing the results, we observed several trends about how machine learning approaches were
used. For example, we found that traditional supervised learning approaches, particularly SVM and
logistic regression, performed very well. In fact, the winner of each category used one of these ap-
proaches. This is not surprising given that these methods are suitable for tasks with large numbers of
features. Complex learning approaches, such as ensemble methods or hierarchical classifiers, also per-
formed well. Many of the winning runs or those in the top-3 for each category used such an approach.

In contrast, numerous teams attempted to use new deep learning-based approaches, with most of them
performing poorly compared to traditional classifiers. One exception is the character-level CNN used
by the mitsls team, which ranked in sixth place for test set C. Several teams submitted runs using both
simple classifiers and deep learning methods, with most noting that the simple methods proved difficult
to beat even when comparing against very sophisticated neural network architectures. Others noted the
memory requirements and long training times, which made the use of deep learning methods difficult.
For example, one team mentioned that their model needed ten days to train.

7 Conclusion

The 2016 DSL shared task was once again a very fruitful experience for both the organizers and the
participants. The record number of 37 subscriptions and 24 submissions confirms the interest of the
community in discriminating between dialects and similar languages.

This year, we split the task into two subtasks: one on similar languages and varieties and one on
Arabic dialect identification. For subtask 1, we provided an in-domain test set (A) compiled from news
corpora and an out-of-domain test sets (B1 and B2) collected from social media; the latter case was more
challenging. The new subtask on Arabic dialects and the new datasets we released brought even more
attention to the DSL task, which ultimately resulted in a record number of submissions.
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We are delighted to see many teams developing systems and testing approaches in both subtasks. We
observed that more teams used deep learning in comparison to previous editions of the DSL task. Yet, the
best results were obtained by simpler machine learning methods such as SVM and logistic regression.
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Cyril Goutte and Serge Léger. 2016. Advances in Ngram-based Discrimination of Similar Languages. In Pro-
ceedings of the VarDial Workshop.
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Abstract

This paper describes the systems we experimented with for participating in the discriminating
between similar languages (DSL) shared task 2016. We submitted results of a single system
based on support vector machines (SVM) with linear kernel and using character ngram features,
which obtained the first rank at the closed training track for test set A. Besides the linear SVM,
we also report additional experiments with a number of deep learning architectures. Despite our
intuition that non-linear deep learning methods should be advantageous, linear models seem to
fare better in this task, at least with the amount of data and the amount of effort we spent on
tuning these models.

1 Introduction

Automatic language identification if often considered a solved task. Very high levels of accuracies in au-
tomatic identification of languages from text had been reported in studies over two decades ago (Beesley,
1988; Cavnar and Trenkle, 1994; Dunning, 1994). For example, Dunning (1994) reports over 99 %
accuracy for test strings of 100 characters, the reported accuracy goes up to 99.90 % for 500-character
strings. Even short strings of 20 characters were enough for over 90 % accuracy. The results above were
obtained when a training set of 50k characters were considered ‘large’ training data, and many of the
machine learning methods were in their infancy. Considering the amount of data, computation power
and the methods we have at hand today, the automatic language identification task is, indeed, an almost
solved problem. However, there are at least two cases where we are not close to the solution yet. The first
is when the languages to be discriminated are closely related (Tiedemann and Ljubešić, 2012; Zampieri
et al., 2014; Zampieri et al., 2015), and the second is when the documents of interest contain multiple
languages, including code mixing or code switching (Nguyen and Dogruöz, 2013; Lui et al., 2014). Dis-
criminating between Similar Languages (DSL) shared task (Malmasi et al., 2016) aims to address the
first issue.

This paper describes the models we experimented with for participating in the DSL shared task. In
this work, we describe and report results from two families of models. The first family is the linear
models with character-ngram features, including the linear support vector machine (SVM) model which
obtained the first rank at the closed training track for test set A, and obtained fair results in other test sets
despite the fact that it was not particularly optimized for them. In our experiments, the (simple) linear
models with character ngram features were proven difficult to beat.

The second family of models we experimented with are a number of deep neural network architectures.
These models has been our initial motivation for participating in the shared task. Besides their recent
success in many natural language processing methods, these models are interesting for discriminating
between similar languages because of (at least) two reasons. First, it seems success in discriminating
between distant/different languages and discriminating between similar languages require different types
of models and/or features. This observation is supported by the fact that one of the most popular and
successful approaches in earlier DSL shared tasks has been hierarchical systems that use different models

This work is licenced under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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for discriminating language groups and individual languages within each group (Goutte et al., 2014;
Goutte and Léger, 2015; Fabra Boluda et al., 2015; Ács et al., 2015). The potential benefit of a deep
learning model here is the possibility of building a single (hierarchical) model that addresses both issues
jointly.

The second potential benefit of deep learning architectures comes from the fact that, unlike linear mod-
els, they can capture non-additive non-linear interactions between input features. For example, although
none of the features marked with boldface in (1) below are conclusive for 3-way discrimination between
Bosnian (1a), Croatian (1b) and Serbian (1c), a non-linear combination of these features are definitely
useful.1

(1) a. Član 3. Svako ima pravo na život, slobodu i ličnu sigurnost.

b. Članak 3. Svatko ima pravo na život, slobodu i osobnu sigurnost.

c. Član 3. Svako ima pravo na život, slobodu i ličnu bezb(j)ednost.

Article 3. Everyone has the right to life, liberty and security of person.

As a result, given enough training data and appropriate model architecture, we expect deep networks
to perform well in discriminating both languages across the language groups and languages within the
language groups. Below, we describe both family of models in detail (Section 2), report results of both
on the shared task training data (Section 3), and discuss the results obtained (Section 4).

2 Approach

We originally intended to participate in the shared task using deep neural network models, with the
motivations that are discussed in Section 1. However, our efforts did not yield better results than the
‘baseline’ models that we initially implemented just for the sake of comparison. As a result, we par-
ticipated in the shared task with our best baseline, which also obtained good results among the other
participated systems. In this section, we first briefly described the ‘baseline’ models that constitute our
official participation to the DSL shared task. We also describe some of the deep learning architectures
we have experimented with in this section, and report results obtained by both models – linear and deep
learning – and compare them in Section 3. The implementations of all models described below are
available at https://doi.org/10.5281/zenodo.163812.

2.1 Linear models
The results we submitted to the shared task use a multi-class (one-vs-one) support vector machine (SVM)
model with linear kernel. Although we experimented with various features, our final model included
character ngrams of length one to seven. The features are weighted using sub-linear tf-idf scaling (Juraf-
sky and Martin, 2009, p.805). The models we describe here are almost identical to the model of Zampieri
et al. (2015) in the DSL 2015 shared task. Similar to them, we also experimented with logistic regression
as well, using both one-vs-rest and one-vs-one multi-class strategies. In our experiments, different linear
models performed comparably. However, the SVM models always performed slightly better than logis-
tic regression models. In this paper, we only describe the SVM models and discuss the results obtained
using them.

We did not apply any filtering (e.g., case normalization, tokenization) except truncating the input
documents to 70 white-space-separated tokens. In all experiments reported in this paper, we fixed the
single model parameter (SVM margin or regularization parameter, C) at 1.00. Unlike results reported by
Purver (2014), in our experiments, the model accuracy was not affected drastically with the changes in the
regularization parameter within a reasonable range (not reported here). Although stronger regularization
was useful for models employing larger number of features, the effect was not noteworthy.

All linear models were implemented with scikit-learn (Pedregosa et al., 2011) and trained and tested
using Liblinear back end (Fan et al., 2008).

1The example (article 3 of the Universal Declaration of Human Rights) is taken from https://en.wikipedia.org/
wiki/Comparison_of_standard_Bosnian,_Croatian,_Montenegrin_and_Serbian.
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Figure 1: The schematic representation of general neural network architecture.

2.2 Deep learning models

FastText. The FastText model is a recent model proposed by Joulin et al. (2016). The main idea behind
this model is to represent a sentence as a sequence of word embeddings (dense vectors) and then employ
average the vectors across the sentence to yield a single dense representation of a sentence. Formally,
given a sentence of length N , each word wn is represented as a vector en ∈ RK where K is the dimension
of the dense representation. At this step, the sentence is now represented as matrix E ∈ Rk×n. The
average pooling step transforms the matrix into a single vector X ∈ Rk and Xk =

∑
Ek

n where, Xk is the
kth element in X . We tested with both character embeddings and word embeddings in our experiments.

This model is similar to the system of Franco-Salvador et al. (2015) in the DSL 2015 shared task, since
it represents the documents as an average vectors of their components (characters or words). However,
crucially, the embeddings used in this model are learned specifically for the discrimination task rather
than being general word vectors capturing syntactic/semantic properties.

Hierarchical character + word models. The general architecture used for our hierarchical network
model is presented in Figure 1. In this model, we use both character and word embeddings to train our
model. Similar to FastText model discussed above, the embeddings are task-specific. They are trained
during learning to discriminate the languages varieties. As a result, the expectation is that the input
features (characters words) that are indicative of a particular label (rather than words that are semantically
similar) cluster in the same region of the space defined by the embeddings.

The model is an example of multi-label classification. During training, model parameters are opti-
mized to guess both the group, and the specific language variety correctly. Furthermore, we feed the
model’s prediction of the group to the classifier predicting the specific language variety. For instance, we
would use the information that es-ar and es-mx labels belong to the Spanish group. The intuition behind
this model is that, it will use the highly accurate group prediction during test time to tune into features
that are useful within a particular language group for predicting individual varieties. In principle, the
boxes ‘Group classifier’ and ‘Language / variety classifier’ in Figure 1 may include multiple layers for
allowing the classifier to generalize based on non-linear combinations in its input features. However, in
the experiments reported in this paper, we did not use multiple layers in both classifiers, since it did not
improve the results.

The dashed boxes in Figure 1 turn the sequence of word and character embeddings into fixed-size
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feature vectors. In principle, any model that extracts useful features from a sequence of embeddings are
useful here. The convolutional and recurrent neural networks are typical choices for this step. We have
experimented with both methods. However, simple averaging of the embedding as in the FastText model
described above performed better. As a result we only report results from a simple feature extraction step
where the features are averaged embedding vectors.

The model we use for the results reported in Section 3.3 below has the following components.

1. A character embeddings model and a word embeddings model similar to FastText.

2. A group label classifier is trained on the concatenation of the representation from character and
word embeddings.

3. The softmax score of the group classifier is concatenated again with the character and word repre-
sentations’ concatenation to train a final language variety classifier based on softmax classifier.

In the experiments reported below, the documents are padded or truncated to 512 characters for the
character embedding input, and they are padded or truncated to 70 tokens for the word embeddings input.
We used character embeddings of size 20 and word embeddings of size 32. For both embedding layers,
we used dropout with rate 0.20 to prevent overfitting. As noted above, the feature extraction step is only
averaging over all embedding vectors. Both classifiers in the figure were single layer networks (with
softmax activation function), predicting one-hot representations of groups and varieties. The network was
trained using categorical cross entropy loss function for both outputs using Adam optimization algorithm.
To prevent overfitting, the training was stopped when validation set accuracy stopped improving. All
neural network experiments are realized using Keras (Chollet, 2015) with Tensorflow backend (Abadi et
al., 2015).

3 Experiments and results

This section presents the results obtained with the approaches described in Section 2. We first introduce
the data sets used briefly. Then we present the result we received from the shared task organizers,
followed by the results from the models that we did not submit to the shared task.

3.1 Data

The DSL shared shared task (Malmasi et al., 2016) included two tasks. The data for the first task (task 1)
comes from Tan et al. (2014), and contains a set of 12 language varieties belonging to 5 groups. The data
for the second task (task 2) comes from Ali et al. (2016), and contains five varieties of Arabic. The first
task included two test sets. Test set A contains in-domain documents including all languages or language
varieties listed in Table 1. Test set B contains out-of-domain documents (tweets) in Bosnian, Croatian,
Serbian, Brazilian Portuguese and European Portuguese. The test set B comes in two varieties, B1 and
B2, differing in the way documents were sampled (Malmasi et al., 2016).

The languages/varieties included in task 1 are presented in Table 1, and the Arabic dialect data for task
2 is presented in Table 2. Besides the codes and short descriptions of the varieties, Table 1 also presents
the average document length in number of words and characters for each variety in the training set. Al-
though training set for task 1 is balanced in number of documents, there is a slight amount of imbalance
with respect to token and character features available in the training data. The overall average length of
the documents in task 1 training data was 34.80 words (sd=14.42) and 185.48 characters (sd=76.52). Be-
sides average number of characters and words, Table 1 also presents the number of documents belonging
to each variety in the training set for task 2. The data for task 2 contains ASR transcripts. The lengths of
the documents in the task 2 training set vary more. The average length of the documents in task 2 training
set is 183.79 (sd=271.81) characters and 41.45 (sd=60.68) tokens. In particular, the task 2 training data
consists mainly of short documents (27 % of the documents are less than 50 characters, cf. 1.50 % for
task 1 training set). However, there are also occasional very long documents (longest document contains
18 017 characters).
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Code Language / variety Characters Tokens

bs Bosnian 168.36 31.13
hr Croatian 203.56 37.02
sr Serbian 180.04 34.27

es-ar Argentinian Spanish 213.11 41.47
es-es European Spanish 224.49 44.77
es-mx Mexican Spanish 151.92 30.85

fr-ca Canadian French 147.22 28.34
fr-fr European French 181.98 35.06

id Indonesian 207.62 33.51
my Malay 157.94 25.51

pt-br Brazilian Portuguese 202.82 39.53
pt-br European Portuguese 186.66 36.18

Table 1: The DSL 2016 data set for the task 1. The number of documents in both training (18 000)
and development (2 000) sets were balanced. The columns labeled ‘characters’ and ‘tokens’ present the
average number of non-space characters and white-space-separated tokens for the documents belonging
to each language variety in the training set.

Code Language / variety Documents Characters Tokens

egy Egyptian 1578 236.63 53.83
glf Gulf 1672 168.53 38.33
lav Levantine 1758 163.16 37.67
msa Modern Standard Arabic 999 231.62 49.04
nor North-African 1612 140.77 32.01

Table 2: The DSL 2016 data set for the task 2. The column ‘documents’ number of documents that belong
to each language variety in the training set. The columns labeled ‘characters’ and ‘tokens’ present the
average number of non-space characters and white-space-separated tokens for documents belonging to
each language variety.

19



Test Set Run Accuracy F1 (micro) F1 (macro) F1 (weighted) Rank

A run1 0.8938 0.8938 0.8938 0.8938 1
A run2 0.8905 0.8905 0.8904 0.8904 1
B1 run1 0.862 0.862 0.6144 0.8602 5
B1 run2 0.86 0.86 0.6126 0.8576 5
B2 run1 0.822 0.822 0.5839 0.8175 5
B2 run2 0.81 0.81 0.5745 0.8044 5
C run2 0.4747 0.4747 0.4703 0.4725 9

Table 3: The results submitted to the closed track of DSL shared task 2016. All results are obtained using
the same model parameters (an SVM using character ngram features of length one to seven). In run1, the
model is trained on combined training and development corpus, the model is trained only on the training
corpus in run2. Since task 2 (test set C) did not have a development set, we only list the results of run2.

3.2 Main results

We submitted two sets of results (runs) to the DSL shared task. Both runs were obtained with identical
models, the linear SVM described in Section 2.1. The differences between the runs were the data used
for the training. For run1, we used the all the data available to the closed track participants (training
and development sets), while we used only the training set for run2. Since test-set C did not have
any development set, both runs were identical. We optimized the hyperparameters (the regularization
parameter of the SVM model and the range of character n-grams) on the development set of task 1 which
is most similar to test set A, and used the same parameters for all sub-tasks of task 1 (test sets A, B1 and
B2) and task 2 (test set C). We did not perform any cleanup or filtering on test sets B1 and B2. We only
participated in the closed track. The results, as calculated by the shared task organizers, are presented in
Table 3.

All results are substantially higher than the trivial (random or majority) baselines, which are 0.08, 0.20
and 0.23 for test sets A, B and C, respectively. The baseline scores are random baselines for test sets A
and B, and the majority baseline, which is slightly higher than the random baseline (0.20) for test set C,
due to class imbalance.

The differences between run1 and run2 are small enough that it does not affect the system’s rank in
the shared task. However, small but consistent increase in scores of run1 in comparison to run2 suggests
that more data is useful for this task.

In task 1, our results are better for test set A. Besides the fact that this test set contained in-domain doc-
uments, our results are also better here probably because the hyperparameters (regularization constant,
and range of character ngrams used) are tuned for this particular task. The performance scores obtained
on the gold standard test data is also very close to the scores we have obtained on the development set.
We also note that test set A results are, in general, lower than last year’s shared task (Zampieri et al.,
2015). Despite the fact that there is no ‘other’ label in this year’s data, it seems to be more challenging
in some other reasons.

Our results in task 2 are the worse among the results reported in Table 3. The rank we obtained in this
task is also relatively low, 9th among 18 participants. However, the scores on this task are rather close to
each other, with best accuracy of 0.51. It is also noteworthy that the scores obtained on the gold standard
data is substantially lower than the scores we obtained using cross validation on the training data (0.65
accuracy, 0.65 weighted F1 score). This may be due to differences between the domain (or some other
characteristics) of the test set and the gold standard data. Another reason for relatively low score obtained
on test set C is due the fact that we truncated the documents to 70 tokens. Since the test set C contains a
large number of rather long documents, the truncation choice seems to hurt the performance up to 1 % in
cross validation scores, which may have affected the rank of the system a few steps if the difference was
reflected to the testing on the gold standard data.

We also present the confusion tables for each test set in Table 4, Table 5 and Table 6, for test sets A,
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B and C, respectively. As expected, most confusion occurs within the language groups. There are very
few instances of out-of-group confusions. Among the groups the most confusions occur within bs-hr-sr
group and the Spanish varieties. This may be due to genuine difficulties of discriminating between these
languages, but there may also be some effect of amount of data available for each class. The varieties
with least recall often corresponds with the varieties with shorter documents on average, for example, bs
and es-mx which have the smallest number of characters and words within their group (see Table 1).

Predicted label

bs hr sr es-ar es-es es-mx fr-ca fr-fr id my pt-br pt-pt

bs 774 125 98 0 1 0 0 2 0 0 0 0
hr 138 846 15 0 0 0 0 0 0 0 1 0
sr 65 12 920 0 0 0 0 2 0 0 1 0

es-ar 0 0 0 846 43 108 0 2 0 0 1 0
es-es 0 0 0 43 779 172 0 4 0 0 1 1
es-mx 0 0 0 90 112 798 0 0 0 0 0 0

Tr
ue

L
ab

el

fr-ca 0 0 0 0 0 0 958 42 0 0 0 0
fr-fr 0 0 0 0 1 0 58 940 0 0 1 0

id 1 0 0 0 0 0 0 2 977 20 0 0
my 0 0 0 0 0 0 0 0 14 986 0 0

pt-br 0 0 0 0 0 0 0 0 0 0 959 41
pt-pt 0 0 0 0 0 0 0 0 0 0 57 943

Table 4: Confusion table for task 1, test set A. The language labels are explained in Table 1.

The confusion matrices presented in Table 5 also show the same trend. Almost no confusions across
the language groups, and the bs-hr-sr group also seems to be harder to discriminate here as well. The
confusion table between the Arabic dialects, presented in Table 5, shows more confusions overall, as
expected from low scores presented in Table 3. Gulf variety seems to be difficult to identify for the
system, without a clear pattern. We also observe a relatively poor recall for the North African variety
which is mostly confused with, probably not surprisingly, Egyptian Arabic.

Predicted label

Test set B1 Test set B2

bs hr sr pt-br pt-pt other bs hr sr pt-br pt-pt other

bs 62 31 5 0 0 2 59 31 8 0 0 2
hr 2 97 1 0 0 0 0 99 1 0 0 0
sr 2 1 97 0 0 0 2 1 97 0 0 0

Tr
ue

L
ab

el

pt-br 0 0 0 98 2 0 0 0 0 94 6 0
pt-pt 0 0 0 22 77 1 0 0 0 36 62 2

Table 5: Confusion table for task 1, test sets B1 and B2. The predicted label other refers to all labels that
did not occur in the gold standard. This amounts to, bs–id and bs–es-ar confusion for both tests sets, a
single pt-pt–id confusion in test set B1, and bs–id and bs–es-ar confusions in test set B2.

3.3 Results with deep learning architectures
We present the performance scores of FastText and the hierarchical neural network model described in
Section 2.2 in Table 7. The models are evaluated on the gold standard test data released after the shared
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Predicted label

egy glf lav msa nor

egy 171 33 54 27 30
glf 52 86 44 57 17
lav 54 65 157 33 35
msa 27 26 25 179 17

Tr
ue

L
ab

el

nor 73 59 45 36 138

Table 6: Confusion table for test set C. The language labels are explained in Table 2.

Variety accuarcy Group accuracy

Model Features A B1 B2 A B1 B2

FastText char 55.69
word 76.75

Hierarchical char+word 86.42 60.20 70.20 99.66 86.40 92.00

Table 7: The accuracy values obtained on task 1 by the neural network models. The models are tested on
the gold standard testing data.

task results were announced. We evaluate the models only on task 1. The hierarchical model clearly
performs better than the FastText baseline, both using character or word features. Although the accuracy
on the test set A is not as good as the SVM model discussed above, if we had submitted the results with
this model it would have obtained a mid-range rank in the shared task. The group accuracy on test set A
is almost perfect. The results on test set B1 and B2 are lower than ones obtained by the SVM model. The
performance on B is also noticeably bad for the group prediction. Furthermore, the drop of performance
on test sets B in comparison to test set A also seem to be more steep in comparison to the linear models,
despite the fact that we prevented overfitting using multiple measures (see Section 2.2). This may be an
indication that even though the system may not be overfitting in the usual sense, it may be ‘overfitting’
to the domain.

4 Discussion and conclusions

In this paper we reported on our contribution to the DSL 2016 shared task. We described and reported
results from two (families of) models. The linear SVMs, that we originally intended to use as a baseline,
and deep learning methods that we expected to perform well in this task. In our experiments the ‘baseline’
SVM model outperformed a number of neural network architectures we have experimented with, and it
also obtained the first rank in the test set A of on closed track of the shared task. Our neural network
models, on the other hand, did not perform as well in this task, although they have some attractive
features discussed in Section 1. Within alternative neural network architectures, simple ones seem to
perform better, despite some apparent shortcomings. Furthermore the neural network models seem to be
more sensitive to domain differences during the training and testing time.

Our findings show that linear models, in general simpler models, are quite useful and hard to beat in
this particular setup. Our experiments with the neural network architectures are rather preliminary, and
can probably be improved, for example, through better architectures, better hyper-parameters and more
training data.
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Abstract

Computational approaches for dialectometry employed Levenshtein distance to compute an ag-
gregate similarity between two dialects belonging to a single language group. In this paper, we
apply a sequence-to-sequence autoencoder to learn a deep representation for words that can be
used for meaningful comparison across dialects. In contrast to the alignment-based methods,
our method does not require explicit alignments. We apply our architectures to three different
datasets and show that the learned representations indicate highly similar results with the anal-
yses based on Levenshtein distance and capture the traditional dialectal differences shown by
dialectologists.

1 Introduction

This paper proposes a new technique based on state-of-the-art machine learning methods for analyzing
dialectal variation. The computational/quantitative study of dialects, dialectometry, has been a fruitful
approach for studying linguistic variation based on geographical or social factors (Goebl, 1993; Ner-
bonne, 2009). A typical dialectometric analysis of a group of dialects involve calculating differences
between pronunciations of a number of items (words or phrases) as spoken in a number of sites (ge-
ographical location, or another unit of variation of interest). Once a difference metric is defined for
individual items, item-by-item differences are aggregated to obtain site-by-site differences which form
the basis of further analysis and visualizations of the linguistic variation based on popular computational
methods such as clustering or dimensionality reduction. One of the key mechanisms for this type of anal-
ysis is the way item-by-item differences are calculated. These distances are often based on Levenshtein
distance between two phonetically transcribed variants of the same item (Heeringa, 2004). Levenshtein
distance is often improved by weighting the distances based on pointwise mutual information (PMI) of
the aligned phonemes (Wieling et al., 2009; Prokic, 2010).

In this paper we propose an alternative way for calculating the distances between two phoneme se-
quences using unsupervised (or self supervised) deep learning methods, namely Long Short Term Mem-
ory (LSTM) autoencoders (see Section 2 for details). The model is trained for predicting every pronun-
ciation in the data using the pronunciation itself as the sole predictor. Since the internal representation of
the autoencoder is limited, it is forced to learn compact representations of words that are useful for recon-
struction of the input. The resulting internal representations, embeddings, are (dense) multi-dimensional
vectors in a space where similar pronunciations are expected to lie in proximity of each other. Then, we
use the distances between these embedding vectors as the differences between the alternative pronun-
ciations. Since the distanced calculated in this manner are proper distances in an Euclidean space, the
usual methods of clustering or multi-dimensional scaling can be applied without further transformations
or normalizations.

There are a number of advantages of the proposed model in comparison to methods based on Lev-
enshtein distance. First of all, proposed method does not need explicit alignments. While learning
to reconstruct the pronunciations, the model discovers a representation that places phonetically similar

This work is licenced under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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Figure 1: The demonstration of LSTM autoencoder using an example pronunciation [roUz] (rose). The
encoder part represents the whole sequence as a fixed-size embedding vector, which is converted to the
same sequence by the decoder.

variants together. However, unlike other alternatives, the present method does not need pairs of pronun-
ciations of the same item. Another advantage of the model is its ability to discover potential non-linear
and long-distance dependencies within words. The use of (deep) neural networks allow non-linear com-
binations of the input features, where LSTMs are particularly designed for learning relationships at a
distance within a sequence. The model can learn properties of input that depend on non-contiguous
long-distance context features (e.g., as in vowel harmony) and it can also learn to combine features in
a non-linear non-additive way, (e.g., when the effect of vowel harmony is canceled in presence of other
contextual features).

The rest of the paper is organized as follows. In section 2, we describe our model and the reasons for
the development and employment of such a model. In section 3, we discuss our experimental settings and
the results of our experiments. We discuss our results in section 4. We conclude the paper in section 5.

2 Model

As mentioned in the previous section, the computational approaches in dialectometry compare words
using Levenshtein distance and aggregate the Levenshtein distance across concepts to project the distance
matrix on a map. In this paper, we propose the use of autoencoders (Hinton and Salakhutdinov, 2006)
based on Long Short Term Memory neural networks (LSTMs) (Hochreiter and Schmidhuber, 1997) for
capturing long distance relationships between phonemes in a word. Originally, autoencoders were used
to reduce the dimensionality of images and documents (Hinton and Salakhutdinov, 2006). Hinton and
Salakhutdinov (2006) show that the deep fully connected autoencoders, when applied to documents,
learn a dense representation that separates documents into their respective groups in two dimensional
space.

Unlike standard deep learning techniques which learn the neural network weights for the purpose of
classification, autoencoders do not require any output label and learn to reconstruct the input. Typical
autoencoders feature a hour-glass architecture where the lower half of the hour glass architecture is used
for learning a hidden representation whereas, the upper half of the architecture (a mirror of the lower
half) learns to reconstruct the input through back-propagation. The learned intermediate representation
of each word is a concise representation its pronunciation. The network is forced to use information-
dense representations (by removing or reducing redundant features in the input) to be able to construct
the original pronunciation. These representations, which are similar to well-known word embeddings
(Mikolov et al., 2013; Pennington et al., 2014) in spirit, can then be used for many tasks. In our case,
we use the similarities between these internal vector representations for quantifying the similarities of
alternative pronunciations. Although the lengths of the pronunciations vary, the embedding representa-
tions are fixed. Hence each pronunciation is mapped to a low dimensional space, Rk, such that similar
pronunciations are mapped to close proximity of each other.

In this paper, we employ a LSTM based autoencoder (cf. figure 1) to learn an internal representation
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of a word. The LSTM autoencoder has two parts: encoder and decoder. The encoder part transforms the
input sequence (x1, . . . xT ) to a hidden representation h ∈ Rk where, k is a predetermined dimensional-
ity of h. The decoder is another LSTM layer of length T . The ht = h representation at each time step t

is fed to a softmax function ( ehtj∑
k ehtk

) that outputs a x̂t ∈ R|P | length probability vector where P is the
set of phonemes in the language or the language group under investigation.

In this paper, we represent a word as a sequence of 1-hot-|P | vectors and use the categorical cross-
entropy function (−∑t xtlog(x̂t) + (1− xt)log(1− x̂t)) where xt is a 1-hot vector and x̂t is the output
of the softmax function at timestep t) to learn both the encoder and decoder LSTM’s parameters.

We tested with both unidirectional (
−→
h ) and bidirectional encoder representations in our experiments.

The bidirectional encoder consists of a bidirectional LSTM where the input word is scanned in both
directions to compute a concatenated

−→
h
⊕←−

h which is then fed to a decoder LSTM layer for recon-
structing the input word.

The model we use is different from the seq2seq model of Sutskever et al. (2014) in that the seq2seq
model supplies the hidden representation of the input sequence to predict the first symbol in a target
sequence and then uses the predicted target symbol as an input to the LSTM layer to predict the current
symbol. Our architecture, is simpler than the seq2seq model due to the following reasons:

1. Unlike seq2seq, we work with dialects of a single language which do not require explicit language
modeling that features in cross-language sequence learning models.

2. Our model is essentially a sequence labeling model that learns a dense intermediate representation
which is then used to predict the input sequence. Moreover, unlike neural machine translation, the
source and target sequences are identical, hence, have the same length in our case.

The motivation behind the use of autoencoders is that a single autoencoder network for all the site data
would learn to represent similar words with similar vectors. Unlike Levenshtein distance, the LSTM
autoencoders can learn to remember and forget the long distance dependencies in a word. The general
idea is that similar words tend to have similar representations and a higher cosine similarity. By training
a single autoencoder for the whole language group, we intend to derive a generalized across-concept
representation for the whole language group.

Once the network is trained, we use the similarities or differences between internal representations
of different pronunciations to determine similarities or differences between alternative pronunciations.
Since embeddings are vectors in an Euclidean space, similarity can easily be computed using cosine of
the angle between these vectors. Then, we use Gabmap (Nerbonne et al., 2011; Leinonen et al., 2016)
for analyzing the distances and visualizing the geographic variation on maps. Since Gabmap requires
a site-site distance matrix to visualize the linguistic differences between sites, we convert the cosine
similarity to a distance score by shifting a similarity score by 1.0 followed by a division by 2.0. The
shifted similarity score is then subtracted from 1.0 to yield a distance score. The distance for a site pair
is obtained by averaging the word distances across concepts. In case of synonyms, we pick the first word
for each concept.

3 Experiments and Results

3.1 Data

We test the system with data from three different languages, English, Dutch and German. The English
data comes from Linguistic Atlas of the Middle and South Atlantic States (LAMSAS; Kretzschmar
(1993)) The data includes 154 items from 67 sites in Pennsylvania. The data is obtained from Gabmap
site,1 and described in Nerbonne et al. (2011).

The Dutch dialect data is form the Goeman-Taeldeman-Van Reenen Project (Goeman and Taelde-
man, 1996) which comprises 1876 items collected from more than 600 locations in the Netherlands and

1http://www.gabmap.nl
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Flanders between 1979–1996. It consists of inflected and uninflected words, word groups and short sen-
tences. The data used in this paper is a subset of the GTRP data set and consist of the pronunciations of
562 words collected at 613 locations. It includes only single word items that show phonetic variation.

German dialect data comes from the project ‘Kleiner Deutscher Lautatlas – Phonetik’ at the
‘Forschungszentrum Deutscher Sprachatlas’ in Marburg. The data was recorded and transcribed in the
late 1970s and early 1990s (Göschel, 1992). In this study, we the data from Prokić et al. (2012) which is
a subset of the data that consists of the transcriptions of 40 words that are present at all or almost all 186
locations evenly distributed over Germany.

3.2 Experimental setup

In our experiments, we limit T , the length of the sequence processed by the LSTM, to 10 for Dutch and
German dialect datasets and 20 for Pennsylvanian dataset. We trained our autoencoder network for 20
epochs on each dataset and then used the encoder to predict a hidden representation of length 8 for each
dataset. We used the continuous vector representation to compute the similarities between words. We
used a batch size of 32 and the Adadelta optimizer (Zeiler, 2012) to train our neural networks. All our
experiments were performed using Keras (Chollet, 2015) and Tensorflow (Abadi et al., 2016).

3.3 Results

In this section we first present an example visualization of the learned word representations in the hidden
dimensions of LSTM autoencoders. To present the model’s success in capturing geographical variation,
we present visualizations from three different linguistic areas. The maps and the MDS plots in this
section were obtained using Gabmap.

3.4 Similarities in the embedding space

Figure 2 presents first two dimensions of the PCA projection of the embedding vectors for alternative
pronunciations of German word acht ‘eight’. As the figure shows, similar pronunciations are closer to
the each other in this projection.

Although the representation in Figure 2 show that similar pronunciations are close to each other in this
projection, we note that the vector representation are already dense. As a result, unlike many data sets
with lots of redundancy, the first two PCA components does not contain most of the information present
in all 8 dimensions used in this experiment. The first two PCA component above only explains 50% of
the total variation. Hence, half of the variation is not visible in this graph, and some of the similarities
or differences shown in the figure may be not be representative of their actual similarities or differences.
However, as the analyses we present next confirm, the distances between these representations in the
unreduced 8 dimensional space captures the geographical variation well.

3.4.1 Pennsylvanian dialects
An interesting dialect region often analyzed in the literature is the Pennsylvanian dialects. We visualize
the distances between sites by reducing the distances using MDS and projecting it on a map for both uni-
directional and bidirectional LSTM autoencoders and for a typical Levenshtein distance analysis (using
Gabmap with default settings). Figure 3 presents a shaded map where shades represent the first MDS di-
mension. The reduction to a single dimension preserves 88%, 90% and 96% of the original distances for
unidirectional LSTM, Levenshtein distance and bidirectional LSTM, respectively. The results are again
similar to the earlier analyses (Nerbonne et al., 2011). Here all analyses indicate a sharp distinction
between the ‘Pennsylvanian Dutch’ area and the rest of Pennsylvania. This distinction is even sharper
in the maps produced by the LSTM autoencoders. However, within each group distances indicated by
the LSTM autoencoders are smaller, hence, transitions are smoother. The famous ‘Route 40’ boundary
is also visible in all analyses, however, it is sharper in the classical Levenshtein distances in comparison
to the LSTM autoencoders.

To visualize the groups of sites with more than two dimensions we also present first two MDS dimen-
sions plotted in Figure 4. In all figures, the group of the dots at the bottom parts of the graphs represent
sites in the ‘Pennsylvanian Dutch’ area. As also indicated by Figure 3, the grouping is clearer between
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Figure 2: PCA analysis of the dense representation of the German word acht ‘eight’.

this area and the rest in the LSTM autoencoder output but not as strong in the results with Levenshtein
differences.

3.4.2 Dutch dialects

Figure 5 presents the multi-dimensional scaling (MDS) applied to distances based on both unidirectional
and bidirectional LSTM autoencoder in comparison to classical Levenshtein distance. The distances in
the first three dimensions of MDS are mapped to RGB color space. The correlation between the dis-
tances in the first three dimensions and the distances in the unreduced space are 89% for Levenshtein
and unidirectional LSTM autoencoder, and 94% for the bidirectional LSTM autoencoder. All methods
yield similar results which are also in-line with previous research (Wieling et al., 2007). The colors indi-
cate different groups for Frisian (north west), Low Saxon (Groningen and Overijsel, north east), Dutch
Franconian varieties (middle, which seem to show gradual changes from North Holland to Limburg), and
Belgian Brabant (south east) and West Flanders (south west).

Although the overall results seem similar, the visualization in Figure 5 indicate that the distances based
on both LSTM autoencoders indicate a smoother change compared to the Levenshtein distance.
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Figure 3: MDS analysis of Pennsylvanian dialects. The shades represent only the first MDS dimension.
The distances are based on distances of bidirectional recurrent autoencoder representations (left), unidi-
rectional (middle) and aggregate Levenshtein distance (right). Note that the colors are arbitrary, only the
differences (not the values) are meaningful.

Figure 4: First two MDS dimensions plotted against each other for the Pennsylvania data. Distances
are based on concatenated bidirectional LSTM autoencoder representation (left), unidirectional LSTM
encoder (middle) and classical aggregate Levenshtein difference (right).

Figure 5: MDS analysis of Dutch dialects. First three MDS dimensions are mapped to RGB color
space. The distances are based on distances of bidirectional recurrent autoencoder representations (left),
unidirectional (middle) and aggregate Levenshtein distance (right). As in figure 3 the colors are arbitrary,
only the differences (not the values) are meaningful.
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Figure 6: MDS analysis of the German dialects. The shades represent only the first MDS dimension.
The distances are based on distances of bidirectional recurrent autoencoder representations (left), unidi-
rectional (middle) and aggregate Levenshtein distance (right).

3.4.3 Dialects of Germany
Figure 6 presents similar analyses for dialects of Germany. Similar to Pennsylvania data, we only vi-
sualize the first MDS dimension, with correlations with the original distances 62%, 68% and 70% for
unidirectional LSTM, bidirectional LSTM and Levenshtein distances, respectively. The MDS maps of
the German dialects show the traditional two-way classification along the North-South dimension. The
unidirectional autoencoder shows a higher transition boundary as compared to the bidirectional autoen-
coder. This seems to be in line with the observation that autoencoders represent a smoother transition in
comparison to Levenshtein distance.

4 Discussion

The results of the above visualization show that sequence-to-sequence autoencoders capture similar in-
formation to that of pair-wise Levenshtein distance. The autoencoders only require list of words in a
uniformly transcribed IPA format for learning the dense representation as compared to the pair-wise ap-
proach adopted in Levenshtein distance. We hypothesize that the dense representation of a word causes
the smooth transition effect that is absent from the maps of Levenshtein distance. Our experiments
suggest that the autoencoders require few thousands of words to train and the visualizations of the site
distances correlate well with the traditional dialectological knowledge. An advantage of autoencoders is
that they do not require explicit alignment and can train to reconstruct the input.

5 Conclusions

In this paper, we introduced the use of LSTM autoencoders for the purpose of visualizing the shifts in
dialects for three language groups. Our results suggest that LSTM autoencoders can be used for visu-
alizing the transitions across dialect boundaries. The visualizations from autoencoders correlate highly
with the visualization produced with the standard Levenshtein distance (used widely in dialectometry).
LSTM autoencoders do not require explicit alignment or a concept based weighting for learning realis-
tic distances between dialect groups. In the future, we aim to apply the LSTM autoencoders to speech
recordings of dialects for the purpose of identifying dialect boundaries.
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Abstract

This paper describes the GW/LT3 contribution to the 2016 VarDial shared task on the identifica-
tion of similar languages (task 1) and Arabic dialects (task 2). For both tasks, we experimented
with Logistic Regression and Neural Network classifiers in isolation. Additionally, we imple-
mented a cascaded classifier that consists of coarse and fine-grained classifiers (task 1) and a
classifier ensemble with majority voting for task 2. The submitted systems obtained state-of-the-
art performance and ranked first for the evaluation on social media data (test sets B1 and B2 for
task 1), with a maximum weighted F1 score of 91.94%.

1 Introduction

The 2016 DSL shared task objective was to correctly identify the different variations of similar lan-
guages (Malmasi et al., 2016). DSL2016 covered two main subtasks:

• Task 1: discriminating between similar languages from the same language family and between
national language varieties. Covered languages and varieties are:

I Bosnian (bs), Croatian (hr) and Serbian (sr) from the South Slavic language family
II Malay (my) and Indonesian (id) from the Austronesian language family

III Portuguese from Brazil (pt-BR) and Portugal (pt-PT)
IV Spanish from Argentina (es-AR), Mexico (es-MX) and Spain (es-ES)
V French from France (fr-FR) and Canada (fr-CA)

• Task 2: Arabic dialect identification. The task includes Modern Standard Arabic (MSA) and the
Egyptian (EGY), Gulf (GLF), Levantine (LAV) and North African (NOR) dialects.

Both tasks were evaluated in two tracks: closed (no external resources or additional training data are
allowed) and open. The shared task involves predicting different languages for groups I and II from Task
1, identifying different variants of the same language in groups III, IV, V from Task 1, and predicting
dialects in Task 2. Furthermore, Task 1 was evaluated on in-domain and out-of-domain test sets.

The experimental approaches described in this paper include preprocessing methods to prepare the
data, feature engineering, various machine learning methods (Logistic Regression, Support Vector Ma-
chines and Neural Networks) and system architectures (one-stage, two-stage and ensemble classifiers).
Additionally, we collected Twitter training data for Task 2 and studied its impact on prediction perfor-
mance. GW/LT3 participated in Task 1 (closed) and Task 2 (closed and open).

The rest of the paper is organized as follows: Section 2 presents a brief overview of work in similar
languages identification and previous DSL tasks. Section 3 describes the overall methodology, whereas
Section 4 and 5 discuss the datasets, preprocessing, experimental results and analysis in detail for each
task. Section 6 concludes this paper.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http:
//creativecommons.org/licenses/by/4.0/
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2 Related Research

Language identification is an active field of research, where in recent years increased attention has been
given to the identification of closely related languages, language variants and dialects, which are harder
to distinguish. The three editions of the DSL shared task on detecting similar languages have provided a
forum for benchmarking various approaches. For a detailed overview of the previous editions and their
related work, we refer to the overview papers of Zampieri et al. (2014) and Zampieri et al. (2015).

State-of-the-art approaches to related language identification rely heavily on word and character n-
gram representations. Other features include the use of blacklists and whitelists, language models, POS
tag distributions and language-specific orthographical conventions (Bali, 2006; Zampieri and Gebre,
2012). For systems, a wide range of machine learning algorithms have been applied (Naive Bayes and
SVM classifiers in particular), with work on optimization and dimensionality reduction (Goutte et al.,
2014), and on ensembling and cascading, which yielded the best-performing systems in the 2015 edition
(Goutte and Léger, 2015; Malmasi and Dras, 2015).

Previous approaches for Arabic dialect detection, a new task introduced in this shared task edition,
use similar approaches. Sadat et al. (2014) argue that character n-gram models are well suited for dialect
identification tasks because most of the variation is based on affixation, which can be easily modeled at
the character level.

Also new to this edition of the shared task is the evaluation on social media data. In 2014, the Tweet-
LID shared task specifically addressed the problem of language identification in very short texts (Zubiaga
et al., 2014). This brought to light some of the challenges inherent to the genre: a need for a better
external resources to train systems, low accuracy on underrepresented languages and the inability to
identify multilingual tweets.

3 System Description

We experiment with a number of machine learning methods that range from conventional methods such
as Logistic Regression to Deep Learning.

Feature Set We experimented with a simple feature set similar to those that proved effective in
previous DSL tasks (Goutte and Léger, 2015). We employ word and character n-gram representations
as features in the closed submission for Task 1. Additionally, we incorporate lexical features based
on Arabic dialect dictionaries. We generated GLF, EGY, LAV, and NOR noisy dictionaries that are
collected from Twitter where a filter based on the geolocation field from Twitter API is applied to reflect
the targeted dialects (e.g. KW → GLF). The MSA dictionary is based on the unique vocabulary set in
Arabic Gigaword. The dictionary features are a set of 5 features (one per dialect) where each feature
value represents the in-dictionary occurrence frequencies (e.g. kdh mA ySH$ [EN: This is not right]:
GLF dic:1, EGY dic:3, MSA dic:1, LAV dic:1, NOR dic:1).

Classifiers
Support Vector Machines (SVM): we experimented with SVMs and found that it produces worse re-
sults in comparison to other classifiers. As a result, we did not submit a run that implements SVM.
Logistic Regression (LR) classifier: the intuition behind using LR as opposed to Support Vector Ma-
chines (SVM) is that LR works better in scenarios where the classes are close to each other and when the
predictors can near-certainly determine the output label. We use LR for both Task 1 and Task 2 as one
of the submitted runs, where LR produces state-of-the-art results for Task 1 on out-of-domain data. All
LRs are trained with L2 regularization and a cost C of 1.
Neural Network (NN) classifier: we also experiment with NNs, because they have proven effective in
modelling a wide range of complex NLP tasks. All NNs are trained with a single hidden layer of 500
neurons, using softmax activation and Adaptive Moment Estimation (Adam) to optimize the stochastic
gradient descent.
Two-stage classifier: for Task 1, we implemented a two-stage classifier where we first train a system
to predict the coarse-grained language group class. Then, for every language group we built a model
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that predicts the fine-grained variant class. A detailed description of this classifier is depicted in Fig-
ure 1. Ensemble with majority voting: for Task 2, we implemented an ensemble classifier that takes

Figure 1: Two-stage coarse-fine classifier

the majority vote of 1 LR and 2 NN classifiers’ output and produces the majority label. Ties are broken
by taking the output of the best-performing individual classifier. The number and selection of classifiers
participating in the ensemble was determined experimentally on the development data.

4 Task 1

Task 1 focuses on predicting the correct label of language variant among classes of similar languages
and variants.

4.1 Datasets

The dataset provided contains:

• Training and development data: a balanced train and dev set containing fragments from newswire
text (18000 training and 2000 dev instances per class)

• Test data: class-balanced in-domain (test set A: 12000 instances) and out-of-domain data collected
from social media (test sets B1 and B2 with 500 instances each, pertaining to the South Slavic and
pt families)

4.2 Preprocessing

In order to reduce data dimensionality and improve lexical recall, preprocessing was applied to the
datasets. This was especially relevant for the out-of-domain datasets B1 and B2, which were noisy in
nature since they had been collected from Twitter. We performed the following normalization operations:

• number masking (e.g. 1990⇒ 8888)

• URL replacement (e.g. ttg.uni-saarland.de/vardial2016⇒ URL)

• in words elongated with character flooding, repetitions are limited to two occurrences (e.g.
goooood→ good)

• removal of at-mentions, retweets and HTML tags

• lowercasing of all text

35



Additionally, we applied language filtering on the tweets in datasets B1 and B2. The task was to
determine the primary language variant of a Twitter user, given a collection of his or her tweets. However,
Twitter users do not consistently tweet in the same language: some tweets may be in a different language
entirely, and some may have internal code switching. Because such tweets can confuse a classifier, we
removed all tweets that could not be confidently assigned to one of the language groups under study. We
used the probability outputs of a NN coarse-grained classifier to remove all tweets that had less than 95%
of the probability mass concentrated in one category.

Figure 2: Example of out-of-domain dataset entry

4.3 Postprocessing
For the B1 and B2 test sets, which only contain 2 of the 5 language groups, we normalize predictions
pertaining to an incorrect language group by backing off to the highest-probability available class. In the
case of the cascaded classifier, this is done in the first stage.

4.4 Results
The GW/LT3 team submitted to the closed track for Task 1, where no external training data or resources
could be used. For each dataset, three systems were submitted (as explained in Section 3), with the
following settings:

• LR: character (2-6) and word n-grams (1-3) with term-frequency weighting

• NN: binary character n-gram features (2-6), 35 epochs of training

• Cascade: both the coarse (language group) and fine-grained classifier use LR, with the same feature
set as described above for LR

GW/LT3 ranked first in the out-of-domain evaluation (test sets B1&B2) and third for in-domain test set
A. As shown in Table 1, the LR classifier yields the best performance on the B1 and B2 test sets, with an
accuracy of 92.0% and 87.8%, respectively. It is narrowly beaten by the cascaded approach on test set A
(88.7%).

The state-of-the-art performance on the B1 and B2 test sets may indicate that adequate preprocessing
is a prerequisite when dealing with noisy social media data. Both the normalization steps and the ag-
gressive filtering of code-switched tweets based on language family detection may have been effective
for improving performance over competing systems.

PPPPPPPPPMetric
Data A B1 B2

LR NN 2-stage3 LR1 NN 2-stage LR1 NN 2-stage
Accuracy 88.59 85.02 88.70 92.00 89.60 91.20 87.80 86.00 87.20
F1-weighted 88.60 84.93 88.70 91.94 89.45 91.12 87.73 85.81 87.13

Table 1: Task 1 results. System ranks are indicated in superscript.

Based on the confusion matrices for the in-domain dataset, we note a very similar behavior among
the three different approaches, especially LR & two-stage. We note that NN consistently performs worse
than the other two approaches with a marked accuracy degradation in the more closely language variants,
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XXXXXXXXXXXMethod
Variant hr bs sr es-ar es-es es-mx fr-ca fr-fr id my pt-br pt-pt

A
LR 85 77 90 85 80 77 94 93 98 98 93 93
NN 82 75 88 79 73 63 92 91 96 96 91 91
2-stage 85 77 90 85 80 78 94 93 98 98 94 93

B1
LR 93 86 92 - - - - - - - 94 94
NN 88 82 95 - - - - - - 92 91
2-stage 93 86 92 - - - - - - - 93 92

B2
LR 92 85 91 - - - - - - - 86 84
NN 90 80 92 - - - - - - - 85 82
2-stage 92 84 91 - - - - - - - 85 83

Table 2: Task 1 per-variant F1-score

such as the Portuguese and Spanish language groups. The NN approach performs notably poorly for the
detection of Mexican Spanish with a recall of 58% in comparison to 81% for LR. However, it is worth
noting that performance for Mexican Spanish is poor across classifiers (Table 2). Together with Bosnian
(across datasets), it appears to be harder to predict than other language variants.
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Figure 4: B1 Confusion Matrices
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Figure 5: B2 Confusion Matrices

5 Task 2

Task 2 aims to predict the correct Arabic dialect from a set of 5 different dialects. GW/LT3 submitted
systems to both the open and closed for the Arabic subtracks.

5.1 Datasets
The dataset (Ali et al., 2016) provided contains Automatic Speech Recognition (ASR) transcripts in
Buckwalter encoding1 and is divided into:

• Training data: unlike Task 1, the training data is unbalanced and contains 1578 EGY, 1672 GLF,
1758 LAV, 999 MSA, and 1612 NOR instances (total of 7619)

• Test data: ASR transcripts containing 315 EGY, 256 GLF, 344 LAV, 274 MSA, and 351 NOR in-
stances (total of 1540)

External datasets For the open submission, we used dialect dictionaries to make in-vocabulary fre-
quency count features (as explained in 3). For MSA, we used the Arabic Gigaword vocabulary, whereas
for other dialects we built dictionaries based on data collected from Twitter. We are aware that using
social media data invariably introduces noise, both in terms of misspelled vocabulary entries and with
relation to incorrect geographical information. However, as argued by Mubarak and Darwish (2014),
such information still provides acceptable dialectal corpora. We filtered the collected tweets based on
the countries of interest that map to the targeted dialects of the shared task (e.g. Syria→ LAV ). Before
creating the dictionaries, we apply normalization (hamza normalization, emoji and URL removal, . . . ).
The resulting dictionary sizes were 76,721 for GLF, 22,003 for EGY, 10,000 for LAV, 286,559 for MSA
and 6,343 for NOR.

5.2 Preprocessing
We tested applying letter normalization during the train/dev phase, where we normalized the different
shapes of hamza (′, |, >,&, <, ,) to Alif (A). However, we noted that this type of normalization did not
improve performance, which is why it was omitted in the final systems. However, preprocessing on the
dictionaries collected from Twitter was applied in a similar fashion as the one described in 4.2.

5.3 Results
Settings of the 3 submitted runs for both tracks (as explained in Section 3), were as follows:

• LR: character (2-6) and word n-grams (1-3) without term-frequency weighting, additional dictio-
nary features for the open track

• NN: binary character n-gram features (2-6), 35 epochs of training
1http://www.qamus.org/transliteration.htm
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• Ensemble: 1 NN classifier with character (3-5) and word (1) n-grams, 1 NN classifier with character
n-grams (2-6) and 1 LR classifier with character n-grams (1-6) with MSA dictionary features for
the open track

GW/LT3 ranks 2nd and 5th in the open and closed settings respectively, using the ensemble approach
(EMV) described in Section 3. Table 3 shows the three submitted runs’ performance under the closed
and open settings. We note that adding extra features using the external resources, or even adding them as
extra training data during the train/dev phase, did not improve the performance of the systems. This can
likely be explained by limited overlap in genre between the training and test data and the Twitter data. In
Table 4, we note that EMV produces the best performance per dialect, with MSA being the easiest dialect
to identify. This may be explained by the fact that MSA is highly distinguishable from other dialects, as
opposed to the high overlap between dialects’ vocabularies.

PPPPPPPPPMetric
Data Closed Open

LR NN EMV5 LR NN EMV2

Accuracy 44.42 49.03 49.03 44.35 49.03 49.09
F1-weighted 44.79 49.17 49.22 44.74 49.17 49.29

Table 3: Task 2 results. System ranks are indicated in superscript.

XXXXXXXXXXXMethod
Dialect EGY GLF LAV MSA NOR

CLOSED
LR 45 33 43 54 48
NN 52 35 48 61 49
EMV 52 34 48 61 50

OPEN
LR 44 33 43 55 48
NN 52 35 48 61 49
EMV 52 35 48 61 50

Table 4: Task 2 dialects F1-score

Based on Figure 6 and 7, we note that our systems perform in a very similar behavior under the
open and closed settings, which is due to the small number of added features under the open settings
as opposed to the closed. GLF dialect represents the highest challenge for our systems with F1-score of
35% (as shown in Table 4). Based on the confusion matrix, we note that GLF is often mispredicted as
LAV or MSA. Additionally, we note that MSA yields the best performance among the various dialects, a
result aligning with the findings of Zaidan and Callison-Burch (2014). EMV produces the best overall
accuracy and F-score results with a performance that is very close to the NN system, as two of the three
votes belong to NN systems with different parameters.

6 Conclusion & Future Work

In this paper, we discussed the collaborative work between George Washington University (GW) and
Ghent University (LT3), where GW/LT3 submitted systems to both 2016 DSL Task 1 (closely related
languages and variants) and Task 2 (Arabic dialect identification). The performance of our best run on
out-of-domain data for Task 1 ranked first, using a Logistic Regression classifier. We hypothesize that
adequate preprocessing of noisy social media data may be a prerequisite for good performance. Complex
system architectures such as cascaded classification or ensembling did not yield significant improvements
over the one-stage classifiers. Given the promising results of the single-layer Neural Networks for the
Arabic dialect detection task, we intend to investigate alternative Deep Learning methodologies in future
work.
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Figure 6: C Closed Confusion Matrices
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Abstract

We recently witnessed an exponential growth in dialectal Arabic usage in both textual data and
speech recordings especially in social media. Processing such media is of great utility for all
kinds of applications ranging from information extraction to social media analytics for political
and commercial purposes to building decision support systems. Compared to other languages,
Arabic, especially the informal variety, poses a significant challenge to natural language pro-
cessing algorithms since it comprises multiple dialects, linguistic code switching, and a lack of
standardized orthographies, to top its relatively complex morphology. Inherently, the problem of
processing Arabic in the context of social media is the problem of how to handle resource poor
languages. In this talk I will go over some of our insights to some of these problems and show
how there is a silver lining where we can generalize some of our solutions to other low resource
language contexts.
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Abstract

Machine translation between closely related languages is less challenging and exhibits a smaller
number of translation errors than translation between distant languages, but there are still obsta-
cles which should be addressed in order to improve such systems. This work explores the ob-
stacles for machine translation systems between closely related South Slavic languages, namely
Croatian, Serbian and Slovenian. Statistical systems for all language pairs and translation direc-
tions are trained using parallel texts from different domains, however mainly on spoken language
i.e. subtitles. For translation between Serbian and Croatian, a rule-based system is also explored.
It is shown that for all language pairs and for both translation systems, the main obstacles are the
differences between syntactic properties.

1 Introduction

Machine translation (MT) between (closely) related languages is a specific field in the domain of MT

which has attracted the attention of several research teams. Nevertheless, it has not attracted as much
attention as MT between distant languages. This is, on the one side, due to the fact that speakers of these
languages often easily understand each other without switching to the foreign language. Furthermore,
many documents are distributed in their original language, even in the neighbouring countries. Another
fact is that MT between related languages is less problematic than between distant languages (Kolovratnı́k
et al., 2009).

Still, there is a need for translation even between very closely related language pairs such as Serbian
and Croatian, for example, for the sake of producing standard official documents which exixst in one
language but not the other. Another application of such systems is the two-stage (also called “pivot”)
MT (Babych et al., 2007): for example, if an adequate English-Croatian system is available whereas an
English-Serbian system is not, or is of poor quality, English source sentences can first be translated into
Croatian, and then the obtained output is further translated into Serbian by a Croatian-Serbian MT system.
A similar application can also include enriching parallel training corpora by producing “synthetic” data
in the less resourced related language (Bertoldi and Federico, 2009).

This work examines MT systems between three closely related South Slavic languages, namely Croa-
tian, Serbian and Slovenian. Therefore we used the Asistent1 phrase-based translation system (Arčan et
al., 2016), which was developed to translate text between English and the morphological complex south
Slavic languages: Slovene, Serbian and Croatian. Additionally, an RBMT system2 (Klubička et al., 2016)
is analysed for translation between Croatian and Serbian in both directions in order to explore advantages
and disadvantages of both approaches for very close language pairs.

This work is licenced under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/

1http://server1.nlp.insight-centre.org/asistent/
2http://translator.abumatran.eu
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Research questions
Taking into account the language differences among Croatian, Serbian and Slovenian, our main questions
are:

• What are the main obstacles for machine translation between these languages?

• Considering the closeness between Serbian and Croatian, which approach exhibits fewer errors,
SMT or RBMT? What are the most important differences between the two approaches?

1.1 Related work
Although all South Slavic languages are still rather under-resourced and under-investigated, in the last
decade several MT systems have been built between these languages and English. Nevertheless, the
translation between them has been investigated to a much lesser extent.

A rule-based translation system between Slovenian and Serbian has been described in Vičič (2008)
and automatic scores (BLEU, METEOR and edit-distance) as well as adequacy and fluency are reported.
Another work on RBMT between Serbian, Croatian and Slovenian is presented in Peradin et al. (2014).
The SUMAT project3 included a statistical approach for Serbian and Slovenian subtitles (Etchegoyhen
et al., 2014). Nevertheless, a deeper analysis of translation errors or problems has not been performed in
any of these articles.

Evaluation of several scenarios with different models and data-sets involving Croatian are explored
in Toral et al. (2016) in the framework of the Abu-MaTran project4, but only for translation from and to
English. Three MT systems between Croatian and Serbian for the news domain are described in Popović
and Ljubešić (2014), one very basic rule-based system and two SMT systems trained on small and on
large parallel texts. Their performance was not examined in detail however, as they are only used as a
bridge for translation from and into English.

Analysis of problems for MT between closely related languages together with a comparison between
an RBMT and an SMT system is presented in Kubon and Vičič (2014) for the Czech-Slovak language pair.
Similar analysis for South Slavic languages has been performed in Popović and Arčan (2015), though
not for translation between these languages but from and into English and German.

To the best of our knowledge, no systematic investigation of actual difficulties for MT systems trans-
lating between South Slavic languages has been carried out yet.

2 Language properties – similarities and differences

2.1 Common properties
All three languages, Croatian, Serbian and Slovenian, belong to the South-Western Slavic branch. As
Slavic languages, they have a very rich inflectional morphology for all word classes. There are six distinct
cases affecting not only common nouns, but also proper nouns as well as pronouns, adjectives and some
numbers. Some nouns and adjectives have two distinct plural forms depending on the number (less than
five or not). There are also three genders for the nouns, pronouns, adjectives and some numbers leading
to differences between the cases and also between the verb participles for past tense and passive voice.
When it comes to verbs, person and many tenses are expressed by the suffix, and, similarly to Spanish
and Italian, the subject pronoun (e.g. I, we, it) is often omitted. In addition, negation of three quite
important verbs, biti (all languages) (to be), imati (Croatian, Serbian) / imeti (Slovenian) (to have) and
ht(j)eti (Croatian, Serbian) / hoteti (Slovenian) (to want), is formed by adding the negative particle to the
verb as a prefix. There are also two verb aspects, and so many verbs have perfective and imperfective
form(s) depending on the duration of the described action. The different forms are lexicalized, and are
often either different but very similar (e.g. skakati-skočiti), or are distinguished only by prefix (e.g.
gledati-pogledati). It should be noted that this phenomenon is less prominent in Slovenian.

As for syntax, all three languages have quite a free word order, and neither language uses articles,
either definite or indefinite. In addition to this, multiple negation is always used.

3http://www.sumat-project.eu
4http://www.abumatran.eu/
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It should be also noted that while the Latin alphabet is common for all three languages, Serbian also
uses the Cyrillic script. However, this poses no problem regarding MT because a Cyrillic Serbian text
can be easily transliterated into Latin, as there is one-to-one correspondence between the characters.

2.2 Differences between Croatian and Serbian
Croatian and Serbian exhibit a large overlap in vocabulary and a strong morpho-syntactic similarity so
that the speakers can understand each other without difficulties. Nevertheless, there is a number of small
but notable and also frequently differences occurring differences between them.

The largest differences between the two languages are in vocabulary: some words are completely dif-
ferent, some however differ only by one or two letters. In addition, Serbian language usually phonetically
transcribes foreign names and words although both transcription and transliteration are allowed, whereas
the Croatian standard only transliterates.

Apart from lexical differences, there are also structural differences mainly concerning verbs: modal
verb constructions, future tense, conditional, as well as constructions involving the verb trebati (to need,
should). When it means should, in Croatian it takes the tense according to the subject and it is transitive
as in English (trebam raditi equals I should work). In Serbian however, it is impersonal followed by the
conjunction da and the present of the main verb (treba da radim equals I should work). When it means
to need, the Croatian structure is the same (trebam posao equals I need a job, Petar treba knjige equals
Petar needs books), whereas in Serbian, the verb is conjugated according to the needed object, and the
subject which needs something is an indirect grammatical object in dative case (meni treba posao = I
need a job, Petru trebaju knjige = Petar needs books). The Serbian structure is also possible in Croatian,
although the other one is preferred. Impersonal constructions (treba uraditi = it should be done) are same
in both languages, namely the verb trebati in third person singular is followed by infinitive of the main
verb.

Regarding other modal verbs, the infinitive is prescribed in Croatian (moram raditi = I have to work),
whereas the construction with conjunction da (en. that/to) and present tense is preferred in Serbian
(moram da radim). The mentioned difference partly extends to the future tense which is formed in a
similar manner to English, i.e. using present of the verb ht(j)eti as the auxiliary verb. The infinitive is
formally required in both variants, however, when da+present is used instead, it can additionally express
the subject’s will or intention to perform the action. This form is frequent in Serbian (ja ću da radim
= I will work), whereas in Croatian only the infinitive form is used (ja ću raditi). Another difference
regarding future tense exists when the auxiliary and main verb are reversed: in Croatian, the final i of the
infinitive is removed (radit ću), whereas in Serbian the main and the auxiliary verb merge into a single
word (radiću).

2.3 Differences from Slovenian
Even though Slovenian is very closely related to Croatian and Serbian, and the languages share a large
degree of mutual intelligibility, a number of Croatian/Serbian speakers may have difficulties with Slove-
nian and the other way round.

The nature of the lexical differences is similar to the one between Croatian and Serbian, namely a
number of words is completely different and a number only differs by one or two letters. However, the
amount of different words is much larger. In addition to that, the set of overlapping words includes a
number of false friends (e.g. brati means to pluck in Croatian and Serbian but to read in Slovenian).

The amount of grammatical differences is also larger and includes local word order, verb mood and/or
tense formation, question structure, dual in Slovenian, usage of some cases, structural properties for
certain conjunctions as well as some other structural differences. Local word order differences include,
for example, the order of auxiliary and main verbs: Slovenian allows the auxiliary verb to be at the
beginning of the clause, whereas Croatian and Serbian do not (sem videl/videl sem = video sam = I’ve
seen). Also, the place of reflexive pronoun is different (se vidi = vidi se = it can be seen, se mi zdi = čini
mi se = it seems to me).

Constructions involving the Croatian/Serbian verb trebati differ significantly: in Slovenian, the mean-
ing should is expressed by the adverb treba (bi bilo treba = trebalo bi = it should). For the meaning to
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need, the verb potrebovati is used in the same form as the verb trebati in Croatian, i.e. it requires the
needed object in accusative case (potrebujem knjigo = trebam knjigu = I need a book).

The main difference regarding tense formation is the future tense. In Slovenian, it is formed using the
auxiliary verb biti and the past participle of the main verb – in Croatian and Serbian, another auxiliary
verb is used, ht(j)eti with the infinitive or da + present tense of the main verb (jaz bom videl = ja ću da
vidim = ja ću vid(j)eti = I will see). Another important difference is Slovenian conditional formed using
the adverb lahko and present tense of the main verb: in Croatian and Serbian it is formed by the modal
verb moći (can and infinitive or da + present tense (lahko vidim = mogao bih da vidim = mogao bih videti
= I could see).

Some conjunctions and/or require completely different structuring. For example, Slovenian tudi (en.
also, too) has a direct equivalent in Croatian and Serbian (takodje(r)), but it is often translated by i. For
negation form neither in Slovenian the construction tudi ne is used, whereas in Croatian and Serbian
a negation conjunction ni is used. Slovenian conjunction pa also has different usage and structural
requirements, and it can also be considered as a false friend.

Another important difference is the Slovenian dual grammatical number which refers to two entities
(apart from singular for one and plural for more than two). It requires additional sets for noun, adjective
and verb inflexion rules not existing either in Croatian or in Serbian.

3 Experimental set-up

3.1 Machine translation systems

The statistical phrase-based systems (Koehn, 2004) were trained using the Moses toolkit (Koehn et al.,
2007) with MERT tuning. The word alignments were built with GIZA++ (Och and Ney, 2003) and
a 5-gram language model was built with kenLM (Heafield, 2011). The parallel texts used to train the
SMT systems were mostly obtained from the OPUS5 web site (Tiedemann, 2009), which contains vari-
ous corpora of different sizes and domains. Although corpora in distinct domains, e.g., legal, medical,
financial, IT, exist for many language pairs including some of the South Slavic languages and English,
parallel data between South Slavic languages pairs consist mostly of the OpenSubtitles6 corpus and a
little portion of the technical domain. For Serbian-Croatian language pair, the SEtimes corpus from the
news domain (Tyers and Alperen, 2010) is also available. In total, about 15 million of sentence/segment
pairs containing about 100 million of running words was used for training (Table 1). For tuning, 2000
sentence pairs were used for each language pair.

The Croatian-Serbian RBMT system is a bidirectional rule-based system which is based on the open-
source Apertium platform (Forcada et al., 2011) and has been built collaboratively between several insti-
tutions as part of the aforementioned Abu-MaTran project. The process involved several workshops that
employed the work of experts and non-experts to gather the necessary data to build a bilingual dictionary
and to verify correct transfer rules automatically inferred using a tool developed by Sánchez-Cartagena
et al. (2015). Work on the translator has continued since, and at the time of writing this paper the bilin-
gual dictionary has quite a high coverage, containing a total of 88521 bilingual lemma entries, while
the number of defined transfer rules in the Serbian-Croatian direction is 99, and 86 in the Croatian-
Serbian direction. At the time of publication, the system was automatically evaluated on 351 Serbian
sentences gathered from newspaper texts that were manually translated into Croatian, and when com-
pared to Google Translate, the only other available system at the time, the RBMT system yielded higher
scores. For more details on the construction and evaluation of the system, refer to Klubička et al. (2016).

3.2 Test sets

The in-domain data set used for evaluating SMT performance consists of about 2000 sentences for each
language pair isolated from the training data set. Therefore, the test data consist mostly out of the Open-
Subtitles corpus, since this corpus builds the largest part (95%) of the data used to train the translation
models.

5http://opus.lingfil.uu.se/
6http://www.opensubtitles.org
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Corpus Name Slovene-Croatian Slovene-Serbian Croatian-Serbian

Gnome 4K 600K 300K
KDE 85K 49k 33.2k
OpenSubtitles 6.1M 13.3M 22.3M
SETimes / / 200K
Ubuntu 557 86K 51K

Training Data Sl-Hr Sl-Sr Hr-Sr

L1 words: 39M 90M 137M
L2 words: 40M 94M 139M

unique L1 w.: 468K 775K 1.22M
unique L2 w.: 579K 966K 1.24M

Par. sentences: 5.5M 12.6M 19.4M

Table 1: Statistics on parallel corpora used to build the translation models (explanation: Slovene-Croatian
→ L1=Slovene, L2=Croatian).

Such data sets are usual for evaluation and comparing SMT systems, however, they are not optimal
for comparing an SMT and an RBMT system since they originate from the same text type as the SMT

training corpus – the results would probably be biased. Therefore, additional test sets were created for
this comparison:

• 1000 Croatian source sentences were extracted from the hrenWaC and DGT part of the OPUS data
and translated by both systems into Serbian; about 300 segments from each of the translation outputs
were post-edited by native speakers.

• 3000 Serbian source sentences were extracted from a corpus containing language course material
and translated by both systems into Croatian; about 450 segments from each of the translation
outputs were post-edited by native speakers.

In addition, a subset of the Slovenian-to-Serbian SMT translation output containing about 350 sentences
was post-edited as well.
The test sets were post-edited for two reasons:

1. post-edited data are generally more convenient for analysis and identifying prominent errors and
issues;

2. the OpenSubtitles contain translations from English the as original source so that the obtained trans-
lations are often too different and do not fully reflect the language closeness.

Although it was not the motivation for post-editing, it should be noted that there were no available
reference translations for Croatian-Serbian additional test sets.

3.3 Evaluation
For all test sets and MT systems, BLEU scores (Papineni et al., 2002) and character n-gram F-scores
CHRF3 (Popović, 2015) are reported. BLEU is a well-known and widely used metric, and CHRF3 is
shown to correlate very well with human judgments for morphologically rich languages (Stanojević et
al., 2015). Besides, it seems convenient for closely related languages since a large portion of differences
is on the character level.

In order to better understand the overall evaluation scores and differences between the MT systems,
five error classes, produced by the automatic error analysis tool Hjerson (Popović, 2011), are reported.

Finally, in order to determine most prominent language related issues for the MT systems, a manual
inspection of the errors and their causes is carried out, predominantly on the post-edited data.

47



BLEU CHRF3
Serbian→Croatian 70.1 (64.9) 80.9 (78.6)

Croatian→Serbian 67.4 (59.9) 78.0 (73.8)

Serbian→Slovenian 29.2 (14.1) 47.4 (37.2)

Slovenian→Serbian 23.5 (12.3) 43.2 (34.3)

Croatian→Slovenian 38.6 (16.1) 55.0 (39.5)

Slovenian→Croatian 34.6 (13.5) 51.0 (37.4)

Table 2: Automatic translation scores BLEU and CHRF3 for the SMT system (together with the Google
Translate system in parentheses) on the in-domain test set.

inflection order omission addition lexical ΣERR

Serbian→Croatian 1.8 1.3 3.6 4.9 12.0 23.5
Croatian→Serbian 2.0 1.4 5.0 3.9 14.9 27.7

Serbian→Slovenian 3.7 4.5 10.1 12.1 27.6 58.0
Slovenian→Serbian 3.4 3.9 14.6 9.1 30.1 62.0

Croatian→Slovenian 3.1 4.2 8.8 11.4 24.2 51.7
Slovenian→Croatian 3.1 3.8 12.4 8.0 28.2 55.6

Table 3: Translation error classes of the SMT system identified by the Hjerson tool on the in-domain test
set.

4 Evaluation results on standard in-domain test sets

Table 2 presents the automatic scores for standard test sets for all SMT systems together with the scores
for translations7 by the publicly available Google translate8 system.

The obtained scores are rather high for translation between Serbian and Croatian and lower for trans-
lations involving Slovenian. Nevertheless, considering the language closeness, the scores are not particu-
larly high – the most probable reason are the “unnecessary” differences introduced by human translation
from a third language, namely English. It can be noted that translation into Serbian is worse than into
the other two languages and that translation into Slovenian is better than into the other two languages.

Table 3 gives details on the translation error classes. For the Serbian-Croatian language pair most
errors are lexical, whereas there is a rather low number of inflectional and ordering errors. This can
be expected considering that the main differences between the languages are on the lexical level, as
described in Section 2.2. As for translating from and into Slovenian, lexical errors are also predominant
and much more frequent. Furthermore, the amount of ordering and inflectional errors is not negligible.
These results are consistent with the language differences described in Section 2.3, however, they are not
giving precise information of which phenomena are causing which errors. For this purpose, a shallow
manual inspection of errors is carried out. It has been noted that the structural differences often result
in different error types. Nevertheless it was not easy to isolate specific phenomena due to the described
suboptimal test sets. Therefore the manual inspection of errors has been carried out thoroughly on the
post-edited data and the results are reported in the next section.

5 Evaluation results on post-edited test sets

The first evaluation step of post-edited test sets was performed to calculate automatic evaluation metrics
and class error rates. After that, a detailed manual inspection of language related phenomena leading to
particular errors is carried out. Finally, the most problematic phenomena were isolated from test sets and
evaluated separately.

7generated in September 2016
8https://translate.google.com/
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BLEU CHRF3
SMT RBMT SMT RBMT

Serbian→Croatian overall 91.0 89.6 95.4 95.1
trebati 52.4 54.8 77.5 78.5

Croatian→Serbian overall 86.2 82.9 93.4 92.2
trebati 58.8 62.5 83.4 84.4

SMT RBMT

Serbian→Croatian overall trebati overall trebati
ΣERR 4.3 29.6 4.8 27.6
inflection 1.2 13.7 1.3 13.0
order 0.3 0.2 0.4 0.0
omission 0.4 0.0 0.0 0.0
addition 0.9 5.5 0.9 5.5
lexical 1.4 10.2 2.2 8.9

Croatian→Serbian overall trebati overall trebati
ΣERR 6.3 21.5 7.8 20.3
inflection 2.1 10.4 2.7 10.0
order 0.3 0.9 0.2 1.2
omission 0.8 1.6 0.3 1.7
addition 0.4 3.0 0.2 2.9
lexical 2.7 5.7 4.5 4.5

Table 4: Automatic evaluation scores BLEU and CHRF3 and classified edit operations on
Serbian↔Croatian post-edited data.

5.1 Croatian-Serbian translation
The manual analysis revealed that for the Croatian-Serbian translation in both directions, constructions
involving the verb trebati pose the most problems, both for the SMT as well as the RBMT system. There-
fore, the segments containing this verb were isolated and analysed separately. The automatic evaluation
scores are presented in Table 4, both for the whole test set as well as for the segments containing trebati.

• the overall performance is better for the SMT system, mainly due to less lexical errors;

• the RBMT system handles better the constructions with trebati producing less inflectional and lexical
errors which are the predominant error types produced in these constructions

• both systems perform slightly better for translation into Croatian, but trebati constructions are better
translated into Serbian by both systems. A probable reason for this is the different nature of the used
test texts.

Especially problematic structures for both systems are long range dependencies where the main verb(s)
is/are separated from the verb trebati. Furthermore, mistranslations were detected because of impersonal
constructions and conditional forms, which are more problematic for the RBMT system. In addition, the
meaning to need is often incorrectly translated by both systems, especially from Serbian into Croatian.

All in all, there is no significant difference between the performance of the SMT and the RBMT ap-
proach. Nevertheless, the systems do not always fail in the same way of the same segment, which
indicates that a hybrid approach for this language pair could be beneficial.

5.2 Slovenian-to-Serbian translation
Manual evaluation has shown that the most frequent problems in Slovenian→Serbian post-edited trans-
lations are the future tense and the structures involving the Slovenian conjunction tudi (also/too). There-
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BLEU CHRF3
Slovenian→Serbian sl→sr sl→hr→hr sl→sr sl→hr→sr

standard test 23.5 25.4 43.2 44.4
overall 70.3 71.7 81.6 82.8

future+tudi 67.8 73.8 78.3 84.0

standard post-edited pe future+tudi
Slovenian→Serbian sl-sr sl-hr-sr sl-sr sl-hr-sr sl-sr sl-hr-sr

ΣERR 62.8 62.1 14.3 15.8 16.8 15.2
inflection 3.5 3.6 2.3 2.1 3.6 2.3

order 4.0 4.9 0.8 3.2 1.4 1.9
omission 14.4 12.3 4.3 2.6 3.8 2.6
addition 9.1 9.6 1.1 1.6 0.9 2.3

lexical 31.8 31.8 5.9 6.2 7.1 6.2

Table 5: Automatic evaluation scores BLEU and CHRF3 and classified edit operations on
Slovenian→Serbian post-edited data.

fore, sentences containing these two structures were identified and analysed separately.
For this translation direction, an additional preliminary experiment has been carried out, namely an

attempt to improve the translation quality by two-stage (bridge, pivot) translation via Croatian.
Table 5 shows the overall post-edited results as well as the results on segments containing future tense

and tudi both for direct as well as for two-stage SMT system. In addition, results for the overall standard
test set are also shown for both systems. The following can be observed from the presented results:

• as expected, the automatic scores on post-edited test are lower than for Croatian-Serbian translation,
but not so much lower as for the standard (suboptimal) test sets;

• scores on segments containing future tense and tudi are lower than overall scores;

• two-stage translation via Croatian generally helps, especially for the problematic segments – it
reduces the number of inflectional edits, omissions and lexical edits;

• main disadvantage of two-stage translation is the increased amount of reordering errors.

The results show that two-stage translation has a good potential and should be further investigated.
Further investigation should also include other translation directions from and into Slovenian, using
different types of data sets.

6 Summary and outlook

This work represents a first step in the systematic evaluation of MT results between Croatian, Serbian
and Slovenian and it has already shown several interesting results.

The analysis has revealed that the differences between the structural properties represent the most
prominent issue for all translation directions. For translation between Croatian and Serbian, the construc-
tions involving the verb trebati (should/need) definitely represent the larger obstacle for both translation
directions and for both MT approaches, statistical as well as rule-based. However, the systems do not fail
in the same way on the same segments, therefore hybrid systems should be investigated in future work.

For translations from Slovenian into Serbian, future tense represents one of the dominant issues fol-
lowed by conjunction/adverb tudi. Other translation directions involving Slovenian have to be explored
in future work. Two-stage translation via Croatian improves significantly the performance of the seg-
ments containing those problematic structures, the rest of the segments, however, are partially improved
and partially deteriorated by introducing reordering errors and should be further investigated.
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Future work should also include working on the identified issues, namely improving the systems by
targeting the verb trebati and the Slovenian future tense. Also, other MT methods, such as hierarchical
phrase-based and neural approach, should be investigated.

Acknowledgments

This work has emerged from research supported by TRAMOOC project (Translation for Massive Open
Online Courses) partially funded by the European Commission under H2020-ICT-2014/H2020-ICT-
2014-1 under grant agreement number 644333 and by the Science Foundation Ireland (SFI) under Grant
Number SFI/12/RC/2289 (Insight). The research leading to these results has also received funding from
the European Union Seventh Framework Programme FP7/2007-2013 under grant agreement PIAP-GA-
2012-324414 (Abu-MaTran) and the Swiss National Science Foundation grant IZ74Z0 160501 (ReLDI).

References
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Maja Popović and Nikola Ljubešić. 2014. Exploring cross-language statistical machine translation for closely
related South Slavic languages. In Proceedings of the EMNLP14 Workshop on Language Technology for Closely
Related Languages and Language Variants, pages 76–84, Doha, Qatar, October.
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Abstract

The identification of the language of text/speech input is the first step to be able to properly do
any language-dependent natural language processing. The task is called Automatic Language
Identification (ALI). Being a well-studied field since early 1960’s, various methods have been
applied to many standard languages. The ALI standard methods require datasets for training and
use character/word-based n-gram models. However, social media and new technologies have
contributed to the rise of informal and minority languages on the Web. The state-of-the-art auto-
matic language identifiers fail to properly identify many of them. Romanized Arabic (RA) and
Romanized Berber (RB) are cases of these informal languages which are under-resourced. The
goal of this paper is twofold: detect RA and RB, at a document level, as separate languages and
distinguish between them as they coexist in North Africa. We consider the task as a classification
problem and use supervised machine learning to solve it. For both languages, character-based
5-grams combined with additional lexicons score the best, F-score of 99.75% and 97.77% for
RB and RA respectively.

1 Introduction

Social media and new technology devices have facilitated the emergence of new languages on the Web
which are mainly written forms of colloquial languages. Most of these languages are under-resourced
and do not adhere to any standard grammar or orthography. Romanized Arabic (RA) or Arabic written
in Latin script (called often Arabizi) is an informal language. However, Romanized Berber (RB) is
one of the Berber or Tamazight1 standard forms. Both RA and RB are under-resourced and unknown
languages to the available language identification tools 2. To be able to automatically process and analyze
content in RA and RB, it is necessary to properly recognize the languages. Otherwise, there is a large
risk of getting misleading information. Moreover, it is crucial to be able to distinguish between them.
The reason is that RA and RB coexist in North Africa, which is a rich multilingual region, and they
share a considerable amount of vocabulary due to the close contact between them. Undoubtedly, this
type of tool will help to build NLP applications for both. There is some work done to automatically
transliterate RA into Arabic script (Al-Badrashiny et al., 2014). However, this is very limited because
RA perfectly adheres to the principle ‘write as you speak’, i.e. there is no standardized orthography.
Furthermore, the Arabic Chat Alphabet (ACA), designed for Romanized Arabic used in social media, is
just a suggested writing system and not necessarily a Natural Language Processing (NLP) tool for RA.
To overcome the various challenges faced when dealing with RA automatic processing, namely the use
of non-standardized orthography, spelling errors and the lack of linguistic resources, we believe that it is
better to consider RA as a stand-alone language and try to find better ways to deal with it instead of using
only transliteration. RB is already a stand-alone language. It is important to clarify that considering both

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.

1An Afro-Asiatic language widely spoken in North Africa. It is a minority language compared to Arabic.
2Among the freely available language identification tools, we tried Google Language Identifier, Open Xerox language,

langid.py (M. Lui and T. Baldwin, 2012) and Translated labs at http://labs.translated.net.

53



RA and RB as a stand-alone languages does not suggest, at any point, that the use of the Latin alphabet
is a sufficient criteria to define them as such. Our main motivation is to make their automatic processing
easier.

We start the paper with a general overview about the work done for informal Arabic NLP in Section
2. We then give some brief information about RA and RB in Section 3. Next, in Section 4, we describe
how we proceed to build the linguistic resources used to build our system. In Section 5, we explain the
used methods and describe the experiments and discuss the results. We conclude by general findings and
future directions.

2 Related Work

Arabic NLP is mainly Modern Standard Arabic (MSA) based. Recently, the automatic processing of
informal Arabic or dialectal Arabic in general has attracted more attention from the research community
and industry. However, the main issue is the absence of freely available linguistic resources3 which
allow for automatic processing. The deficiency of linguistic resources for dialectal Arabic written in
Arabic script (DA) is caused by two factors “a lack of orthographic standards for the dialects, and a lack
of overall Arabic content on the web, let alone DA content. These lead to a severe deficiency in the
availability of computational annotations for DA data" (Diab et al., 2010). This is applied only to the
written DA because there are available resources for spoken DA or at least it is easy to create them, for
instance by recording TV-shows. However, for dialectal Arabic written in Latin script or RA, the only
available resources are a few datasets that have been individually built for specific projects.

In general, only some work has been done for dialectal Arabic written in Arabic script, among others,
automatic identification of some Arabic dialects (Egyptian, Gulf and Levantine) using word and character
n-gram4 models (Cavnar and Trenkle, 1994) and automatic identification of Maghrebi Arabic (Algerian,
Moroccan and Tunisian) using morpho-syntactic information (Saâdane, 2015), Arabic dialect identifica-
tion using a parallel multidialectal corpus (Malmasi et al., 2015) and identification of the most popular
Arabic dialects using various automatic language identification methods (Adouane, 2016). However,
the work done so far for RA deals mainly with Egyptian Arabic. For instance, Eskander et al., (2014)
presented a system for automatic processing of Arabic social media text written in Arabizi by detecting
Arabic tokens, Egyptian words, and non-Arabic words, mainly English words. They used a supervised
machine learning approach to detect the label of each input token (sounds, punctuation marks, names,
foreign words or Arabic words) and transliterated it into Arabic script. Darwish (2014) also presented
an Arabizi identification system using word and sequence-level features to identify Arabizi that is mixed
with English and reported an identification accuracy of 98.5%. This does not generalize to other RA
content since it did not consider a broader range of data, i.e. there are many other Arabic dialects which
are considerably different from Egyptian Arabic, for instance Arabic dialects used in North Africa, Lev-
ant region, Gulf countries and Iraq. Moreover, the mixed language used with Romanized Arabic is not
always English5.

To our knowledge, there has not been much work done to process RA (NLP applications like language
identification, sentiment analysis/opinion mining, machine translation, Part-of-Speech tagging, etc.) as
a stand-alone language. Furthermore, none of the automatic language identification standard methods
have been applied to a wide range of Arabic dialects written in Latin script. As mentioned, the main
challenge is the absence of data. RB is also unknown to the current language identifiers. It is an under-
resourced language and a minority language compared to Arabic. There has been some work done for
Berber automatic language identification, for instance Chelali et al. (2015) created a Berber speaker
identification system using some speech signal information as features. Also Halimouche et al. (2014)
have used prosodic information to discriminate between affirmative and interrogative sentences in Berber.
Both sets of work were done at the speaker level. There are also some other applications which assume

3For dialectal Arabic written in Arabic script, there are some collections by individuals but unfortunately not digitalized or
do not respect corpus linguistics annotation conventions (Behnstdt and Woidich, 2013).

4A sequence of n characters from a given sequence of text where n is an integer.
5We collected a dataset written in Romanized Arabic (including various Arabic dialects) and found various mixed languages,

namely Berber, French, German, Italian, Spanish, Swedish and English.
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that the input is always in RB. Both RA and RB are unknown languages to the available automatic
language identifiers. The main motivation of this paper is to create an automatic language identifier
which is able to detect RA and RB and at the same time is able to distinguish between them.

3 Characteristics of RA and RB

By informal languages, we mean the kind of written or spoken languages that do not adhere strictly to
some standard spelling and grammar. The informality can be manifested in the form of ungrammati-
cal sentences, misspellings, newly created words and abbreviations or even using unusual scripts as in
the case of RA which has existed since the 20th century in North Africa. During the French colonial-
ism period, educated people mastered Latin alphabet which was also used, for pedagogical purpose, to
transcribe Arabic texts based on some phonological criteria (Souag, 2004).

RA is mainly dialectal Arabic which uses non-standard spellings, no fixed grammar and regional
vocabulary-sense usage, i.e. the meaning of words depends on the area it is spoken in. Moreover, the use
of the Latin script has increased the number of possible spellings per word at both vowels and consonants
levels. With consonants, the main issue is the non-existence of some Arabic sounds in the Latin alphabet.
Consequently, people use different characters to express those sounds. Unfortunately, the spellings are
inconsistent even inside a group of people of the same area. RB also uses different national standardized
orthography where each country has created its own standard spelling which is not necessarily used by
another.

There are many false friends between RA and RB. For instance, each word in the Romanized Berber
sentence ’AHml sAqwl mA$y dwl kAn’6 which means ’love is from heart and not just a word’ has a false
friend in MSA and all Arabic dialects, namely when written in Latin script. In MSA, the sentence means
literally ’I carry I will say going countries was’ which does not mean anything. Both RA and RB share
the use of mix-languages depending on the country or the region they are spoken in. In North Africa,
RA is mixed mostly with Berber, French or English7 and in the Middle East, it is mixed with English
and some other languages. The same is applicable for Berber where some dialects use lots of French and
Maghrebi Arabic words whereas others use only Maghrebi Arabic words for historical reasons.

4 Linguistic Resources

The main challenge in automatically processing any under-resourced natural language, using supervised
machine learning approaches, is the lack of human annotated data. To overcome this serious hindrance,
we created linguistic resources, namely corpora, for both RA and RB which are commonly used in social
media. They are also used for commenting on events/news published on news agencies websites. In its
standard form, RB is also used in media. We compiled a list of websites and platforms (micro-blogs,
forums, blogs and online newspapers from all over the Arab world to ensure that many Arabic dialects
are included) where RA and RB are used. Both manually and using a script, we collected content roughly
published between 2013 and 2016. We collected 20,000 documents (144,535 words)8 for RA and 7,000
documents for RB (31,274 words) from North Africa including various dialects9 as well. Data collection
and cleaning took us two months. We made sure to include various word spellings for both languages.

The included documents are short, between 2 and 236 words, basically product reviews, comments
and opinions on quite varied topics. In terms of data source distribution, for RA, the majority of the
content is comments collected from popular TV-show YouTube channels (9,800 documents, 49% of the
data), content of blogs and forums (3,600 documents, 18% of the data), news websites (2,800 documents,
14 % of the data), the rest comes from Twitter (2,400 documents, 12% of the data) and Facebook (1,000
documents, 5% of the data). For RB, most content comes from Berber websites promoting Berber

6We use Buckwalter Arabic transliteration scheme. For the complete chart see: http://www.qamus.org/
transliteration.htm.

7Based on the data used in this paper.
8By document, we mean a piece of text containing between 1 to 5 sentences; approximately 2 - 236 words. It is hard to

precisely say how many sentences there are in each document because users use punctuation inconsistently in micro-blogs.
9Berber has 13 distinguished varieties. Here, we include only the six most popular dialects, namely Kabyle, Tachelhit,

Tarifit, Tachawit, Tachenwit and Tamzabit.
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culture and language (4,900 documents, 70%), YouTube (910 documents, 13%), news websites (700
documents, 10%) and Facebook (490 documents, 7%). With the help of two Arabic native speakers
(Algerian and Lebanese) who are familiar with other Arabic dialects, we cleaned the collected data
and manually checked that all the documents are written in RA. The same for RB, the platforms from
which we collected data are 100% Berber and a Berber native speaker (Algerian) checked the data. For
Romanized Arabic, it is hard for an Arabic speaker not to recognize Arabic and the task is easy (is a text
written in Arabic or not) compared to classifying Arabic dialects (finding which Arabic variety a text is
written in). The same is applicable for RB. Therefore, we consider the inter-annotator agreement (IAA)
to be satisfactory. We are expending the RA and RB corpora and planning to use human annotators to
compute the IAA using Cohen’s kappa coefficient10.

RA and RB use lots of mix-languages11. Consequently, we allowed mix-language documents12 given
that they contain clearly Arabic/Berber words in Latin script and a native speaker can understand/produce
the same (sounds very natural for a native speaker). A preliminary study of the collected corpus showed
that Berber (only for data collected from North Africa), French and English are the most commonly used
languages with RA. Berber uses lots of French words and many Arabic words for some dialects like
Tamzabit and Tachawit. It is also important to mention that in the entire Romanized Arabic corpus, only
four (4) documents (0.02%) were actually written in Modern Standard Arabic (MSA) and the rest of
documents were written in different Arabic dialects13. This indicates clearly that RA is commonly used
to write dialectal Arabic. In terms of the dialectal distribution of the collected data, we noticed that most
of the content in RA comes from North Africa (Maghrebi and Egyptian Arabic) and less from Levantine
Arabic (mainly from Lebanon) and even less in Gulf and Kuwaiti/Iraqi Arabic.

Our corpora contain a mixture of languages (Arabic, Berber, English and French words all in Latin
script). Also some German, Italian, Spanish and Swedish content is found, but not that frequent compared
to English and French. This has motivated our choice to build a system which is able to distinguish
between all these co-existing languages. In addition, we thought it would be good to add Maltese and
Romanized Persian languages. The decision of adding Maltese language is based on the fact that Maltese
is the only Semitic language written in Latin script in its standard form. This means that it has lots of
common vocabulary with Arabic, namely Tunisian dialect14. We would like to add the Cypriot Arabic15

variety written in Latin (not the variety using the Greek script), but unfortunately we could not collect
enough data. We hardly collected 53 documents (287 words). We also added Romanized Persian (RP)
language since Persian is one of the few non-Semitic languages that uses the Arabic script in its standard
form. It has many false friends with Arabic, i.e. sharing the same word forms (spelling) but having
different meanings. This causes an automatic language identifier to get confused easily when dealing
with short texts. In addition, we would like to add Romanized Pashto16 to the collection, but as with
Cypriot Arabic we found it hard to collect enough data and find a native speaker to check it.

In addition to the data collected for RA and RB, we have collected, from social media platforms and
news websites, 1,000 documents (6,000 - 10,000 words) for each of the mentioned languages (English
(EN), French (FR), Maltese (ML), Romanized Persian (RP)) with the help of a native speaker of each
language. From the entire data set, we removed 500 documents (around 6,000 words) for each language
to be used in training and evaluating our system. We used the rest of the data to compile lexicons, for
each language, by extracting the unique vocabulary using a script. We also used external lexicon for RB.

10A standard metric used to evaluate the quality of a set of annotations in classification tasks.
11This term refers to the use of more than one language in a single interaction. The classic code-switching framework does

not always apply to Arabic for many complex reasons which are out of our scope. Researchers like D. Sankoff (1998) suggested
to classify the use of mixed languages in Arabic as a separate phenomenon and not code-switching. Others like Davies et al.
(2013) called it ’mixed Arabic’. We will use ’language mixing’ to refer to both code-switching and borrowing.

12Documents containing vocabulary of different languages. In our case, Arabic written in Latin script plus Berber, English,
French, German, Spanish and Swedish words.

13Including Algerian, Egyptian, Gulf, Kuwaiti/Iraqi, Levantine, Moroccan and Tunisian Arabic.
14Being familiar with north African Arabic dialects, we have noticed that Maltese is much closer to Tunisian Arabic.
15An Arabic dialect spoken in Cyprus by the Maronite community and which is too close to Levantine Arabic for historical

reasons and when written in Latin script, it is easily confused with Romanized Arabic.
16Pashto, an Easter Iranian language belonging to Indo-European family, is an official language of Pakistan. It has its own

script but when written in Latin script, it has many false friends with Romanized Arabic.
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We manually cleaned the word lists and kept only the clearly vocabulary in one of the corresponding
mentioned languages (this took us almost two months). We were left with clean lexicons of more than
46,000 unique words for RA, 35,100 for RB and 2,700 for RP. Still RA and RB lexicons contain various
spellings for the same word. In the absence of a reference orthography, we allowed all possible spellings
(as found in the data) and introduce some normalization rules, namely lower-casing of all characters
and the reduction of all the repeated adjacent characters to a maximum of two. For instance, all the
words ‘kbir’, ‘kbiiir’ and ‘kbiiiiiir’ refer to the same Arabic word ’big’ with different emphasis. We
should have reduced all the repeated characters to one occurrence as the doubling does not add much
meaning to the word. This would be aggressive for EN, FR and ML which allow two consecutive
repeated characters. For RB, we simply included all the possible spellings for each word as found in
our corpus. The normalized lexicons contain 42,000 unique words for RA and 35,100 for RB. We added
extra lexicons for both EN and FR (containing 14,000 and 8,400 unique words respectively). The same
for ML, we used an extra list including 4,516,286 words. The added extra lexicons include different
morphological inflections of the same word.

5 Methods and Experiments

Various methods have been applied to Automatic Language Identification since early 1960’s. In this
paper, we use two techniques of supervised machine learning, namely Cavnar’s method and Support
Vector Machines (SVM). As features, we experiment with both character-based and word based n-grams
of different lengths. We use the term frequency-inverse document frequency17 (TF-IFD) scheme to
weight the importance of the features. Both methods require training data which we pre-processed
to filter unimportant tokens such as punctuation, emoticons, etc. We also want to build an automatic
language identifier which learns linguistic information rather than learning topical and country specific
words. Therefore, we remove all Named Entities (NE) such as names of people, organizations and
locations using a large NE database which includes both RA and RB NEs we compiled for an ongoing
project. For experiments, we use a balanced dataset of 500 documents (between 4,506 - 117,000 words)
for each language (total of 3,000 documents or 640,207 words) divided into 1,800 documents or 420,300
words (300 documents for each language) for training and the remaining 1,200 documents or 219,907
words for evaluation. As mentioned before, a document is an entire user’s comment which may contain
between 2 to 5 sentences depending on the social media platform.

5.1 Cavnar’s Method

Cavnar’s Text Categorization Character-based n-gram method is one of the automatic language identifi-
cation (ALI) statistical standard methods. It is a collection of the most common character-based n-grams
used as a language profile (Cavnar and Trenkle, 1994). For each language, we create a character-based
n-gram profile (including different lengths of n-gram where the value of n ranges between 2-5), sort it
and consider only the most common 300 n-grams. This choice is for practical reasons which which are
explained by the fact that at some point, the frequency of some n-grams is more or less the same for all
languages. Therefore, they are no longer informative, i.e. do not really represent a given language or
cannot be used as distinctive features to distinguish each language from others. The distance between
language models is defined as the sum of all the out-of-place scores18. At the end, the language with the
minimum distance from the source text will be the identified language.

We implement the Cavnar’s classifier as described above. We experimented with different text and n-
gram lengths. We found that bigrams outperform the rest of the character-based n-grams. Also increasing
the text length increases the accuracy of the Cavnar’s classifier. Table 1 shows the performance of the
Cavnar’s classifier per language for maximum text length of 140 characters (the maximum length of a
Tweet) using character-based bigrams as features. The text length limitation to 140 characters means
that we consider only the 140 first characters of each document. The purpose of doing this is to build a

17A statistical measure used to filter stop-words and keep only important words for each document.
18Computing the distance between the ranking of the n-gram lists. The out-of-place score of an n-gram which keeps its

ranking is zero. Otherwise, the out-of-place score is the difference between the two rankings.
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language identifier which is able to identify RA and RB regardless of the platform length restriction.

Language Precision (%) Recall (%) F-score (%)
RA 88.73 94.50 91.53
RB 97.50 97.50 97.50
EN 94.29 99.00 96.56
FR 97.01 97.50 97.26
ML 97.50 97.50 97.50
RP 96.59 85.00 90.43

Table 1: Cavnar’s classification per language using character-based bigrams.

For these settings, the macro-average F-score of the classifier is 95.13%. Overall, the results show that
Cavnar’s method is better at detecting text written in RB (F-score of 97.50%) compared to those written
in RA. It performs slightly less for RA (F-score of 91.53%). An error analysis shows that the classifier
is confused between RA and RP (21 times) and between RB and RP (3 times). The confusion is mainly
caused by false friends and the use of the same vocabulary. Our purpose in using the Cavnar’s method is
to set its classification results as our baseline.

5.2 Support Vector Machines Classifier

We use the LinearSVC classifier (SVM) as implemented in Scikit-learn package (?)19 with the default
parameters. We experiment with both character and word n-grams as features. In both cases, we use
the binary classification setting20 as opposed to the 6-class classification. For instance, ’is a document
written in RB or something else (other language)?’ as opposed to ’is a document written in RB, EN, FR,
ML, RA or RP?’.

5.2.1 Experiment 1
We use text maximum length of 140 characters when using character-based n-gram and text maximum
length of 15 words21 for word-based n-grams. The classification results are shown in Table 2.

Accuracy (%)
Features Character-based Word-based
Unigram 95.33 95.91
Bigrams 98.41 73.41
Trigrams 98.49 41.91
4-grams 98.66 27.91
5-grams 98.75 21.41
1+2-grams 98.25 94.66
1+3-grams 98.57 94.58

Table 2: SVM performance using different features.

For character-based n-grams, increasing the length of the n-gram improves the classification, 5-grams
outperform all the rest of the n-gram lengths (5-grams have access to more information compared to
shorter n-grams), giving 98.75% accuracy. Also, combining character-based unigram with trigrams has
a positive effect on the classification; the accuracy has slightly increased to 98.57% compared to using
only unigram or trigrams, 95.33% and 98.49% respectively. However, increasing the length of the word-
based n-gram decreases the classifier’s performance. This is caused by the data sparsity where it is

19For more information see: http://scikit-learn.org/stable/.
20We also experimented with the 6-class classification setting, and we found that the results were close to the binary classifi-

cation.
21The choice of maximum 15 words is arbitrary for the sake of illustration. Still the focus is on short texts.
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unlikely for long matches to occur frequently by chance. The word-based unigram scores the best, with
an accuracy of 95.91%. Table 3 shows the performance of the SVM classifier per language using the
combination of character-based unigram and trigrams for text with a maximum length of 140 characters.

Language Precision (%) Recall (%) F-score (%)
RA 98.98 97.50 98.24
RB 99.01 100 99.50
EN 98.51 99.00 98.75
FR 99.00 99.00 99.00
ML 99.50 99.00 99.25
RP 97.51 98.00 97.76

Table 3: SVM classification using the combination of character-based unigram and trigrams.

The macro-average F-score of the SVM is 98.75%. Overall, the classifier identifies accurately RB
(F-score of 99.50%) as well as RA (F-score of 98.24%). The SVM method performs better than the
Cavnar’s classifier (the baseline). The top-3 classification errors of the SVM are confusions between RA
and RP (3 times), RA and FR (2 times) and between RP and RA (2 times). All the confused documents
are very short (less than 10 words in our case).

5.2.2 Experiment 2
In another experiment, we use the same previous experimental setup but this time we combine the word-
based unigram with the entries of the compiled lexicons as features. The SVM classifier accuracy has
slightly improved to 97.50% compared to using only the word unigram 95.91%. This indicates that com-
bining the word unigram with the lexicon entries (language-specific word) has a positive effect on the
classification. Still there is confusion between RP and RA caused mainly by false friends. Furthermore,
we combine character-based 5-grams with the entries of the compiled lexicons using the same experi-
mental setup. The SVM accuracy has increased to 99.02%. Table 4 summarizes the SVM performance
using the combination of character-based 5-grams and the entries of the compiled lexicons as features.

Language Precision (%) Recall (%) F-score (%)
RA 97.04 98.50 97.77
RB 100 99.50 99.75
EN 99.00 99.50 99.25
FR 99.01 100 99.50
ML 99.50 99.50 99.50
RP 99.49 97.00 98.23

Table 4: SVM classification using the combination of character-based 5-grams and lexicons.

The classifier’s macro-average F-score is 99.00%. Using the combination of the character-based 5-
grams and the entries of the compiled lexicons as features has improved the overall accuracy of the SVM
99.02% compared to 98.75% using only character-based 5-grams. It has also positive effect on each
language except for RA where the F-score has slightly decreased to 97.77% compared to 98.24%.

5.2.3 Experiment 3
To be able to compare the word-based n-grams and character-based n-grams, we rerun the same ex-
periment using text full length. Still, the character-based 5-grams outperform the word-based n-grams,
F-score of 99.77% and 97.89% respectively.

There are a few misclassifications between different languages as shown in Table 5. The few errors
are caused by false friends between close/similar languages such as RA and RP and also in case of mix-
languages, for instance between RA and FR where the former uses lots of words from the latter. An error
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analysis of the sample shows that most errors occurred in very short documents (less than 10 words in
our case).

Table 5: The confusion matrix of the system for the same settings as in Table 4.

6 Conclusion

We have described the linguistic resources built and used to train and evaluate our Romanized Arabic
(RA) and Romanized Berber (RB) Automatic Language Identification (ALI) tool. We used supervised
machine learning techniques, using various features. The focus is on short documents (social media do-
main) maximum text length of 140 characters or 15 words approximately, and the language identification
is done at the document level. We assume that if the system works well for short documents, it should
work better for longer ones since it will have access to more information. We found that using character
based 5-grams perform reasonably well in detecting both RA and RB and slightly better than word-based
unigram. Combining both character-based 5-grams and word-based unigram with the compiled lexicons
has improved the SVM overall performance. In all cases, the SVM classifier outperformed our baseline
(Cavnar’s classifier). Our main purpose in this paper is to apply some ALI standard methods to Roman-
ized Berber (RB) and Romanized Arabic (RA) rather than proposing new methods. Our motivation is
that the existing ALI methods have not been not applied to neither RA or RB.

In this paper, we used a small sample of the data for training and testing. The limited text length
allowed in social medial platforms, using very short documents (2-250 tokens), can be seen as distin-
guishing between the included languages at a sentence level especially that punctuation is mostly ignored.
As a future work, we are planning to test our system on large dataset. We want to identify each RA and
RB varieties. We want also to transliterate the compiled RA lexicon into the Arabic script, both dialectal
Arabic and Modern Standard Arabic (MSA) equivalents. We believe that this will help in adapting the
existing Arabic Natural Language Processing tools. The collected corpora are valuable for the Auto-
mated Identification of RA and RB, but also for linguistic and sociolinguistic research, as well as further
applications in both language groups. Therefore, the datasets are freely available for research from the
first author.
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Abstract

One of the purposes of the VarDial workshop series is to encourage research into NLP meth-
ods that treat human languages as a continuum, by designing models that exploit the similarities
between languages and variants. In my work, I am using a continuous vector representation of
languages that allows modeling and exploring the language continuum in a very direct way. The
basic tool for this is a character-based recurrent neural network language model conditioned on
language vectors whose values are learned during training. By feeding the model Bible transla-
tions in a thousand languages, not only does the learned vector space capture language similarity,
but by interpolating between the learned vectors it is possible to generate text in unattested inter-
mediate forms between the training languages.
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Abstract

Automatic Language Identification (ALI) is the detection of the natural language of an input text
by a machine. It is the first necessary step to do any language-dependent natural language pro-
cessing task. Various methods have been successfully applied to a wide range of languages, and
the state-of-the-art automatic language identifiers are mainly based on character n-gram models
trained on huge corpora. However, there are many languages which are not yet automatically pro-
cessed, for instance minority and informal languages. Many of these languages are only spoken
and do not exist in a written format. Social media platforms and new technologies have facili-
tated the emergence of written format for these spoken languages based on pronunciation. The
latter are not well represented on the Web, commonly referred to as under-resourced languages,
and the current available ALI tools fail to properly recognize them. In this paper, we revisit the
problem of ALI with the focus on Arabicized Berber and dialectal Arabic short texts. We intro-
duce new resources and evaluate the existing methods. The results show that machine learning
models combined with lexicons are well suited for detecting Arabicized Berber and different
Arabic varieties and distinguishing between them, giving a macro-average F-score of 92.94%.

1 Introduction

Automatic Language Identification (ALI) is a well-studied field in computational linguistics, since early
1960’s, where various methods achieved successful results for many languages. ALI is commonly framed
as a categorization.1 problem. However, the rapid growth and wide dissemination of social media plat-
forms and new technologies have contributed to the emergence of written forms of some varieties which
are either minority or colloquial languages. These languages were not written before social media and
mobile phone messaging services, and they are typically under-resourced. The state-of-the-art available
ALI tools fail to recognize them and represent them by a unique category; standard language. For in-
stance, whatever is written in Arabic script, and is clearly not Persian, Pashto or Urdu, is considered as
Arabic, Modern Standard Arabic (MSA) precisely, even though there are many Arabic varieties which
are considerably different from each other.

There are also other less known languages written in Arabic script but which are completely different
from all Arabic varieties. In North Africa, for instance, Berber or Tamazight2, which is widely used, is
also written in Arabic script mainly in Algeria, Libya and Morocco. Arabicized Berber (BER) or Berber
written in Arabic script is an under-resourced language and unknown to all available ALI tools which
misclassify it as Arabic (MSA).3 Arabicized Berber does not use special characters and it coexists with
Maghrebi Arabic where the dialectal contact has made it hard for non-Maghrebi people to distinguish

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.

1Assigning a predefined category to a given text based on the presence or absence of some features.
2An Afro-Asiatic language widely spoken in North Africa and different from Arabic. It has 13 varieties and each has formal

and informal forms. It has its unique script called Tifinagh but for convenience Latin and Arabic scripts are also used. Using
Arabic script to transliterate Berber has existed since the beginning of the Islamic Era (L. Souag, 2004).

3Among the freely available language identification tools, we tried Google Translator, Open Xerox language and Translated
labs at http://labs.translated.net.
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it from local Arabic dialects.4 For instance each word in the Arabicized Berber sentence ’AHml sAqwl
mA$y dwl kAn’ 5 which means ’love is from heart and not just a word’ has a false friend in MSA and
all Arabic dialects. In MSA, the sentence means literally ’I carry I will say going countries was’ which
does not mean anything.

In this study, we deal with the automatic detection of Arabicized Berber and distinguishing it from
the most popular Arabic varieties. We consider only the seven most popular Arabic dialects, based on
the geographical classification, plus MSA. There are many local dialects due to the linguistic richness
of the Arab world, but it is hard to deal with all of them for two reasons: it is hard to get enough data,
and it is hard to find reliable linguistic features as these local dialects are very hard to describe and full
of unpredictability and hybridization (Hassan R.S., 1992). We start the paper by a brief overview about
the related work done for Arabicized Berber and dialectal Arabic ALI in Section 2. We then describe
the process of building the linguistic resources (dataset and lexicons) used in this paper and motivate the
adopted classification in Section 3. We next describe the experiments and analyze the results in Sections
4 and 5, and finally conclude with the findings and future plans.

2 Related Work

Current available automatic language identifiers rely on character n-gram models and statistics using
large training corpora to identify the language of an input text (Zampieri and Gebre, 2012). They are
mainly trained on standard languages and not on the varieties of each language, for instance available
language identification tools can easily distinguish Arabic from Persian, Pashto and Urdu based on char-
acter sets and topology. However, they fail to properly distinguish between languages which use the same
character set. Goutte et al., (2016) and Malmasi et al., (2016) give a comprehensive bibliography of the
recently published work dealing with discriminating between similar languages and language varieties
for different languages. There is some work done to identify spoken Berber. For instance Halimouche et
al., (2014) discriminated between affirmative and interrogative Berber sentences using prosodic informa-
tion, and Chelali et al., (2015) used speech signal information to automatically identify Berber speaker.
We are not aware of any work which deals with automatic identification of written Arabicized Berber.

Recently, there is an increasing interest in processing Arabic informal varieties (Arabic dialects) using
various methods. The main challenge is the lack of freely available data (Benajiba and Diab, 2010).
Most of the work focuses on distinguishing between Modern Standard Arabic (MSA) and dialectal Ara-
bic (DA) where the latter is regarded as one class which consists mainly of Egyptian Arabic (Elfardy
and Diab 2013). Further, Zaidan and Callison-Burch (2014) distinguished between four Arabic varieties
(MSA, Egyptian, Gulf and Levantine dialects) using n-gram models. The system is trained on a large
dataset and achieved an accuracy of 85.7%. However, the performance of the system can not be general-
ized to other domains and topics, especially that the data comes from the same domain (users’ comments
on selected newspapers websites). Sadat et al., (2014) distinguished between eighteen6 Arabic vari-
eties using probabilistic models (character n-gram Markov language model and Naive Bayes classifiers)
across social media datasets. The system was tested on 1,800 sentences (100 sentences for each Arabic
variety) and the authors reported an overall accuracy of 98%. The small size of the used test dataset
makes it hard to generalize the performance of the system to all dialectal Arabic content. Also Saâdane
(2015) in her PhD classified Maghrebi Arabic (Algerian, Moroccan and Tunisian dialects) using morpho-
syntactic information. Furthermore, Malmasi et al., (2015) distinguished between six Arabic varieties,
namely MSA, Egyptian, Tunisian, Syrian, Jordanian and Palestinian, on sentence-level, using a Parallel
Multidialectal Corpus (Bouamor et al., 2014).

It is hard to compare the performance of the proposed systems, among others, namely that all of them
were trained and tested on different datasets (different domains, topics and sizes). To the best of our

4In all polls about the hardest Arabic dialect to learn, Arabic speakers mention Maghrebi Arabic which has Berber, French
and words of unknown origins unlike other Arabic dialects.

5We use Buckwalter Arabic transliteration scheme. For the complete chart see: http://www.qamus.org/
transliteration.htm.

6Egypt; Iraq; Gulf including Bahrein, Emirates, Kuwait, Qatar, Oman and Saudi Arabia; Maghrebi including Algeria,
Tunisia, Morocco, Libya, Mauritania; Levantine including Jordan, Lebanon, Palestine, Syria; and Sudan.
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knowledge, there is no single work done to evaluate the systems on one large multi-domain dataset.
Hence, it is wrong to consider the automatic identification of Arabic varieties as a solved task, especially
that there is no available tool which can be used to deal with further NLP tasks for dialectal Arabic.

In this paper, we propose an automatic language identifier which distinguishes between Arabicized
Berber and the eight most popular high level Arabic variants (Algerian, Egyptian, Gulf, Levantine, Iraqi
(Mesopotamian), Moroccan, Tunisian dialects and MSA). We also present the dataset and the lexicons
which were newly built as part of a Masters thesis project in Language Technology (Adouane, 2016).
Both the dataset and the lexicons are freely available for research from the first author.

3 Building Linguistic Resources

Arabicized Berber (BER) has been officially used only in online newspapers and official institutions
in North African countries like Algeria and Libya. It has been also used recently on social media by
people who do not master the Berber script or Tifinagh and by those who do not master French.7 An
important question to answer when dealing with Arabic varieties is whether these variants are dialects or
languages. There is no linguistically well-motivated answer since these varieties are different with their
own regional/local varieties and are spoken in different countries. However, modern Arabic dialectology
considers each Arabic variety as a stand-alone language (Hassan R.S., 1992). In this paper, we use the
terms variety, dialect and language interchangeably.

It is necessary to decide how to cluster Arabic variants in order to be able to properly analyze and pro-
cess them automatically. Nonetheless, it is not easy to distinguish each variant from another, particularly
for short texts, because of the considerable lexical overlap and similarities between them. Moreover,
it is very hard and expensive to collect data for each single variant given that some are rarely used on
the Web. Based on the fact that people of the same region tend to use the same vocabulary and have
the same pronunciation, Habash (2010) suggested to group Arabic dialects in six main groups, namely
Egyptian (which includes Egyptian, Libyan and Sudanese), Levantine (which includes Lebanese, Jor-
danian, Palestinian and Syrian), Gulf (including Gulf Cooperation Council Countries), Iraqi, Maghrebi
(which includes Algerian, Moroccan and Tunisian) and the rest is grouped in one class called ’Other’.

We use slightly different division where we count each Maghrebi variant as a stand-alone language.
Moreover, we differently cluster Gulf/Mesopotamian8 dialect group. We base our dialect clustering
on common linguistic features, for instance the use of ’ch’ instead of ’k’ (Palva, 2006). So for the
Mesopotamian Arabic, we include many local variants of Iraqi, Kuwaiti, Qatari and Emirati spoken Ara-
bic. We group the rest of regions in the Gulf Arabic.9 Our motivation is that these two broad regional
dialectal groups (Maghrebi and Gulf/Mesopotamian) include a wide variety of languages which are eas-
ily distinguished by humans. Therefore, machines should be also able to discriminate between these
varieties. In this study, we consider eight high level dialectal groups which are: Algerian (ALG), Egyp-
tian (EGY), Gulf (GUL), Levantine (LEV), Mesopotamian (KUI), Moroccan (MOR), Tunisian (TUN)
dialects plus MSA. In all cases, we focus on the language of the indigenous populations and not on the
Pidgin Arabic.10

The use of Arabic dialects (in written format) on the Web is a quite recent phenomenon which started
with the emergence of social media platforms and new technology devices. These Arabic variants, which
use non-standardized orthography based on pronunciation or what is called ’write as you speak’ principle,
are still not well represented on the Web. This makes it hard to automatically process and analyze
them (Diab et al., 2010). To overcome the deficiency of linguistic resources,11 we built from scratch

7It is wrong to assume that all people from North Africa master French and use it in social media instead of Berber.
8There is no clear-cut dialectal borderlines between the Arabic varieties spoken in the Arabian Peninsula, namely between

Gulf Arabic and Mesopotamian Arabic. Qafisheh (1977) gave a thorough morpho-syntactic analysis of the Gulf Arabic includ-
ing Bahraini, Emirati, Qatari, Kuwaiti and regions of Saudi Arabia and excluding the Arabic dialects spoken in the rest of the
Gulf countries. However, we do not have any morpho-syntactic parser, if it exists at all, to take all the grammars into account.

9Recent works consider all spoken Arabic in Gulf Cooperation Council Countries as Gulf Arabic.
10Simplified language varieties created by foreigners living in Arabic-speaking countries to make communication easier.
11There are collections by individuals but unfortunately not digitalized or which do not respect corpus linguistics annotation

conventions.
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linguistic resources consisting of dataset and lexicon for each Arabic variety considered in this study and
Arabicized Berber.

3.1 Dataset

For Arabicized Berber, two Berber native speakers collected 503 documents (5,801 words) from north
African countries mainly from forums, blogs and Facebook. For more data, we have selected varied texts
from Algerian newspapers and segmented them. Originally the news texts are short, around 1,500 words
each, so we considered each paragraph as a document (maximum 178 words). The selected newspapers
use various Berber standard varieties written in Arabic script.

For each Arabic variety, two native speakers have manually collected content from various social
media platforms (forums, blogs and micro-blogs) where each user’s comment is counted as a single
document/text. We gave instructions, for instance ’Collect only what is clearly written in your dialect,
i.e. texts containing at least one clear dialectal word and you can easily understand it and reproduce the
same in your daily interactions’. We have also compiled a list of dialectal words for each Arabic variety
based on our knowledge. We then used a script with the compiled words as keywords to collect more
data. Likewise, we collected 1,000 documents (around 54,150 words) for each dialect, roughly published
between 2012-2016 in various platforms (micro-blogs, forums, blogs and online newspapers) from all
over the Arab world. The same native speakers have been asked to clean the data following the same set
of instructions.

We ended up with an unbalanced corpus of between 2,430 documents (64,027 words) and 6,000 doc-
uments or (170,000 words) for each dialect. In total, the collected dataset contains 579,285 words. In
terms of data source distribution, the majority of the content comes from blogs and forums where users
are trying to promote their dialects; roughly 50%, around 30% of the data comes from popular YouTube
channels and the rest is collected from micro-blogs. The selection of the data sources is based on the
quality of the dialectal content, i.e. we know that the content of the selected forums and blogs is dialectal
which is used to teach or promote dialects between users. Ideally we would have looked at just some
data resources and harvest content as much as possible either manually or using a script. But given the
fact that data depends on the platform it is used in12 and our goal that is to build a general system which
will be able to handle various domain/topic independent data, we have used various data domains deal-
ing with quite varied topics like cartoons, cooking, health/body care, movies, music, politics and social
issues. We labeled each document with the corresponding Arabic variety.

We introduced necessary pre-processing rules such as tokenization, normalization and removal of non-
discriminative words including punctuation, emoticons, any word occurring in the MSA data more than
100 times (prepositions, verbs, common nouns, proper nouns, adverbs, etc.) and Named Entities (NE).
Removing non-discriminative words is motivated by the fact that these words are either prevalent in all
Arabic varieties or they do not carry any important linguistic information like emoticons and punctua-
tion. The choice of removing NE is motivated by the fact that NE are either dialect (region) specific or
prevalent; i.e. they exist in many regions, so they are weak discriminants. Moreover, we want the system
to be robust and effective by learning the language variety and not heuristics about a given region. The
pre-processing step was done manually because of the absence of the appropriate tools.

To assess the reliability of the annotated data, we have conducted a human evaluation. As a sample,
we have picked up randomly 100 documents for each language from the collection, removed the labels,
shuffled and put all in one file (900 unlabeled documents in total). We asked two native speakers for
each language, not the same ones who collected the original data, to pick out what s/he thinks is written
in his/her dialect, i.e. can understand easily and can produce the same in his/her daily life. All the
annotators are educated, either have already finished their university or are still students. This means
that all of them are expected to properly distinguish between MSA and dialectal Arabic. To interpret the
results, we computed the inter-annotator agreement for each language to see how often the annotators
agree. Since we have two annotators per language, we computed the Cohen’s kappa coefficient which is

12For instance the use of special markers in some platforms and the allowed length of the texts where shorter text means
more abbreviations.
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a standard metric used to evaluate the quality of a set of annotations in classification tasks by assessing
the annotators’ agreement (Carletta, 1996). Overall, the data quality is ’satisfactory’ for Algerian, Gulf
and Tunisian dialects by interpreting the kappa metric which is between 0.6–0.8. The quality of the rest
of the dialectal data is ’really good’, kappa 0.8–1.

3.2 Lexicons

We removed 18,000 documents (2,000 documents, between 60,000 and 170,000 words, for each Arabic
variety and Arabicized Berber) to be used for training and evaluation. We extracted from the rest of
the data all the unique vocabulary, using a script, to build lexicons. We have also added dialectal words
collected from exchange forums where users were trying to promote their culture and dialects. The
reason we have done so is the desperate lack of digitalized dialectal lexicons13 and the few available
ones are outdated word lists in paper format. For MSA, we have used the content of two freely available
books. We would have also used an MSA dictionary, but this would need more effort as the freely
available dictionaries are not designed to be easily used for any computational purpose.

In order to have even more refined lexicons, we used Term Frequency-Inverse document Frequency
(TF-IDF)14 to measure the importance of each word to each dialect. Table 1 shows the number of unique
words (types) of the compiled lexicons for each language after applying TF-IDF and removing non-
informative words. The specific vocabulary of each Arabicized Berber and Arabic variety is stored in a
separate .txt file, one word per line.

Table 1: The size (total number of unique vocabulary) of the compiled lexicons.

4 Methods and Experiments

We use supervised machine learning, namely Cavnar’s Text classification, support vector machines
(SVM) and Prediction by Partial Matching (PPM) methods. For features, we use both character-based n-
gram15 and word-based n-gram16 models, then we combine them. We also use the words of the compiled
lexicons as features. We focus more on social media short texts, so we limit the text maximum length to
140 characters (which is the maximum length of a tweet) assuming that if a method works for short texts,
it should work better for longer texts as there will be access to more information. We use a balanced
dataset containing 18,000 documents (2,000 documents, between 60,000 and 170,000 words, for each
language) where we used 80% (total of 14,400 documents or 1,600 for each language) for training and
20%, total of 3,600 documents or 131,412 words (400 documents for each language), for evaluation.

4.1 Cavnar’s Text Classification Method

Cavnar’s Text Classification Method is one of the automatic language identification (ALI) statistical stan-
dard methods. It is a ranked collection of the most common character-based n-grams for each language
used as its profile (Cavnar and Trenkle, 1994). The distance between language profiles is defined as the
sum of all distances between the ranking of the n-gram profiles, and the language with the minimum
distance from the source text will be returned. We experimented with different character-based n-grams
and combinations and found that 3-grams performed the best with a macro-average F-score of 52.41%.
Table 2 shows the performance of the Cavnar’s method per language.

13"For many regions, no substantial dictionaries are available. We have reasonable dictionaries for Levantine, Algerian and
Iraqi, but these are sometimes outdated and need to be replaced or updated" (Behnstdt and Woidich, 2013).

14A weighting scheme used to measure the importance of each word in a document and a other documents based on its
frequency.

15A sequence of n characters from a given sequence of text where n is an integer.
16A sequence of n words from a given sequence of text where n is an integer.
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Language Precision (%) Recall (%) F-score (%)
ALG 41.34 37.00 39.05
BER 98.43 94.00 96.16
EGY 56.20 38.50 45.70
GUL 32.69 50.50 39.69
KUI 47.05 53.75 50.18
LEV 46.23 36.75 40.95
MOR 57.14 48.00 52.17
MSA 63.28 81.00 71.05
TUN 39.71 34.25 36.78

Table 2: Cavnar’s method performance using character 3-grams.

The results show that except for Arabicized Berber (BER) which is properly identified, Cavnar’s clas-
sifier finds it hard to distinguish Arabic varieties from each other even though it performs better in
distinguishing MSA from dialectal Arabic. Our main purpose in using Cavnar’s method is to set its
performance as our baseline.

4.2 Support Vector Machines (SVM)

We use the LinearSVC classifier (method) as implemented in Scikit-learn package (Pedregosa et al.,
2011)17 with the default parameters.18 Furthermore, we use the binary classification setting as opposed
to the 9-class classification, for instance ’is a document written in BER or something else (Arabic va-
rieties)’ as opposed to ’is a document written in BER, MSA, ALG, EGY, GUL, LEV, KUI, MOR or
TUN.’ Both classification settings return only one label or category as an output because each classifier
is implemented as a group of classifiers, and the label with the highest prediction score is returned. We
experimented with various features (character and word based n-grams of different lengths and combi-
nations) and found that combining character-based 5-grams and 6-grams with the words of the compiled
lexicons performed the best with a macro-average F-score of 92.94%. Table 3 shows the performance of
the SVM method per language.

Language Precision (%) Recall (%) F-score (%)
ALG 91.79 92.25 92.02
BER 100 100 100
EGY 95.63 82.00 88.29
GUL 86.92 89.75 88.31
KUI 91.20 93.25 92.21
LEV 91.71 88.50 90.08
MOR 93.84 95.25 94.54
MSA 93.46 100 96.62
TUN 92.98 96.00 94.46

Table 3: SVM performance combining character-based 5-grams and 6-grams with lexicons.

SVM classifier performs very well for BER and even better than the Cavnar’s classifier. It also per-
forms very well in distinguishing Arabic varieties. It identifiers MOR and TUN better than ALG. Like-
wise, it recognizes KUI better than GUL. MSA is also well distinguished from other varieties.

17For more information see: http://scikit-learn.org/stable/.
18The default parameters for each classifier are detailed in http://scikit-learn.org/stable/.
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4.3 Prediction by Partial Matching (PPM)

A lossless compression algorithm which has been successfully applied to language identification (Bo-
bicev, 2015) as well as other tasks. PPM encodes all the symbols (characters or words) of a training
data within their context where a context of each symbol is a sequence of preceding symbols of different
lengths.19 PPM is a simple method which does not require feature selection as it considers the entire
text as a single string and computes the probability distribution for each symbol using a blending mech-
anism. We implemented a simple version of the PPM method as explained in (Moffat, 1990; Bobicev,
2015) where we used the context of 5 characters for each symbol and the benchmark escape method
called C. Hence, we implemented the PPMC5 version of PPM. Here, we use the entire text length. The
method reaches a macro-average F-score of 87.55%.

At the end, we validated our three models using the 10-fold cross-validation technique. Each time,
we preserve one fold for validation and train on the rest 9 folds. This gives us an idea on how a model
is dataset independent. For each method, we used the same settings above and found that the accuracy
values are close to each other for all cross-validation folds, and close to the overall accuracy. This means
that the models are not an overfit.

It is unfair to compare the results of the three methods as we limited the maximum text length to 140
characters for both SVM and Cavnar’s methods and used full-length text for the PPM method. Now, we
use the full-length text for all methods using the same experimental setups. The results are shown in
Table 4 where ’DV’ is short for ’dialectal vocabulary’ and it refers to the words of the compiled lexicons.

Method Features Maximum Text Length Macro-average F-score (%)
Cavnar Character 3-grams 140 characters 52.41
Cavnar Character 3-grams Full length 81.57
SVM Character 5-6-grams + DV 140 characters 92.94
SVM Character 5-6-grams + DV Full length 93.40
PPMC5 No features Full length 87.55

Table 4: Performance of the three methods with full-length text.

The results show that increasing the length of the text improves the performance of both Cavnar’s and
SVM methods. Cavnar’s method performs poorly for short texts (maximum length of 140 characters).
It is true that SVM outperforms the Cavnar’s method because it has access to extra data (lexicons).
However, even with the same experimental setup (using character-based 3-grams as features with text
maximum length of 140 characters), SVM still outperforms the Cavnar’s method which is taken as our
baseline.

5 Error Analysis

Analyzing the confusion matrix of each method shows that the confusions are of the same type with
different frequencies. For illustration, we show in Table 5 the confusion matrix of the SVM method
using the combination of character-based 5-6-grams and the dialectal vocabulary as features and text
maximum length of 140 characters.

Most confusions are between very close Arabic varieties, namely Maghrebi dialects (ALG, MOR,
TUN) and between GUL and KUI dialects. This is expected and accepted because, as mentioned above,
there are no dialectal clear-cut borderlines between neighboring dialects. In more details, there are more
MOR and TUN documents confused with ALG ones compared to the ALG documents confused with
MOR or TUN documents. The same is applicable for KUI documents confused with GUL ones. This
may be related to the fact that in practice it is impossible to draw the dialectal borderlines, especially
for very short texts as in our case. Moreover, there are confusions between Maghrebi, Egyptian and
Levantine varieties. This is explained by the fact that some Levantine dialects (southern Syria and some

19Previous works reported that taking the context of 5 characters is the best maximum context length. This makes a perfect
sense because long matches are less frequent to occur by chance.
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Table 5: SVM confusion matrix using character-based 5-6-grams and dialectal vocabulary.

parts of Lebanon, including Beirut) share the use of split-morpheme negations with Egyptian and north
African dialects (Palva, 2006). It is also important to notice that while BER is rarely confused, MSA is
often confused with the rest of Arabic varieties.

6 Conclusion and Future Directions

In this study, we dealt with both tasks of identifying Arabicized Berber and different Arabic varieties
as well as discriminating between all of them. For Arabic, we considered eight high level varieties
(Algerian (ALG), Egyptian (EGY), Gulf (GUL), Levantine (LEV), Mesopotamian (KUI), Moroccan
(MOR), Tunisian (TUN) dialects plus Modern Standard Arabic (MSA)) which are the most popular
Arabic variants. The task is challenging at many levels. First, Arabicized Berber and Arabic varieties,
except MSA, are under-resourced and undocumented. Second, dialectal Arabic is mostly used in social
media and mobile phone messages. This makes the task harder since this genre allows only short texts.

To overcome these challenges, we created the necessary linguistic resources (dataset and lexicons). We
framed the task as a categorization problem for short texts written in very similar languages. We applied
one of the automatic language identification standard methods, namely supervised machine learning
including Cavnar’s text classification, support vector machines (SVM) and the Prediction by Partial
Matching methods. We set the performance of the Cavnar’s method as our baseline. All in all, for
short texts of 140 characters or less, Cavnar’s character-based method is not efficient in distinguishing
Arabic varieties from each other, particularly the very close ones like Maghrebi dialects. The reason
is that all the varieties use the same character set with almost the same distribution. Nevertheless, it
performs better in discriminating between MSA and dialectal Arabic. Also, it distinguishes Arabicized
Berber fairly well from Arabic. SVM combining the character-based 5-6-grams with the words of the
compiled lexicons performs fairly well for short texts, and increasing the text length performs even better.
Likewise, the PPM (precisely PPMC5) method is good at distinguishing Arabicized Berber from Arabic
and MSA from dialectal Arabic. Error analysis shows that all the errors, whatever the method, are of the
same type; confusion between very similar languages.

So far, we have applied the automatic language identification standard methods to discriminate be-
tween Arabicized Berber and Arabic varieties which are under-resourced languages, and we found that
supervised machine learning using character-based n-gram models are well suited for our task to a large
extent. This should be a good start to automatically process dialectal Arabic. For now, we find it hard
to compare our system to other reported results of related work because the datasets used in evaluation
are different. We would like to test our system on larger and multi-domain/topic datasets to see how it
performs as well as test it on some newly collected corpora, for instance (Salama et al., 2014). This will
allow us to improve the system and generalize the results.

Still, there are other points we want to explore further in future work like distinguishing between
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varieties of Arabicized Berber, and applying the two step classification process which consists in first
identifying the regional dialectal group, for instance Maghrebi Arabic, then apply some different feature
weighting to identify the dialect itself. It would be also possible to analyze the misspellings which seem
to be consistent within the same variant because the orthography is based on the pronunciation. This
could help improving the dialectal Arabic identification. Another way worth exploring is to include user
metadata (extralinguistic information) like the location.
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Abstract

We present an approach for automatic verification and augmentation of multilingual lexica. We
exploit existing parallel and monolingual corpora to extract multilingual correspondents via tri-
angulation. We demonstrate the efficacy of our approach on two publicly available resources:
Tharwa, a three-way lexicon comprising Dialectal Arabic, Modern Standard Arabic and English
lemmas among other information (Diab et al., 2014); and BabelNet, a multilingual thesaurus
comprising over 276 languages including Arabic variant entries (Navigli and Ponzetto, 2012).
Our automated approach yields an F1-score of 71.71% in generating correct multilingual corre-
spondents against gold Tharwa, and 54.46% against gold BabelNet without any human interven-
tion.

1 Introduction

Machine readable multilingual lexica are typically created by a combination of manual and automatic
(semi-automatic) techniques. This illustrates the need for continuous verification of the quality of the lex-
ica during the development process. Approaches exploited for lexicon evaluation and verification mainly
comprise manual assessment and human verification. This process is expensive and poses several limita-
tions in terms of domain coverage as well as the amount of data that can be manually evaluated. Hence,
efforts to automate the evaluation process and reduce manual annotation expenses are quite desireable.

Researchers have mainly resorted to using manual evaluation to verify coverage, automatically extend
and measure accuracy of different lexical resources such as multilingual lexica and WordNets (Sagot and
Fišer, 2011a; Sagot and Fišer, 2011b; Sagot and Fišer, 2012; Saleh and Habash, 2009). For example,
Saleh and Habash (2009) propose an approach for extracting an Arabic-English dictionary while exploit-
ing different human annotated samples to measure accuracy of the extracted dictionary. De Melo and
Weikum (2009) use human annotated samples to measure accuracy of the multilingual dictionary they
extract. More recently, Navigli and Ponzetto (2012) benefit from manual evaluation by expert annotators
to assess coverage of additional lexicalizations provided by their resource and not covered in existing
lexical knowledge bases.

In this paper, we devise a framework for automatic verification and augmentation of multilingual lex-
ica using evidence leveraging parallel and monolingual corpora. The proposed method is capable of
detecting inconsistencies in the lexicon entries and possibly providing/suggesting candidates to replace
them. Accordingly, one can exploit this method to automatically augment multilingual lexica with par-
tially or completely new entries. Naturally the method lends itself to also bootstrapping multilingual
lexica from scratch, however, this is outside the scope of the present work.

We demonstrate the efficacy of our proposed framework in the context of verifying and augmenting a
publicly available lexicon that is manually created Tharwa (Diab et al., 2014). Tharwa is an electronic
three-way lexicon comprising Egyptian Dialectal Arabic (EGY), Modern Standard Arabic (MSA) and
English correspondents (EN). The entries in Tharwa are in lemma form. We show that our approach ob-
tains F1-score of 71.71% in generating multilingual correspondents which match with a gold Tharwa set.
We further evaluate our approach against the Arabic entries in BabelNet (Navigli and Ponzetto, 2012).

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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We show that our automated approach reaches F1-score of 54.46% in generating correct correspondents
for BabelNet Arabic entries.

2 Approach

Let L denote a multilingual lexicon that covers three languages l1, l2, l3. Each row in L contains cor-
respondents from l1, l2, l3 and can be written as a tuple in the form (wl1 , wl2 , wl3) where wli refers to
a word from language li. We call (wl1 , wl2 , wl3) multilingual correspondents when wli is translation
of wlj , for all i, j ∈ {1, 2, 3}. Here, we consider the case that we have three languages in L but the
following approach can be generalized to lexica with more than three languages. Our main objective is
to develop a fully automated approach to verify the quality of multilingual correspondents in L, while
detecting erroneous ones, and possibly providing candidates to replace them. Moreover, adding more
entries to the lexicon.

2.1 Multilingual Correspondent Expansion

We exploit parallel corpora to generate the initial set of multilingual correspondents. This set is further
expanded with correspondents extracted from monolingual resources such as WordNet (Fellbaum, 1998)
and word clusters induced over monolingual corpora.

2.1.1 Leveraging Parallel corpora
We assume we have access to two parallel corpora P1,2 and P3,2, where Pi,j is set of aligned sentences in
the source language li and target language lj . Thus, we need two parallel corpora with a common target
side (in this case l2) to generate word-level correspondents. We assume word alignment technology to
automatically induce word correspondents from P1,2 and P3,2.

Given word alignment output, we extract a function t(w, i, j) for all w ∈ li. This function returns a
list of all w′ ∈ lj which have been aligned to w. We derive the initial set of multilingual correspondents
using Eq. 1:

T = {(wl1 , wl2 , wl3)|wl1 ∈ t(wl2 , 2, 1), wl3 ∈ t(wl2 , 2, 3)} (1)

In other words, T comprises tuples which are obtained by pivoting through the common language
(here l2). This is a process of lexical triangulation and refer to the generated multilingual word level
correspondents as multilingual tuples or simply tuples hereafter.

Nevertheless, there is always some noise in the automatic word alignment process. But we prune a
large portion of the noise by applying constraints on part-of-speech tags (POS) correspondence, thereby
accepting tuples in T with a certain mapping between POS tag categories. We call the pruned set T ′
as shown in Eq. 2 and refer to the POS mapping function as M(pos(wli)), in which pos(wli) refers to
the POS tag of wli of either source languages (l1, l3). This mapping function lets us account for some
language-dependent functional divergences that happens when translating a word with certain POS tag
from source to target language. For instance, word jmylp1 as an adjective in EGY could end up being
aligned through pivoting on English to the same word in MSA but functioning in context as a noun.

T ′ = {(wl1 , wl2 , wl3) ∈ T |M(pos(wl1)) = pos(wl3)} (2)

2.1.2 Leveraging Monolingual Resources
Parallel corpora pose several limitations in size and coverage for the extracted multilingual correspon-
dents due to domain and genres variation of naturally available data. Accordingly to mitigate these
limitations we propose expanding a target word with all its synonyms. We use the following methods
that leverage different monolingual resources to expand T ′:

WordNet One can use synonyms that WordNet generates to expand a word. Before expanding mono-
lingual correspondents in T ′, we perform word sense disambiguation using (Pedersen et al., 2005). If a

1Arabic characters are shown using Buckwalter transliteration scheme throughout this paper. Transliteration table can be
found in http://www.qamus.org/transliteration.htm
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EGY EN MSA
Tharwa OaSAb strike sadad
1 OaSAb collide sadad
2 OaSAb strike TAr

Table 1: Examples of partially-matched tuples generated by T ′ compared to a Tharwa entry.

word belongs to more than one WordNet synset, word sense is used to disambiguate the correct synset
to expand. We additionally use POS tags to filter returned synonyms.

Word clusters Not all languages have an extensively developed WordNet. Therefore, we leverage
monolingual corpora to expand words to their semantically similar correspondents. Thereby, having
large monolingual corpora in any of the languages present in our lexicon, we can generate high quality
word clusters. Accordingly, we exploit existing methods to obtain vector-space word embeddings. Word
vectors are then clustered using a hard clustering technique such as K-means. Namely, we expand each
correspondent in T ′ with all the words from the same cluster that the correspondent belongs to. We also
use POS tags to skip irrelevant words. This can be done for any language in our lexicon conditioned on
the fact that the language has enough monolingual data to induce word clusters. We acknowledge, how-
ever, that induced clusters do not necessarily contain exclusively semantically similar synonym words.
There might be related and irrelevant words altogether.

2.1.3 Leveraging Cross Lingual Resources
Cross-lingual embedding We further incorporate multilingual evidence into monolingual vectors-
space word embeddings. Cross-lingual CCA model proposed by (Faruqui and Dyer, 2014) projects
vectors of two different languages into a shared space where they are maximally correlated. Correlation
is inferred from an existing bilingual dictionary for the languages. Having projected vectors of a par-
ticular language, we expect the synonyms of a word to be found amongst the most similar words in the
projected space. Each word is then expanded with the k most similar words acquired from the projected
vector-space model.

2.2 Automatic Verification and Augmentation

We compare the set of multilingual correspondents acquired in Section 2.1 (T ′) with set of correspon-
dents in L. This comparison leads to the following disjoint partitions:

Fully-matched tuples: This set contains (wl1 , wl2 , wl3) ∈ L ∩ T ′. The number of entries in this set
can be used to measure lexicon coverage in comparison to gold data;

Partially-matched tuples: This set contains correspondents from L which have been matched with T ′
in a subset of languages but correspondents of at least one language are not matched. These partially
matched correspondents are useful for lexicon verification purposes. The mismatches might reveal some
existing errors in the correspondents. In addition to providing clues for lexicon verification, partially
matched entries can be useful for lexical augmentation as some of the mismatches occur due to some
unseen correspondents discovered from bilingual data. In other words, phenomena such as polysemy
and homonymy may cause the partial match;

Fully-unmatched tuples: This set contains entries from L where none of the correspondents matched
with T ′. Hence, this set can provide correspondents for lexicon augmentation and boost the manual aug-
mentation of the lexicon. The first row of Table 1 shows a tuple from Tharwa comprising correspondents
from EGY, MSA and EN. The first example in the Table shows a tuple from T ′ that has matched in EGY
and MSA but the EN correspondent does not match with gold Tharwa EN. Nevertheless, EN (collide) is
in fact a synonym of the gold Tharwa EN (strike) and can be used for lexicon augmentation. Example
number 2 is also a partially matched example where the EGY and EN match but the MSA does not
match. However, the MSA word TAr is a synonym of the Tharwa MSA sadad, thereby, it can be used
for Tharwa augmentation.
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3 Experimental Setup

3.1 Data Resources
We use Bolt-ARZ v3+v4 for EGY-EN parallel data. This data comprises 3.5 million EGY words. For
MSA-EN parallel data, we use GALE phase4 data which contains approx. 60 million MSA words.2

Additionally, we use multiple monolingual EGY corpora collected from Bolt and ATB data sets with
approx. 260 million words (EGYmono) to generate monolingual word clusters described in Section 2.1.2.
We furthermore acquire a collection of several MSA LDC data sets3 from several years with 833 million
words (MSAmono) to induce monolingual MSA word clusters. We use EGYmono and English Gigaword
5th Edition (Parker et al., 2011) to train the the cross-lingual CCA embedding model.

We carry out a set of preprocessing steps in order to clean, lemmatize and diacritize the Arabic side of
both parallel data sets and render the resources compatible. For the sake of consistency, the lemmatization
step is replicated on the English data. The tool we use for processing Arabic is MADAMIRA v1.0 (Pasha
et al., 2014), and for English we use TreeTagger (Schmid, 1995). Hence, all the entries in our resources
are rendered in lemma form, with the Arabic components being additionally fully diacritized.

3.2 Data Processing
The lemmatized-diacritized corpora with the corresponding EN translations are word aligned using
GIZA++ (Och and Ney, 2000) producing pairwise EGY-EN and MSA-EN lemma word type alignment
files, respectively. We intersected the word alignments on the token level to the type level resulting in a
cleaner list of lemma word type alignments per parallel corpus.

All correspondents in the form of EGY-EN-MSA are extracted from both alignment files by pivoting
on the EN correspondent following Eq. 1 and 2. We refer to this set of tuples as TransDict.

We obtain monolingual vector space models using word2vec (Mikolov et al., 2013). We use the
Skip-gram model to build word vectors of size 300 from EGYmono and MSAmono corpora using a word
window of size 8 for both left and right. The number of negative samples for logistic regression is set to
25 and the threshold used for sub-sampling of frequent words is set to 105 in the model with 15 iterations.
We also use full softmax to obtain the probability distribution. Word clusters are obtained from word2vec
K-means word clustering tool with k=500. We additionally induce clusters with k=9228 corresponding
to the number of synsets in the Arabic WordNet (Black et al., 2006).

Word2vec is further used to generate vectors of size 300 using a continuous bag of word model from
English Gigaword. The generated vectors of a) EGYmono-English Gigaword, and b) MSAmono-English
Gigaword are then used to train the Cross-lingual CCA model. Projected EGY and MSA vector space
models are used to get a list of synonyms for the EGY and MSA words in TransDic. For EN expansion,
we initially expand all the EN correspondents in TransDict using synonyms extracted from WordNet3.
We further expand TransDict EGY and MSA correspondents using either word clusters or cross-lingual
synonyms obtained from cross-lingual CCA model.

3.3 Evaluation Data
We measure quality of the correspondents generated by our approach represented in TransDict via two
multilingual resources. BabelNet (Navigli and Ponzetto, 2012), a multilingual semantic network com-
prising concepts and named entities lexicalized in different languages including MSA, EGY and EN;
and, Tharwa, a three-way lexicon containing MSA, EGY and EN correspondents. All entries in both
resources are in lemma form and marked with a POS tag.

BabelNet is comprised of multilingual synsets. Each synset consists of multilingual senses including
MSA, EGY and EN. First, we iterate over all synsets of type CONCEPT4 and extract tuples in the form
MSA-EN-EGY from each synset which satisfy the following conditions:

• None of MSA, EN and EGY words are out of vocabulary with respect to our MSA, EN and MSA
corpora independently;

2MSA and EGY parallel data are collected from 41 LDC catalogs including data prepared for DARPA GALE and BOLT
projects.

3This data is collected from 70 LDC catalogs including Gale, ATB and Arabic Gigawords4 projects.
4Named entities are excluded from the comparison.
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Extraction Method BabelNet Tharwa
Precision Recall F1-Score Precision Recall F1-Score

PARL 84.9% 21.26% 34.01% 77.63% 49.74% 60.63%
PARL+EGY-WC 90.00% 22.54% 36.05% 83.32% 53.38% 65.07%
PARL+EGY-SYN 86.61% 21.69% 34.69% 79.19% 50.74% 61.85%
PARL+MSA-WC 77.68% 23.79% 36.43% 74.14% 51.87% 61.03%
PARL+MSA-SYN 81.08% 22.65% 35.4% 76.66% 51.10% 61.33%
PARL+EN-WSD 87.16% 34.34% 49.27% 77.54% 56.40% 65.3%
PARL+EN-WSD+EGY-WC+MSA-WC 87.82% 39.47% 54.46% 81.63% 63.94% 71.71%
PARL+EN-WSD+EGY-SYN+MSA-SYN 86.26% 36.05% 50.85% 78.16% 58.07% 66.63%

Table 2: Precision, recall and F-score of different correspondence learning methods against BabelNet
and Tharwa, respectively.

• MSA, EN and EGY, each, are not composed of more than a single word.

We acquired 8381 BabelNet tuples applying the above constraints. It is worth emphasizing that this
evaluation is limited to measuring quality of the generated multilingual correspondents in TransDict.
First constraint ensures that no mismatch happens due to domain divergence. Also since TransDict
contains only single-word correspondents, we limit the set of extracted BabelNet tuples to the singletons.

Tharwa We define a particular subset of the Tharwa lexicon as the gold standard to measure perfor-
mance of generated correspondents. Similar to BabelNet, gold Tharwa contains MSA-EN-EGY tuples
from original Tharwa where none of their correspondent words is out of vocabulary with respect to all
the MSA, EN and MSA corpora, respectively. Gold Tharwa obtained according to above conditions
contains 19459 rows. We focus on the three main fields in Tharwa, namely: EGY lemma, MSA lemma,
and EN lemma equivalents and their corresponding POS tags. This condition ensures that none of the
mismatches is caused by domain divergence between Tharwa and TransDict.

3.4 Experimental conditions
We have devised the following settings:

PARL Only parallel data is used to generate correspondents in TransDict. We consider this to be our
baseline.

WC This is where we expand the lemmas in a source language (MSA or EGY) using lemma clusters
induced over word2vec vectors in addition to PARL.

SYN This is where we expand the lemmas in a source language (MSA or EGY) using cross-lingual
synonyms by leveraging cross-lingual CCA (SYN) together with PARL.

EN-WSD This the condition where we expand English lemmas using word sense disambiguation to
generate WordNet synsets for the pivot language EN. Accordingly, we present results for the follow-
ing experimental conditions corresponding to the various extraction methods: (a) baseline PARL; (b)
PARL+EGY-WC where we expand the EGY lemmas using WC clusters; (c) PARL+EGY-SYN where
we expand EGY lemmas using the SYN expansion method; (d) PARL+MSA-WC where we expand the
MSA lemmas using WC clusters; (e) PARL+EGY-SYN where we expand MSA lemmas using the SYN
expansion method; (f) PARL+EN-WSD where we are only expanding the English lemmas using WSD;
(g) PARL+EN-WSD+EGY-WC+MSA-WC where all three languages are expanded: EN using WSD,
EGY and MSA are expanded using WC; and, (i) PARL+EN-WSD+EGY-SYN+MSA-SYN, similar to
condition (g) but EGY and MSA are expanded using SYN.

3.5 Evaluation Metrics
We present the results in terms of Precision, Recall and the harmonic mean F1-score.

4 Results

Table 2 shows precision, recall and F1-score of different correspondent extraction setups (as described
in Section 2) against BabelNet and Tharwa. The results reflect full exact match, where TransDict entries
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Extraction Method Precision Recall F1-score
PARL 79.15% 65.14% 71.46%
PARL+EGY-WC 84.51% 69.55% 76.3%
PARL+EGY-SYN 80.65% 66.37% 72.79%
PARL+MSA-WC 76.00% 67.9% 71.72%
PARL+MSA-SYN 78.31% 66.9% 72.19%
PARL+EN-WSD 79.30% 73.97% 76.54%
PARL+EN-WSD+EGY-WC+MSA-WC 82.99% 82.99% 82.99%
PARL+EN-WSD+EGY-SYN+MSA-SYN 79.95% 76.09% 77.97%

Table 3: Precision, Recall and F1-score of TransDict dialectal component EGY against Tharwa.

fully matched BabelNet/Tharwa entries including POS tag match. This is the harshest metric to evaluate
against. We note the following observations.We note similar trends across the two evaluation data sets. In
general recall is quite low for BabelNet compared to Tharwa which might be relegated to some domain
divergence between our corpora and BabelNet resources where a word might not be out of vocabulary
but a sense of a word is hence it is not found in TransDict. It should be noted that we only constrained
the entries in the gold by being in vocabulary for our corpora without checking if the senses were in
vocabulary. We don’t observe this effect in Tharwa as much due to the relative sizes of BabelNet (almost
9K entries) and Tharwa (almost 20K entries). Expanding EN with WSD significantly improves the
results (PARL F1-score is 34.01% vs. 49.27% for PARL+EN-WSD for BabelNet, and 60.63% for PARL
vs. 65.3% for PARL+EN-WSD for Tharwa). This is the impact of significant increase in recall with
little impact on precision. Expansion for MSA and EGY in general yield better results over the baseline
in terms of overall F1-score. However expanding MSA negatively affects precision compared to recall.
In general, WC expansion yields better results than SYN for EGY across both evaluation data sets.
However we note that for MSA expansion, for Tharwa, SYN outperforms WC, contrasting with WC
outperforming WC for MSA against BabelNet data. For both BabelNet and Tharwa evaluation sets,
we note that the same condition PARL+EN-WSD+EGY-WC+MSA-WC yields the highest results of
(54.46% and 71.71% F1-score, respectively).

5 Analysis and Discussion

5.1 Evaluating Dialectal Extraction Component
Most multilingual lexica are bilingual lexica, but in the current research atmosphere, many researchers
would like to have true multilingual resources that go beyond a pair of languages at a time. Hence we
evaluate the quality of adding a third language to an already existing bilingual resource. The method can
be extended beyond 3 languages, but for sake of exposition we focus on adding a third language in the
scope of this paper. Accordingly, we specifically measure the quality of the extracted EGY correspon-
dents compared to a subset of the Tharwa lexicon. This reference subset must contain EGY-EN-MSA
correspondents from our gold Tharwa that satisfy these constraints: 1) EGY correspondent is found in
the EGY monolingual corpora, 2) MSA-EN correspondents match with at least one row in TransDict
and 3) POS tag of the Tharwa row matches the POS tag of TransDict correspondents. Here, the first con-
straint avoids domain divergence between Tharwa and TransDict. Second constraint is applied because
we focus on measuring quality of the EGY extraction component, thus fixing MSA-EN. Additionally,
the POS constraint is meant to strengthen the match.

Table 3 demonstrates results of comparing TransDict dialectal extraction component with Tharwa.
Results are assuring that performance of dialectal extraction component is persistently higher than quality
of entire TransDict yielding highest F1-score of 82.99%. Similar to the trends observed in the overall
evaluation, PARL+EN-WSD+EGY-WC+MSA-WC yields the highest performance.

5.2 POS Mapping Constraints and Number of Word Clusters
As mentioned in Section 2.1.1, we can prune noisy correspondents by applying POS constraints in the
process of creating TransDict. Results demonstrated in Table 2 are obtained when exact POS match
constraint is used, meaning only MSA-EN-EGY correspondents are included in TransDict that their
MSA and EGY have exactly the same POS tags.
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POS constraint k=500 k=9228

Precision Recall F1-Score Precision Recall F1-Score

No POS constraint 81.05% 66.52% 73.07% 79.04% 61.56% 69.21%

Relaxed POS match 82.13% 65.36% 72.79% 79.84% 61.51% 69.49%

Exact POS match 81.63% 63.94% 71.71% 79.61% 60.37% 68.67%

Table 4: Precision, Recall and F1-score of PARL+EN-WSD+EGY-WC+MSA-WC for different number
of word clusters (k=500 and k=9228) and different POS constraints.

Tharwa Tuple EGY variants generated by TransDictEGY MSA EN

wAd walad

boy

cabAb, libon, Aibon, cAb, Tifol
wAdiy, cab, bunay, waliyd, wAd
EiyAl, fataY, janotalap, wilod, Eayil, walad

child
wAd,daloE, binot, bin, Aibon, Libon, IinojAb
xalof, Tifol, EiyAl, Tufuwlap, xilofap

jAmid Sulob
hard

SaEobAn, mutoEib, Easiyr
qAsiy, qawiy, EaSiyb, SAfiy, taEobAn

solid Sulob, qawiy
Oatiyliyh macogal operator maSonaE, warocap

Table 5: Examples of EGY candidates generated by TransDict for some Tharwa entries.

In this section, we pick the best-performing setup from Table 2 (PARL+EN-WSD+EGY-WC+MSA-
WC) and study effects of different POS matching constraints and also number of word clusters on the
results. First row of Table 4 shows Precision, Recall and F1-score of evaluating PARL+EN-WSD+EGY-
WC+MSA-WC against Tharwa when no constraint is applied on POS tags. Second row shows relaxed
POS match results when we accept certain POS divergence patterns between MSA and EGY as a valid
POS match.5 Finally, the last row shows the match results for the case where only exactly the same POS
tags on both EGY and MSA is included in TransDict.

In addition to different POS constraints, Table 4 shows results when different cluster sizes are ex-
ploited for monolingual expansion. The reason we choose k=9228 in addition to k=500 (which has
been frequently used for clustering in the literature) is that it encodes total number of synsets in Arabic
WordNet.

As shown in Table 4, F1-score generally decreases when POS match constraints increases. This mainly
happens because system recall gradually drops when stricter POS constraints are applied. Therefore, we
might dismiss some of the correct correspondents but we expect correspondents with higher purity in
this case. Nonetheless, we notice precision increases in the relaxed mode as we are allowing for more
divergence accommodation. On the other hand, we observe that the F1-score drops when number of
clusters increases from 500 to 9228 (regardless of the POS constraint used). This suggests that despite
getting purer clusters in the case of the 9228 setting, we are losing significant numbers of synonyms by
fragmenting the semantic space too much potentially.

In order to measure the quality of EGY candidates generated by TransDict and also assess the feasibil-
ity of using this component to augment Tharwa with other dialects, we perform two manual assessments
of the generated TransDict lexicon, assuming a partial match.

First, we compile a random sample of size 1000 from the matched TransDict entries with gold Tharwa
rows, i.e. whose MSA-EN-EGY are found in TransDict Tharwa. We also have the corresponding list of
other potential EGY candidates generated by TransDict for each row of this sample as augmented can-
didates. We obtain this augmented candidate list from two different setups: a) PARL+EN-WSD+EGY-
WC+MSA+WC with 500 clusters, and b) PARL+EN-WSD+EGY-WC+MSA-WC with 9228 clusters.

An expert annotator is asked to manually assess the list of augmented EGY candidates and decide
how many candidates in the list are actual synonyms of the gold EGY word. Manual annotation shows
that on average 6.6% of EGY candidates provided by TransDict in each row are actual synonyms of the
gold EGY word in the 500 cluster setup (a). The match percentage increases to 21.6% for the second

5Mapping table is provided as supplementary material.
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setup, the 9228 clusters case (b). This shows that increasing the number of clusters makes the matched
clusters more pure. The remaining irrelevant (non-synonym) candidates are caused by either erroneous
word alignments or lack of efficient pruning criteria in the correspondence learning algorithm.

Second, we carry out an analysis to assess the potential for augmenting Tharwa with generated EGY
correspondents. We create a random sample of size 1000 from Tharwa rows where their MSA-EN is
found in TransDict (EN expansion setup) but none of TransDict EGY candidates matches with Tharwa
gold EGY (non-matched rows, i.e. our errors). Here, the annotator was asked to mark EGY candidates
(generated by TransDict) that are synonyms of the TransDict generated EGY word. According to our
manual assessment by an expert, 78.1% of the rows in the given sample contained at least one synonym
of the gold EGY word. Hence, we expect that the actual matching accuracy over the entire gold Tharwa
is 93.8%.

Table 5 shows list of EGY candidates generated by TransDict for different EN senses of two MSA-
EGY tuples in Tharwa.6 For the first tuple, where we found a match with Tharwa, wAd (EGY)-walad
(MSA), we show the list of words that were found in TransDict. We note that we for both the EN
corresponding senses boy and child, the EGY word wAd is listed and highlighted in boldface. We
also note the correspondents yielded in TransDict rendered in red in the Table to indicate that they are
different senses that are not correct for the triple. For example the word janotalap is slang for polite
which is could be pragmatically related to boy as in not a polite way to call on a man for example. The
highlighted words in the Table show incorrect sense correspondences given the entire tuple. These could
have resulted from sense variations in the pivot EN word such as correspondents of child in the case of
binot, meaning girl/child/daughter and that given our techniques would naturally cluster with wAd as in
the female of boy/child/son. We also see related words such as daloE meaning pampering. For example,
wAdiy is a synonym of wAd meaning valley however, not child. Accordingly, errors observed are a result
of various sources of noise: misalignments, sense divergences for any of the three languages, differences
in vowelization between the EGY resources. The second tuple in Table 5 shows cases where no matches
are found with Tharwa in TransDict, yet the resulting TransDict entries comprise correct correspondents
but they are not covered in Tharwa hence they are viable candidates for augmention. The third tuple
in the Table shows cases where the entry in Tharwa is incorrect and would need to be corrected. For
example, the English word should have been workshop not operator. Thereby highlighting these partial
matches allows for a faster turn around in fixing the underlying lexicon Tharwa.

We finally attempt to assess the amount of possible augmentation of whole entries to Tharwa for
completely unseen triplets and verify their validity. We compile a list of a 1000 triplets generated in
TransDict where none of the word types (EN, EGY, MSA) is seen in any entry in Tharwa. 85% of these
entries are considered correct by the expert lexicographer.

6 Conclusion

We presented a new approach for automatic verification and augmentation of multilingual lexica lever-
aging evidence extracted from parallel and monolingual corpora. Extracted multilingual correspondents
can be used to verify lexicon converge and detect errors. We showed that our approach reaches F1-score
of 71.71% in generating correct correspondents for a gold subset of a three way lexicon (Tharwa) with-
out any human intervention in the cycle. We also demonstrated that our approach reaches F1-score of
54.46% in generating correct correspondents for Arabic entries in BabelNet.
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Abstract

A common and effective way to train translation systems between related languages is to con-
sider sub-word level basic units. However, this increases the length of the sentences resulting
in increased decoding time. The increase in length is also impacted by the specific choice of
data format for representing the sentences as subwords. In a phrase-based SMT framework, we
investigate different choices of decoder parameters as well as data format and their impact on de-
coding time and translation accuracy. We suggest best options for these settings that significantly
improve decoding time with little impact on the translation accuracy.

1 Introduction

Related languages are those that exhibit lexical and structural similarities on account of sharing a com-
mon ancestry or being in contact for a long period of time (Bhattacharyya et al., 2016). Examples of
languages related by common ancestry are Slavic and Indo-Aryan languages. Prolonged contact leads to
convergence of linguistic properties even if the languages are not related by ancestry and could lead to
the formation of linguistic areas (Thomason, 2000). Examples of such linguistic areas are the Indian sub-
continent (Emeneau, 1956), Balkan (Trubetzkoy, 1928) and Standard Average European (Haspelmath,
2001) linguistic areas. Both forms of language relatedness lead to related languages sharing vocabulary
and structural features.

There is substantial government, commercial and cultural communication among people speaking
related languages (Europe, India and South-East Asia being prominent examples and linguistic regions
in Africa possibly in the future). As these regions integrate more closely and move to a digital society,
translation between related languages is becoming an important requirement. In addition, translation
to/from related languages to a lingua franca like English is also very important. However, in spite of
significant communication between people speaking related languages, most of these languages have
few parallel corpora resources. It is therefore important to leverage the relatedness of these languages to
build good-quality statistical machine translation (SMT) systems given the lack of parallel corpora.

Modelling the lexical similarity among related languages is the key to building good-quality SMT
systems with limited parallel corpora. Lexical similarity implies that the languages share many words
with the similar form (spelling/pronunciation) and meaning e.g. blindness is andhapana in Hindi,
aandhaLepaNaa in Marathi. These words could be cognates, lateral borrowings or loan words from
other languages.

Sub-word level transformations are an effective way for translation of such shared words. Using
subwords as basic units of translation has been shown to be effective in improving translation quality with
limited parallel corpora. Subword units like character (Vilar et al., 2007; Tiedemann, 2009a), character
n-gram (Tiedemann and Nakov, 2013) and orthographic syllables (Kunchukuttan and Bhattacharyya,
2016) have been explored and have been shown to improve translation quality to varying degrees.

This work is licenced under a Creative Commons Attribution 4.0 International License. License details:
http://creativecommons.org/licenses/by/4.0/
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Original this is an example of data formats for segmentation

Subword units thi s i s a n e xa m p le o f da ta fo rma t s fo r se gme n ta tio n

Internal Marker thi s i s a n e xa m p le o f da ta fo rma t s fo r se gme n ta tio n

Boundary Marker thi s i s a n e xa m p le o f da ta fo rma t s fo r se gme n ta tio n

Space Marker thi s i s a n e xa m p le o f da ta fo rma t s fo r se gme n ta tio n

Table 1: Formats for sentence representation with subword units (example of orthographic syllables)

However, the use of subword units increases the sentence length. This increases the training, tuning
and decoding time for phrase-based SMT systems by an order of magnitude. This makes experimenta-
tion costly and time-consuming and impedes faster feedback which is important for machine translation
research. Higher decoding time also makes deployment of MT systems based on subword units imprac-
tical.

In this work, we systematically study the choice of data format for representing sentences and various
decoder parameters which affect decoding time. Our studies show that the use of cube-pruning during
tuning as well as testing with a lower value of the stack pop limit parameter improves decoding time
substantially with minimal change in translation quality.

The rest of the paper is organized as follows. Section 2 discusses the factors that affect decoding time
which have been studied in this paper. Section 3 discusses our experimental setup. Section 4 discusses the
results of our experiments with decoder parameters. Section 5 discusses the results of our experiments
with corpus formats. Section 6 discusses prior work related to optimizing decoders for phrase-based
SMT. Section 7 concludes the paper.

2 Factors affecting decoding time

This section describes the factors affecting the decoding time that have been studied in this paper.

2.1 Unit of translation

The decoding time for a sentence is proportional to length of the sentence (in terms of the basic units).
Use of subword units will obviously result in increased sentence length. Various units have been pro-
posed for translation (character, character n-gram, orthographic syllable, morpheme, etc.). We analysed
the average length of the input sentence on four language pairs (Hindi-Malayalam, Malayalam-Hindi,
Bengali-Hindi, Telugu-Malayalam) on the ILCI corpus (Jha, 2012). The average length of an input
sentence for character-level representation is 7 times of the word-level input, while it is 4 times the
word-level input for orthographic syllable level representation. So, the decoding time will increase sub-
stantially.

2.2 Format for sentence representation

The length of the sentence to be decoded also depends on how the subword units are represented. We
compare three popular formats for representation, which are illustrated in Table 1:

• Boundary Marker: The subword at the boundary of a word is augmented with a marker charac-
ter. There is one boundary subword, either the first or the last chosen as per convention. Such a
representation has been used in previous work, mostly related to morpheme level representation.

• Internal Marker: Every subword internal to the word is augmented with a marker character. This
representation has been used rarely, one example being the Byte Code Encoding representation used
by University of Edinburgh’s Neural Machine Translation system (Williams et al., 2016; Sennrich
et al., 2016).

• Space Marker: The subword units are not altered, but inter-word boundary is represented by a
space marker. Most work on translation between related languages has used this format.
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For boundary and internal markers, the addition of the marker character does not change the sentence
length, but can create two representations for some subwords (corresponding to internal and boundary
positions), thus introducing some data sparsity. On the other hand, space marker doubles the sentence
length (in terms in words), but each subword has a unique representation.

2.3 Decoder Parameters
Given the basic unit and the data format, some important decoder parameters used to control the search
space can affect decoding time. The decoder is essentially a search algorithm, and we investigated
important settings related to two search algorithms used in the Moses SMT system: (i) stack decoding,
(ii) cube-pruning (Chiang, 2007). We investigated the following parameters:

• Beam Size: This parameter controls the size of beam which maintains the best partial translation
hypotheses generated at any point during stack decoding.

• Table Limit: Every source phrase in the phrase table can have multiple translation options. This
parameter controls how many of these options are considered during stack decoding.

• Cube Pruning Pop Limit: In the case of cube pruning, the parameter limits the number of hy-
potheses created for each stack .

Having a lower value for each of these parameters reduces the search space, thus reducing the decoding
time. However, reducing the search space may increase search errors and decrease translation quality.
Our work studies this time-quality trade-off.

3 Experimental Setup

In this section, we describe the language pairs and datasets used, the details of our experiments and
evaluation methodology.

3.1 Languages and Dataset
We experimented with four language pairs (Bengali-Hindi, Malayalam-Hindi, Hindi-Malayalam and
Telugu-Malayalam). Telugu and Malayalam belong to the Dravidian language family which are agglu-
tinative. Bengali and Hindi are Indo-Aryan languages with a relatively poor morphology. The language
pairs chosen cover different combinations of morphological complexity between source and target lan-
guages.

We used the multilingual ILCI corpus for our experiments (Jha, 2012), consisting of sentences from
tourism and health domains. The data split is as follows – training: 44,777, tuning: 1000, test: 500
sentences.

3.2 System details
As an example of subword level representation unit, we have studied the orthographic syllable (OS)
(Kunchukuttan and Bhattacharyya, 2016) in our experiments. The OS is a linguistically motivated, vari-
able length unit of translation, which consists of one or more consonants followed by a vowel (a C+V
unit). But our methodology is not specific to any subword unit. Hence, the results and observations
should hold for other subword units also. We used the Indic NLP Library1 for orthographic syllabifica-
tion.

Phrase-based SMT systems were trained with OS as the basic unit. We used the Moses system (Koehn
et al., 2007), with mgiza2 for alignment, the grow-diag-final-and heuristic for symmetrization of word
alignments, and Batch MIRA (Cherry and Foster, 2012) for tuning. Since data sparsity is a lesser concern
due to small vocabulary size and higher order n-grams are generally trained for translation using sub-
word units (Vilar et al., 2007), we trained 10-gram language models. The language model was trained
on the training split of the target language corpus.

1http://anoopkunchukuttan.github.io/indic_nlp_library
2https://github.com/moses-smt/mgiza
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Translation Accuracy Relative Decoding Time

ben-hin hin-mal mal-hin tel-mal ben-hin hin-mal mal-hin tel-mal

default (stack, 33.10 11.68 19.86 9.39 46.44 65.98 87.98 76.68tl=20,ss=100)

Stack
tl=10 32.84 11.24 19.21 9.47 35.49 48.37 67.32 80.51
tl=5 32.54 11.01 18.39 9.29 15.05 21.46 30.60 41.52

ss=50 33.10 11.69 19.89 9.36 17.33 25.81 35.76 43.45
ss=10 33.04 11.52 19.51 9.38 4.49 7.32 10.18 11.75
+tuning 32.83 11.01 19.57 9.23 5.24 8.85 11.60 9.31

Cube Pruning
pl=1000 33.05 11.47 19.66 9.42 5.67 9.29 12.38 17.85
+tuning 33.12 11.3 19.77 9.35 7.68 13.06 15.18 14.56

pl=100 32.86 10.97 18.74 9.15 2.00 4.22 5.41 5.29
pl=10 31.93 9.42 15.26 8.5 1.51 3.64 4.57 3.84

Word-level 31.62 9.67 15.69 7.54 100.56 ms 65.12 ms 50.72 ms 42.4 ms

Table 2: Translation accuracy and Relative decoding time for orthographic syllable level translation using
different decoding methods and parameters. Relative decoding time is indicated as a multiple of word-
level decoding time. The following methods & parameters in Moses have been experimented with: (i)
normal stack decoding - vary ss: stack-size, tt: table-limit; (ii) cube pruning: vary pl:cube-pruning-
pop-limit. +tuning indicates that the decoder settings mentioned on previous row were used for tuning
too. Translation accuracy and decode time per sentence for word-level decoding (in milliseconds) is
shown on the last line for comparison.

The PBSMT systems were trained and decoded on a server with Intel Xeon processors (2.5 GHz) and
256 GB RAM.

3.3 Evaluation

We use BLEU (Papineni et al., 2002) for evaluating translation accuracy. We use the sum of user and
system time minus the time for loading the phrase table (all reported by Moses) to determine the time
taken for decoding the test set.

4 Effect of decoder parameters

We observed that the decoding time for OS-level models is approximately 70 times of the word-level
model. This explosion in the decoding time makes translation highly compute intensive and difficult to
perform in real-time. It also makes tuning MT systems very slow since tuning typically requires multiple
decoding runs over the tuning set. Hence, we experimented with some heuristics to speed up decoding.

For normal stack decoding, two decoder parameters which impact the decode time are: (1) beam size
of the hypothesis stack, and (2) table-limit: the number of translation options for each source phrase
considered by the decoder. Since the vocabulary of the OS-level model is far less than that of the word-
level model, we hypothesize that lower values for these parameters can reduce the decoding time without
significantly affecting the accuracy. Table 2 shows the results of varying these parameters. We can see
that with a beam size of 10, the decoding time is now about 9 times that of word-level decoding. This
is a 7x improvement in decoding time over the default parameters, while the translation accuracy drops
by less than 1%. If a beam size of 10 is used while decoding too, the drop in translation accuracy is
larger (2.5%). Using this beam size during decoding also slightly reduces the translation accuracy. On
the other hand, reducing the table-limit significantly reduces the translation accuracy, while resulting in
lesser gains in decoding time.

We also experimented with cube-pruning (Chiang, 2007), a faster decoding method first proposed for
use with hierarchical PBSMT. The decoding time is controlled by the pop-limit parameter in the
Moses implementation of cube-pruning. With a pop-limit of 1000, the decoding time is about 12 times
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Translation Accuracy Relative Decoding Time

ben-hin hin-mal mal-hin tel-mal ben-hin hin-mal mal-hin tel-mal

default (stack, 27.29 6.72 12.69 6.06 206.98 391.00 471.96 561.00tl=20,ss=100)

Cube Pruning 26.98 6.57 11.94 5.99 10.23 19.57 24.59 26.20pl=1000

Word-level 31.62 9.67 15.69 7.54 100.56 ms 65.12 ms 50.72 ms 42.4 ms

Table 3: Translation accuracy and Relative decoding time for character level translation using different
decoding methods and parameters. Relative decoding time is indicated as a multiple of word-level decod-
ing time. Translation accuracy and decode time per sentence for word-level decoding (in milliseconds)
is shown on the last line for comparison.

Translation Accuracy Relative Decoding Time

ben-hin hin-mal mal-hin tel-mal ben-hin hin-mal mal-hin tel-mal

Boundary Marker 32.83 12.00 20.88 9.02 7.44 11.80 17.08 18.98
Internal Marker 30.10 10.53 19.08 7.53 7.82 10.81 14.43 17.06
Space Marker 33.12 11.30 19.77 9.35 7.68 13.06 15.18 14.56

Word-level 31.62 9.67 15.69 7.54 100.56 ms 65.12 ms 50.72 ms 42.4 ms

Table 4: Translation accuracy and Relative decoding time for orthographic syllable level translation using
different data formats. Relative decoding time is indicated as a multiple of word-level decoding time.
Translation accuracy and decode time per sentence (in milliseconds) for word-level decoding is shown
on the last line for comparison.

that of word-level decoding. The drop in translation accuracy is about 1% with a 6x improvement over
default stack decoding, even when the model is tuned with a pop-limit of 1000. Using this pop-limit
during tuning also hardly impacts the translation accuracy. However, lower values of pop-limit reduce
the translation accuracy.

While our experiments primarily concentrated on OS as the unit of translation, we also compared the
performance of stack decoding and cube pruning for character lavel models. The results are shown in
Table 3. We see that character level models are 4-5 times slower than OS level models and hundreds
of time slower than word level models with the default stack decoding. In the case of character based
models also, the use of cube pruning (with pop-limit=1000) substantially speeds up decoding (20x
speedup) with only a small drop in BLEU score.

To summarize, we show that reducing the beam size for stack decoding as well as using cube pruning
help to improve decoding speed significantly, with only a marginal drop in translation accuracy. Using
cube-pruning while tuning only marginally impacts translation accuracy.

5 Effect of corpus format

For these experiments, we used the following decoder parameters: cube-pruning with cube-pruning-pop-
limit=1000 for tuning as well as testing. Table 4 shows the results of our experiments with different
corpus formats.

The internal boundary marker format has a lower translation accuracy compared to the other two
formats whose translation accuracies are comparable. In terms of decoding time, no single format is
better than the others across all languages. Hence, it is recommended to use the space or boundary marker
format for phrase-based SMT systems. Neural MT systems based on encoder decoder architectures,
particularly without attention mechanism, are more sensitive to sentence length, so we presume that the
boundary marker format may be more appropriate.

86



6 Related Work

It has been recognized in the past literature on translation between related languages that the increased
length of subword level translation is challenge for training as well as decoding (Vilar et al., 2007).
Aligning long sentences is computationally expensive, hence most work has concentrated on corpora
with short sentences (e.g. OPUS (Tiedemann, 2009b)) (Tiedemann, 2009a; Nakov and Tiedemann,
2012; Tiedemann, 2012). To make alignment feasible, Vilar et al. (2007) used the phrase table learnt
from word-level alignment, which will have shorter parallel segments, as parallel corpus for training
subword-level models. Tiedemann and Nakov (2013) also investigated reducing the size of the phrase
table by pruning, which actually improved translation quality for character level models. The authors
have not reported the decoding speed, but it is possible that pruning may also improve decoding speed
since fewer hypothesis may have to be looked up in the phrase table, and smaller phrase tables can be
loaded into memory.

There has been a lot of work looking at optimizing specific components of SMT decoders in a general
setting. Hoang et al. (2016) provide a good overview of various approaches to optimizing decoders.
Some of the prominent efforts include efficient language models (Heafield, 2011), lazy loading (Zens and
Ney, 2007), phrase-table design (Junczys-Dowmunt, 2012), multi-core environment issues (Fernández
et al., 2016), efficient memory allocation (Hoang et al., 2016), alternative stack configurations (Hoang et
al., 2016) and alternative decoding algorithms like cube pruning (Chiang, 2007).

In this work, we have investigated stack decoding configurations and cube pruning as a way of op-
timizing decoder performance for the translation between related languages (with subword units and
monotone decoding). Prior work on comparing stack decoding and cube-pruning has been limited to
word-level models (Huang and Chiang, 2007; Heafield et al., 2014).

7 Conclusion and Future Work

We systematically study the choice of data format for representing subword units in sentences and various
decoder parameters which affect decoding time in a phrase-based SMT setting. Our studies (using OS
and character as basic units) show that the use of cube-pruning during tuning as well as testing with
a lower value of the stack pop limit parameter improves decoding time substantially with minimal
change in translation quality. Two data formats, the space marker and the boundary marker, perform
roughly equivalently in terms of translation accuracy as well as decoding time. Since the tuning step
contains a decoder in the loop, these settings also reduce the tuning time. We plan to investigate reduction
of the time required for alignment.
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Abstract
In this study we apply classification methods for detecting subdialectal differences in Sorani
Kurdish texts produced in different regions, namely Iran and Iraq. As Sorani is a low-resource
language, no corpus including texts from different regions was readily available. To this end,
we identified data sources that could be leveraged for this task to create a dataset of 200,000
sentences. Using surface features, we attempted to classify Sorani subdialects, showing that
sentences from news sources in Iraq and Iran are distinguishable with 96% accuracy. This is the
first preliminary study for a dialect that has not been widely studied in computational linguistics,
evidencing the possible existence of distinct subdialects.

1 Introduction

Language Identification (LID) is the task of determining the language of a given text, which may be at the
document, sub-document or even sentence level. Recently, attention has turned to discriminating between
close languages, such as Malay-Indonesian and Croatian-Serbian (Ljubešić et al., 2007), or even dialects
or varieties of one language (British vs. American English). LID has several useful applications including
lexicography, authorship profiling, machine translation and Information Retrieval. Another example is
the application of the output from these LID methods to adapt NLP tools that require annotated data,
such as part-of-speech taggers, for resource-poor languages. This will be further discussed in §2.2.

The primary aim of this work is to apply classification methods to regional variants of Central Kurdish,
also known as Sorani. Kurdish is a low-resourced but important language. It is classified within a group
of “non-Western European languages critical to U.S. national security”.1 In recent years there has been
increasing research interest in processing Kurdish (Aliabadi, 2014; Esmaili et al., 2014).

As we will outline in §3, Kurdish is spoken in a number of countries and has several dialects. Sorani
is one of these dialects and is spoken in several regions. The main objective of this study is to determine
whether subdialectal variations in Sorani can be identified in texts produced from different regions. More
specifically, we consider the two main areas where Sorani is spoken, Iran and Iraq.

As the first such study, we identify the relevant data sources and attempt to establish the performance
of currently used classification methods on this dialect. We also make available a dataset of 200,000
Sorani sentences to facilitate future research. We approach this task at the sentence-level by developing
a corpus of sentences from different regions in §4 and applying classification methods.

2 Related Work and Background
2.1 Language and Variety Identification
Work in language identification (LID) dates back to the seminal work of Beesley (1988), Dunning (1994)
and Cavnar and Trenkle (1994). Automatic LID methods have since been widely used in NLP. Although
LID can be extremely accurate in distinguishing languages that use distinct character sets (e.g. Chinese
or Japanese) or are very dissimilar (e.g. Spanish and Swedish), performance is degraded when it is used
for discriminating similar languages or dialects.

This work is licenced under a Creative Commons Attribution 4.0 International License. License details:
http://creativecommons.org/licenses/by/4.0/

1https://www.nsep.gov/content/critical-languages
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This has led to researchers turning their attention to the sub-problem of discriminating between
closely-related languages and varieties. This issue has been investigated in the context of confus-
able languages/dialects, including Malay-Indonesian (Bali, 2006), Croatian-Slovene-Serbian (Ljubešić
et al., 2007), Bosnian-Croatian-Serbian (Tiedemann and Ljubešić, 2012), Farsi-Dari (Malmasi and Dras,
2015a) and Chinese varieties (Huang and Lee, 2008).

This issue was also the focus of the recent “Discriminating Similar Language” (DSL) shared task.2

The shared task used data from 13 different languages and varieties divided into 6 sub-groups and teams
needed to build systems for distinguishing these classes. They were provided with a training and devel-
opment dataset comprised of 20,000 sentences from each language and an unlabelled test set of 1,000
sentences per language was used for evaluation. Most entries used surface features and many applied
hierarchical classifiers, taking advantage of the structure provided by the language family memberships
of the 13 classes. More details can be found in the shared task report (Zampieri et al., 2014).3

Although LID has been investigated using data from many languages, to our knowledge, the present
study is the first treatment of Sorani within this context.

2.2 Applications of LID

Further to determining the language of documents, LID has applications in statistical machine translation,
lexicography (e.g. inducing dialect-to-dialect lexicons) and authorship profiling in the forensic linguistics
domain. In an Information Retrieval context it can help filter documents (e.g. news articles or search
results) by language and even dialect; one such example is presented by (Bergsma et al., 2012) where
LID is used for creating language-specific Twitter collections.

LID serves as an important preprocessing method for other NLP tasks. This includes selecting ap-
propriate models for machine translation, sentiment analysis or other types of text analysis, e.g. Native
Language Identification (Malmasi et al., 2013; Malmasi and Dras, 2015b).

LID can also be used in the adaptation of NLP tools, such as part-of-speech taggers for low-resourced
languages (Feldman et al., 2006). If Sorani subdialects are too different to directly share the same
resources and statistical models, the distinguishing features identified through LID can assist in adapting
existing resources for one subdialect to another.

3 Kurdish Language Overview

Spoken by twenty to thirty million Kurds (Haig and Matras, 2002; Esmaili and Salavati, 2013; Salih,
2014; Blau, 2016; Kurdish Academy of Language, 2016), “Kurdish” as a language is nonetheless not
easily defined, producing both difficulty and debate for many scholars and researchers (Haig and Ma-
tras, 2002; Hassani and Medjedovic, 2016; Paul, 2008). Kurdish, spoken in “Kurdistan” (a region split
primarily among Turkey, Iran, Iraq and Syria (Esmaili and Salavati, 2013; Haig and Matras, 2002)), has
been embroiled in conflict, so the question of Kurdish linguistic boundaries is complicated by political,
cultural and historical factors (Paul, 2008).

One reason for disagreement about the Kurdish language is that Kurdish ethnic identity plays a large
role in shaping who claims to speak “Kurdish” (Paul, 2008), and Kurdish ethnic identity is highly politi-
cized (Nerwiy, 2012), especially with regards to a singular “Kurdish language” or plural “Kurdish lan-
guages” (Kurdish Academy of Language, 2016; Paul, 2008). While being described as a “dialect-rich
language, sometimes referred to as a dialect continuum” (Esmaili and Salavati, 2013), the very act of
categorizing a “Kurdish” dialect as a separate language or a separate language as a “Kurdish” dialect
is contentious. Further complicating the Kurdish language is its precarious situation in recent history:
Kurdish is recognized as an official language in Iraq (Hassani and Medjedovic, 2016), but its pedagogy
and use have also been banned in Turkey and Syria (Blau, 2016; Nerwiy, 2012; Salih, 2014).

2Held at the Workshop on Applying NLP Tools to Similar Languages, Varieties and Dialects, co-located w/ COLING 2014.
3The task was also expanded and held in 2015 and 2016.
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3.1 Geography

Historically, Kurdistan was divided into North and South by the Byzantine and Islamic empires and into
Northwest and East by the Ottoman and Persian empires (Nerwiy, 2012). After World War I, Kurdistan
was divided among Turkey, Persia, Iraq and Syria (Blau, 2009). Kurds have also lived in Armenia,
Lebanon and Egypt for centuries and have formed strong diasporic communities in Europe and North
America (Haig and Matras, 2002; Hassani and Medjedovic, 2016).

Most Kurds are bilingual or multilingual, speaking other languages like Arabic, Turkish or Farsi in
addition to Kurdish (Salih, 2014). Having been immersed in multilingual contexts for centuries, Kurds—
presumably Kurdish speakers—have interacted closely with speakers of Arabic, Armenian, Persian, New
Aramaic and Turkish, which have all left traces in the Kurdish language (Haig and Matras, 2002).

3.2 Language Family

Kurdish belongs to the Indo-European family of languages within the northwestern Iranian group (Kur-
dish Academy of Language, 2016; Nerwiy, 2012; Paul, 2008), though it may also be described as only
solidly belonging to a western subgroup of Iranian languages encompassing Persian, Kurdish, Balōči
and the other Iranian languages of present-day Iran (Paul, 2008). An important isogloss shared among
Persian, Kurdish and Balōči in contrast with many northwestern Iranian languages is the past stem of
many verbs formed with the vowel i (Paul, 2008).

Still, relations of borrowing and influence within the western Iranian languages—that is, between
Kurdish, Persian and Balōči (and Zazaki and Gurani as different from Kurdish, dependent upon the
classification system)—are complex and not always straightforward based upon phonological and mor-
phological evidence (Paul, 2008).

3.3 Dialects

Kurdish dialects are highly differentiated and are not mutually intelligible (Paul, 2008). It has even been
suggested that the two main dialects (the Northern and Central dialects) of Kurdish can be treated as
separate languages (Haig and Matras, 2002).

For both political and linguistic reasons, both Kurds and scholars have disagreed as to how Kurdish
dialects should best be taxonomized (Kurdish Academy of Language, 2016; Paul, 2008; Zahedi and
Mehrazmay, 2011). The broadest classifications of the Kurdish language include the Northern, Central
and Southern dialects as well as Zazaki and Gurani. Other classifications typically disqualify Zazaki and
Gurani based upon linguistic evidence and mainly focus upon the Northern and Central dialects (Zahedi
and Mehrazmay, 2011), which account for over 75% of native Kurdish speakers (Esmaili and Salavati,
2013). A study put forth by D. N. Mackenzie in 1961—which treats Zazaki and Gurani as separate
languages—remains standard in linguistic research and considers “Kurdish” to be a language divisible
into the Northern, Central and Southern Kurdish dialects (Haig and Matras, 2002; Paul, 2008).

Of the Northern, Central and Southern dialects, Kurdish dialects differ morphologically in terms of
case and gender (Haig and Matras, 2002; Paul, 2008; Zahedi and Mehrazmay, 2011), though researchers
have found exceptions to these rules (Esmaili and Salavati, 2013; Haig and Matras, 2002; Hassani and
Medjedovic, 2016). Northern Kurdish dialects distinguish gender and retain an inflectional system for
masculine nouns (Haig and Matras, 2002; Paul, 2008). Some Central Kurdish dialects also have a
case system, but some have also dropped case distinction entirely; all Central Kurdish dialects do not
distinguish gender (Haig and Matras, 2002; Paul, 2008). South Kurdish dialects do not distinguish
gender, and some show different forms of plural endings (Paul, 2008).

Ezafe in Kurdish dialects are more complex in the Northern dialects, which distinguish a mascu-
line/feminine -ē / -ā and plural -ēt, and simplifies toward the Southern dialects, which have one general
form of the Ezafe, -ı̄. Ezafe in the Central dialects can be considered intermediate (Paul, 2008).

Central and Southern Kurdish dialects utilize suffix pronouns, while the Northern dialects do not (Paul,
2008). Central and Southern Kurdish dialects also have a secondary passive conjugation which does not
exist in the Northern dialects (Paul, 2008).

91



3.3.1 Northern Kurdish Dialects
Most Kurds in Turkey, Iraqi Kurdistan, northeastern Syria and the former Soviet Union (especially Geor-
gia and Armenia) speak the Northern Kurdish dialects (also referred to as Kurmanji, Northern Kurmanji
or Badinani (Kurdish Academy of Language, 2016; Paul, 2008; Nerwiy, 2012)). The Northern Kurdish
dialects encompass around 20 million speakers (Hassani and Medjedovic, 2016) and primarily use a
Latin-based alphabet (Esmaili and Salavati, 2013), as we will describe below.

3.3.2 Central Kurdish Dialects
Most Kurds located around Arbil, Suleymaniyeh and Kirkuk in Iraq as well as those in Iranian Kurdistan
speak the Central Kurdish dialects (also referred to as Sorani (Kurdish Academy of Language, 2016;
Paul, 2008; Nerwiy, 2012)). Speakers of the Central Kurdish dialects number around seven million
(Hassani and Medjedovic, 2016) and use an Arabic-based alphabet (Esmaili and Salavati, 2013).

Regarding verb morphology, Central Kurdish dialects employ clitics with verb stems as concord mark-
ers, a feature that distinguishes them from the Northern dialects. In the Central dialects, the positions of
these markers vary according to negation, auxiliary usage, valency and thematic roles; in the Northern
dialects, concord markers are fixed, following the verb stem (Haig and Matras, 2002).

For verbal agreement and alignment, Central Kurdish dialects use pronominal enclitics that attach
to the direct object for past-tense transitive constructions, whereas the Northern dialects use ergative
constructions (Esmaili and Salavati, 2013; Haig and Matras, 2002).

A further point of distinction is that the Central (and Southern) Kurdish dialects use the definite marker
-aka, which is absent in the Northern dialects (Esmaili and Salavati, 2013; Zahedi and Mehrazmay, 2011).

This is the dialect being investigated in this study. We’re interested in identifying subdialectal differ-
ences in Sorani texts sourced from different regions, namely Iran and Iraq.

3.3.3 Southern Kurdish Dialects
The Southern Kurdish dialects (also referred to as Pehlewani, Pahlawanik (Kurdish Academy of Lan-
guage, 2016; Paul, 2008) or Hawramani (Salih, 2014)) are spoken primarily in the Khanaqin and Man-
dalin districts of Iraqi Kurdistan and in the Kermanshah region of Iran (Nerwiy, 2012).

3.4 Orthography
Kurdish utilizes four scripts for writing (Latin, Perso-Arabic, Cyrillic and Yekgirtú) dependent upon
geographical, political and cultural factors; it lacks a standard, formalized orthographic system (Hassani
and Medjedovic, 2016). Nevertheless, there have been efforts at standardization (Haig and Matras, 2002),
and most research recognizes the Latin and Arabic scripts as being the most prominent, earning Kurdish
the title of being a bi-standard language (Esmaili and Salavati, 2013; Zahedi and Mehrazmay, 2011).

The Central dialects adapted the Perso-Arabic script in the city of Suleymaniya in Iraqi Kurdistan in
the nineteenth century, and this script has been used in the Kurdish regions of Iraq and Iran that speak
the Central dialects (Haig and Matras, 2002). For the Northern dialects, Kurdish nationalists adapted
Arabic script in the nineteenth century; later in the 1930s, Celadet Bedir-Khan introduced a Latin script
for Kurdish that has been used in Turkish and Syrian Kurdistan as well as in the European diaspora (Haig
and Matras, 2002; Hassani and Medjedovic, 2016). In 1940, the Cyrillic script for Kurdish was converted
from a Roman script developed in the Soviet Union and is mainly based upon the Northern dialects (Haig
and Matras, 2002). As compared to the Perso-Arabic script and the Cyrillic script, usage of the Latin
script is growing (Hassani and Medjedovic, 2016). Additionally, the Kurdish Academy of Language
recently proposed Yekgirtú as a unified alphabetic system for Kurdish (Zahedi and Mehrazmay, 2011).

Mapping the Kurdish Latin-based alphabet (used by the Northern dialects) to the Kurdish Arabic-
based alphabet (used by the Central dialects) yields twenty-four one-to-one mappings, four one-to-two
mappings and five one-to-zero mappings (Esmaili and Salavati, 2013). The one-to-two and one-to-
zero mappings attest respectively to the ambiguities of the alphabets and to the differences between
the Northern and Central dialects (Esmaili and Salavati, 2013; Hassani and Medjedovic, 2016). Both
orthographies are alphabetic, meaning that vowels must be written (Esmaili and Salavati, 2013).4

4This is in contrast with other abjad writing systems that use the Perso-Arabic script.
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4 Data

As Sorani is a low-resourced language, no corpus including texts from different regions was readily
available. However, the amount of Sorani language content on the web has been increasing and this
provides a good source of data for building corpora.

Similar to the recent work in this area, we approach this task at the sentence-level. Sentence length,
measured by the number of tokens, is an important factor to consider when creating the dataset. There
may not be enough distinguishing features if a sentence is too short, and conversely, very long texts will
likely have more features that facilitate correct classification. This assumption is supported by recent
evidence from related work suggesting that shorter sentences are more difficult to classify (Malmasi and
Dras, ). Bearing this in mind, we limited our dataset to sentences in the range of 5–55 tokens in order to
maintain a balance between short and long sentences.

For this study we opted to extract data from news providers based in Iran and Iraq as the source of
our data. For Iraq we chose Rudaw and Sharpress, while for Iran we used Sahar TV and Kurdpress.
Using articles from these news sources, a total of 100,000 sentences matching our length requirements
were extracted for each class, resulting in a corpus of 200,000 sentences. We also make this data freely
available to other researchers.5

5 Experimental Methodology

We approach this task as a binary classification problem, splitting our data into two classes representing
Sorani texts from Iran and Iraq.

5.1 Features

We employ two lexical surface feature types for this task, as described below. The sentences are tok-
enized based on whitespace and punctuation prior to feature extraction.

Character n-grams This is a sub-word feature that uses the constituent characters that make up the
whole text. When used as n-grams, the features are n-character slices of the text. From a linguistic point
of view, the substrings captured by this feature, depending on the order, can implicitly capture various
sub-lexical features including single letters, phonemes, syllables, morphemes and suffixes. In this study
we examine n-grams of order 2–4.

Word n-grams The surface forms of words can be used as a feature for classification. Each unique
word may be used as a feature (i.e. unigrams), but the use of bigram distributions is also common. In this
scenario, the n-grams are extracted along with their frequency distributions. For this study we evaluate
unigram features.

5.2 Named Entity Masking

Our dataset is not controlled for topic and it is possible implicitly capture topical cues and are thus
susceptible to topic bias. Topic bias can occur as a result of the themes or topics of the texts to be
classified not being evenly distributed across the classes, leading to correlations between classes and
topics (Brooke and Hirst, 2012; Malmasi and Dras, 2014a; Malmasi and Dras, 2015c). More specifically
for the current work, the topics can refer to regional toponyms and location names.

One way to counter this issue is to create a balanced or parallel corpus (Malmasi and Dras, ). This is
a non-trivial task that requires time and resources, and so was not considered for this preliminary study.
Another approach is based on named entity masking, which aims to identify and remove named entities
such as location names to minimize their influence on the classification models. This approach requires
the identification of such tokens through Named Entity Recognition (NER) or some other method. The
2015 DSL Shared Task included evaluation using such masked texts where this was achieved using a
heuristic method that masked all capitalized tokens (Zampieri et al., 2015). However, given the lack
of NER systems for Sorani and the absence of capitalization info in the Perso-Arabic script, it was not

5http://web.science.mq.edu.au/%7Esmalmasi/resources/sorani
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Combined 96.70
WORD1 95.99
CHAR4 96.35
CHAR3 95.55
CHAR2 92.24
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Figure 1: Accuracy for our individual features and their combination.

possible to use either approach. Therefore, in this study we limited our entity masking to the names of
the websites and news agencies that we chose as our data sources.6 More sophisticated entity masking
approaches will be considered in future work.

5.3 Classifier

We use a linear Support Vector Machine to perform multi-class classification in our experiments. In
particular, we use the LIBLINEAR7 SVM package (Fan et al., 2008) which has been shown to be efficient
for text classification problems with large numbers of features and documents.8

5.4 Evaluation

Consistent with most previous studies, we report our results as classification accuracy under k-fold cross-
validation, with k = 10. For creating our folds, we employ stratified cross-validation which aims to
ensure that the proportion of classes within each partition is equal (Kohavi, 1995).

We use a random baseline for comparison purposes. This is commonly employed in classification
tasks where it is calculated by randomly assigning labels to documents. It is a good measure of overall
performance in instances where the training data is evenly distributed across the classes, as is the case
here. Since our data is equally distributed across both classes, this baseline is 50%.

6 Results

Our experiment explores the classification of Sorani sentences within our corpus using 10-fold cross-
validation. We experiment with the different features discussed in the previous section and their combi-
nation. The results are shown in Figure 1. All of our features surpass the random baseline of 50% by a
large margin. We observe that character n-grams, particularly 4-grams, are very useful here with 96.4%
accuracy using a single feature type. Word unigrams are also very informative here with 96.0% accuracy.
These results indicate that important lexical and orthographic differences may exist between the Sorani
texts from different regions.

We also tested combinations of the features types into a single feature vector, showing that this can
yield slightly improved results, with 96.7% accuracy.

It is interesting that character n-grams are a slightly better feature than words. These results also
suggest that, at least for this dataset, character n-grams generalize the most. However, it may be the case
that word unigrams may perform better with a sufficiently large dataset.

6For example: ¤� ¤¤C
7http://www.csie.ntu.edu.tw/%7Ecjlin/liblinear/
8SVM has proven to perform well for large text classification tasks (Malmasi and Dras, 2014c; Malmasi and Dras, 2014b).
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7 Discussion and Conclusion

In this study we explored methods for the automatic identification of Sorani subdialects, showing that
sentences from news sources in Iraq and Iran are distinguishable with 96% accuracy. This is a new result
for dialect that has not previously been experimented with. To this end, we also identified data sources
that could be leveraged for this task.

Future work can be directed in several directions. First, detailed analysis of the most discriminative
features can provide useful insights about the subdialectal differences. They may reveal interesting
sources of influence from Arabic and Persian. A preliminary analysis of the discriminative features
showed such differences, but a detailed analysis will be left for future research. While we did not observe
a disproportionate amount of named entities in these distinguishing features, methods to eliminate their
influence will be important for future work.

Expanding the dataset with additional data from different sources could also be helpful. Further re-
finement of the dataset to create a topic-balanced corpus can also help conduct more robust experiments
in the future. From a machine learning perspective, classifier ensembles have been shown to improve
classification performance for numerous NLP tasks. Their application here could also increase system
accuracy. Finally, conducting an error analysis on the data could also help better understand the subdi-
alectal differences. Feedback from native speakers would be of assistance here in better documenting the
distinguishing features of each dialect, as learned by our models.
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Abstract

Massive Open Online Courses have been growing rapidly in size and impact. Yet the language
barrier constitutes a major growth impediment in reaching out all people and educating all cit-
izens. A vast majority of educational material is available only in English, and state-of-the-art
machine translation systems still have not been tailored for this peculiar genre. In addition, a
mere collection of appropriate in-domain training material is a challenging task. In this work, we
investigate statistical machine translation of lecture subtitles from English into Croatian, which
is morphologically rich and generally weakly supported, especially for the educational domain.
We show that results comparable with publicly available systems trained on much larger data can
be achieved if a small in-domain training set is used in combination with additional in-domain
corpus originating from the closely related Serbian language.

1 Introduction

Massive Open Online Courses (MOOCs) have been growing rapidly in size and importance, but the
language barrier constitutes a major obstacle in reaching out all people and educating all citizens. A
vast majority of materials is available only in English, and state-of-the-art machine translation (MT)
systems still have not been tailored for this type of texts: the specific type of spoken language used in
lectures, ungrammatical and/or incomplete segments in subtitles, slides and assignments, a number of
distinct courses i.e. domains such as various natural sciences, computer science, engineering, philosophy,
history, music, etc.

Machine translation of this genre into an under-resourced morphologically rich target language rep-
resents an additional challenge – in this work, we investigate translation into Croatian. Croatian has
recently become the third official South Slavic language in the EU,1 but it is still rather under-resourced
in terms of free/open-source language resources and tools, especially in terms of parallel bilingual cor-
pora. Finding appropriate parallel educational data is even more difficult. Therefore, we based our
experiments on a small in-domain parallel corpus containing about 12k parallel segments. We then in-
vestigate in what way the translation quality can be improved by an additional in-domain corpus of about
50k segments containing a closely related language, namely Serbian. In addition, we explore the impact
of adding a relatively large (200k) out-of-domain news corpus.

Croatian and Serbian are rather close languages, so one option could be to directly use additional
English-Serbian data. However, previous work has shown a significant drop in translation quality for a
similar cross-language translation scenario (Popović and Ljubešić, 2014). Therefore we also investigate a
high-quality Serbian-to-Croatian rule-based MT system for creating additional artificial English-Croatian
data.

This work is licenced under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/

1together with Slovenian and Bulgarian
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1.1 Related work
In the last decade, several SMT systems have been built for various South Slavic languages and En-
glish. Through the transLectures project,2 transcriptions and translation technologies for automatic gen-
eration of multilingual subtitles for online educational data were provided for a set of language pairs.
Through this project, one of the South Slavic languages, namely Slovenian, became an optional language
pair in the 2013 evaluation campaign of IWSLT (International Workshop on Spoken Language Transla-
tion) (Cettolo et al., 2013). The SUMAT project3 included translation between Serbian and Slovenian
subtitles (Etchegoyhen et al., 2014), however translation from English was not explored and no educa-
tional subtitles were used.

For Croatian-English language pair, first results are reported in (Ljubešić et al., 2010) on a small
weather forecast corpus. Translation between Croatian and English has become one of the focuses of the
AbuMatran project:4 an SMT system for the tourist domain is presented in (Toral et al., 2014), the use
of morpho-syntactic information by means of factored models is investigated in (Sánchez-Cartagena et
al., 2016) and several scenarios with different models and data-sets are explored in (Toral et al., 2016).
Furthermore, SMT systems for the news domain for Croatian and Serbian are described in (Popović and
Ljubešić, 2014).

To the best of our knowledge, no systematic investigation on English-to-Croatian educational data has
been carried out yet.

2 Challenges for machine translation of MOOCs

As already mentioned, machine translation of MOOCs induces several challenging tasks. A first step
for building a statistical machine translation (SMT) is collection of parallel data. For educational genre,
already this step is a challenge due to the following reasons:

• crawling: the structure of the web resource containing desired material is complex and does not
allow for large-scale automatic crawling;

• data extraction and alignment: a large portion of materials is in pdf format, which can lead to
misalignments during conversion into plain text;

• the size of extracted data: the available data is often very small, so that machine translation with
scarce resources has to take place;

• target languages: majority of materials is available in English, meaning that machine translation
into morphologically rich languages has to take place;

• representativeness: majority of available materials are lecture subtitles; slides, notes and assign-
ments are unfortunately rarely translated.

• copyright issues are often not clear and are difficult to define.

Once the parallel data is extracted from some source, segmentation can be a challenging task itself. The
platforms used for translation are primarily designed for subtitles so that the translators are encouraged
to use short segments which often represent incomplete and/or ungrammatical sentences. Another pe-
culiarity is the fact that the lecturers often do not finish a sentence properly or change the subject in the
middle of a utterance.

3 Challenges for English-Croatian machine translation and getting help from Serbian

Croatian, as a Slavic language, has a very rich inflectional morphology for all word classes. There are six
distinct cases, three genders and a number of verb inflections since person and many tenses are expressed

2https://www.translectures.eu/
3http://www.sumat-project.eu/
4http://www.abumatran.eu/
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by the suffix. In addition, negation of three important verbs is formed by adding the negative particle to
the verb as a prefix. As for syntax, the language has a quite free word order, and there are no articles,
neither indefinite nor definite. In addition, multiple negation is always used.

All these morpho-syntactic peculiarities are even more difficult to generate correctly if the available
resources are scarce, especially for spoken language style used in lectures as well as for ungrammatical
and/or unfinished sentences.

Differences between Croatian and Serbian Both languages belong to the South-Western Slavic
branch. Although they exibit a large overlap in vocabulary and a strong morpho-syntactic similarity
so that the speakers can understand each other without difficulties, there is a number of small but notable
and frequently occurring differences between them.

The largest differences between the two languages are in vocabulary: some words are completely dif-
ferent, some however differ only by one or two letters. In addition, Serbian language usually phonetically
transcribes foreign names and words although both transcription and transliteration are allowed, whereas
the Croatian standard only transliterates.

Apart from lexical differences, there are also structural differences, mainly concerning verbs: con-
structions involving modal verbs, especially those with the verb “trebati” (to need, should), future tense,
conditional.

4 Research questions

Taking into account the facts described in previous sections, i.e. peculiarities of educational genre,
difficulties regarding characteristics of the Croatian language and scarceness of available resources, as
well as similarities and differences between Croatian and Serbian, our main questions are:

• how does the translation performance for a small in-domain training data compare with the perfor-
mance for a larger out-of-domain data?

• is it possible to increase the performance by adding Serbian in-domain data and what is the optimal
way?

Our work is to certain extent related to the experiments described in (Popović and Ljubešić, 2014).
They explored adaptation of the in-domain news test data to the desired language by applying a set of sim-
ple rules or a Serbian-Croatian SMT system, whereas the training data for the English-Serbian/Croatian
system were fixed. We investigate different combinations of training data for the challenging genre i.e.
educational material in order to build a ready SMT so that the test data once translated do not require
any further intervention. In addition, we use a recently developed high quality rule-based Serbian-to-
Croatian system (Klubička et al., 2016) which performs better than SMT systems used in (Popović and
Ljubešić, 2014).

5 Experimental set-up

Parallel texts

The data used in our experiments are collaboratively translated subtitles from Coursera5 and contain
several types of courses/domains: biology, computer science, philosophy, nutrition, music, etc. The
translations are produced by course participants who usually translate into their native languages. Trans-
lations are done via a collaborative platform which is usually used for translation of movie subtitles, thus
not designed with large-scale crawling in mind. In order to crawl the relevant data, we first had to con-
struct manually a list of the Coursera courses available there. Once the list of translated Coursera courses
was constructed, Python scripts were used to download the original English data and the corresponding
translations. However, this process was not fully automatic because there were some issues with the
format of the URLs of some of the courses as well as the data format of the translations.

5https://www.coursera.org/
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The parallel data collected is of a relatively good quality. The texts are mostly properly aligned,
however the sentence segmentation is not optimal. As mentioned in Section 2, the extracted parallel
segments often contain incomplete sentences or parts of two different sentences. Of course, one can
think of automated correction of segmentation. However, for bilingually aligned texts this represents a
peculiar task for several reasons:

• there are no apparent punctuation rules which are consistent in both languages: some sentences end
with “.” i one language but with “,” or “;” or conjunction or even nothing in the other;

• some consecutive English source segments are only partially translated (Table 1) – if these seg-
ments were merged in both languages, a proper English sentence aligned with an incorrect and/or
ungrammatical translation would be generated.

English Croatian
Five years ago Pre pet godina
I was told specifically (no translation)
this is his name da mu je to ime.

Table 1: Example of English successive segments and their Croatian translations: the middle of the
sentence is not translated at all.

For these reasons, and also taking into account the fact that the test set is in the same format, no
resegmentation attempts were performed and the texts are used directly in the format they were extracted.
Nevertheless, since the data are not completely clean, certain filtering steps had to be performed. First
of all, there was a large number of short redundant segments such as “Mhm”, “Hello”, “Welcome back”,
etc. These segments were separated from the rest according to the sentence length and only a unique
occurrences were kept. The rest of the corpus was then cleaned from incorrect translations on the base
of sentence length: if the proportion of source and target sentence length was too high or too small,
the segment was removed. As a final step, the two cleaned parts of the corpus were merged. The
same procedure was carried out for both for English-Croatian as well as for English-Serbian data sets.
For English-Croatian, about 12k parallel segments were extracted, and for English-Serbian about 50k.
An interesting observation is that although Croatian is generally better supported in terms of publicly
available parallel data,6 Serbian is currently better supported for educational parallel texts.

As for the out-of-domain corpus, we used the SETimes news corpus (Tyers and Alperen, 2010) since
it is relatively large (200k parallel sentences) and clean.

Moses set-ups

We trained the statistical phrase-based systems using the Moses toolkit (Koehn et al., 2007) with MERT
tuning. The word alignments were built with GIZA++ (Och and Ney, 2003) and a 5-gram language
model was built with SRILM (Stolcke, 2002).

The investigated bilingual training set-ups are:

1. en-hr SEtimes (relatively large clean out-of-domain corpus)

2. en-hr Coursera (small in-domain corpus)

3. en-hr Coursera (small in-domain corpus) + en-sr Coursera (larger in-domain corpus)

4. en-hr Coursera + en-hr’ Coursera

5. en-hr SEtimes + en-hr Coursera + en-hr’ Coursera
6http://opus.lingfil.uu.se/
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sentences running words voc oov (%) (dev/test)
en hr en hr en hr

Training 1) setimes 206k 4.9M 4.6M 68k 137k 2.7/2.4 10.9/7.4
2) coursera 12k 148k 118k 8k 17k 5.5/5.5 8.2/8.8
3) 2+coursera en-sr 62k 782k 659k 21k 54k 1.5/1.2 5.3/5.7
4) 2+coursera en-hr’ 62k 782k 696k 21k 52k 1.5/1.2 4.9/5.2
5) 1+4 268k 5.7M 5.3M 76k 162k 0.8/0.6 2.9/2.9

Dev coursera 2935 28k 23k 3.8k 6.3k
Test coursera 2091 25k 20k 3.4k 5.5k

Table 2: Data statistics.

where hr’ denotes Serbian part of the corpus translated by a rule-based machine translation system into
Croatian. For each set-up, the language model was trained on the target part of the used bilingual cor-
pus. For set-ups including combined parallel corpora (3, 4 and 5), the corpora were merged by simple
concatenation and the interpolated language model was used. Data statistics for all set-ups can be seen
in Table 2.

Serbian-to-Croatian RBMT system

The MT system (Klubička et al., 2016) used for creating additional artificial Croatian data from Ser-
bian is a bidirectional rule-based system based on the open-source Apertium platform (Forcada et al.,
2011). Considering the fact that differences between Croatian and Serbian occur mostly at the lexical
and orthography, using a rule-based system makes the most sense. The system tested on newspaper
texts achieves 83.0% BLEU for translation into Croatian, whereas the BLEU score is 72.7% if the Serbian
source is directly compared to the Croatian reference translation.

Evaluation

For all set-ups, BLEU scores (Papineni et al., 2002) and character n-gram F-scores i.e. CHRF3
scores (Popović, 2015) are reported. In addition, five Hjerson error classes (Popović, 2011) are reported
in order to get a better insight into differences between the systems: inflectional errors, ordering errors,
missing words, additions and lexical errors.

6 Results

6.1 Automatic evaluation scores

Table 3 presents the obtained automatic scores for all Moses training set-ups described in Section 5
together with the scores for translations generated7 by two publicly available SMT systems for English-
to-Croatian: Asistent8 (Arčan et al., 2016) and Google translate9.
It can be seen that the most promising set-up according to automatic evaluation metrics is the set-up 5,
i.e merging both domains and adding artificial in-domain English-Croatian parallel text where the target
Croatian part is generated from Serbian by the rule-based MT system. This set-up even outperforms
the Asistent system which is trained on much larger parallel texts, albeit none of them from educational
domain.

Furthermore, it can be seen that both SETimes and original Coursera set produce the same percentage
of lexical errors – the first one due to the domain discrepance and the other due to data sparsity. Adding
in-domain Serbian data reduces the number of lexical errors, which is further reduced by translating
Serbian into Croatian. Merging of two data-sets reduces lexical errors even more, however their number
is still larger than for Asistent and Google systems.

7in June 2016
8http://server1.nlp.insight-centre.org/asistent/
9https://translate.google.com/
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overall scores Hjerson error rates
system BLEU CHRF3 infl order miss add lex Σer
1) setimes 8.1 38.5 10.6 5.0 6.4 10.5 40.8 73.2
2) coursera 12.7 38.9 7.5 4.2 4.0 14.6 40.8 71.1
3) 2+coursera-sr 13.2 41.1 8.8 4.7 5.3 11.8 38.4 69.2
4) 2+coursera-hr’ 14.1 42.6 9.4 4.8 5.3 11.8 37.0 68.4
5) 1+4 15.5 44.9 10.2 5.0 6.5 9.9 35.5 67.1
asistent 14.7 43.5 9.9 5.2 8.1 9.4 34.7 67.4
google 17.1 49.4 8.2 4.5 4.4 13.8 30.1 61.0

Table 3: Automatic evaluation scores (%) for each of the systems: BLEU score, CHRF3 score and five
Hjerson error rates: inflectional, ordering, omission, addition and lexical error rate together with their
sum.

Ordering errors and omissions are lower for the set-ups without SEtimes, most probably due to differ-
ent sentence (i.e. segment) structure in two genres/domains.

Morphological errors are also lower without SEtimes, however they are high in all set-ups which
should be generally addressed in future work by using morpho-syntactic analysers and/or generators.

Apart from this, it can be observed that the main advantage of the Google system is the low number
of lexical errors which is probably achieved by using very large training corpora.

6.2 Translation examples

In order to illustrate advantages and disadvantages of different SMT systems, Table 4 shows six English
source segments and their translations by each of the systems. Erroneous parts of the obtained trans-
lations are annotated by parentheses: {} stands for lexical errors, additions, omissions and inflections
(where only part of the word is in parenthesis), // stands for ordering errors and <> for stylistic variants.

segment 1: A completely correct sentence is produced only by the set-up 5, as well as by the publicly
available systems. The other systems generate ungrammatical sentences, en-hr Coursera alone gen-
erates stylistically questionable translation.

segment 2: None of the systems produces a perfect translation – however, the most accurate translation
containing only two minor morphological errors is produced by set-up 5, i.e. combination of all
Coursera data and SETimes.

segment 3: Spoken lecture language issues: SEtimes produces the worst translation, followed by Google
and then Asistent; all set-ups with Coursera data produce correct translations.

segment 4: The translation of the incomplete segment is difficult for all systems. Both SETimes and
Croatian Coursera alone generate very bad translations – the first one because of domain discrep-
ancy, the second one because of data sparsity; the other set-ups generate ungrammatical segments
where the meaning still can be captured. Asistent produces the best translation containing only one
inflectional error which does not change the meaning.

segment 5: The best translation (without any error) of another incomplete sentence is generated by set-
up 4, i.e. Coursera with additional artificial data; the worst translation is generated by SEtimes,
which also introduces morphological errors when combined with Coursera in set-up 5. This exam-
ple illustrates that in-domain data are important not only for vocabulary and lexical errors but also
for morpho-syntactic properties.

segment 6: Spoken language and incomplete sentence: SETimes, Google and Asistent produce a num-
ber of errors; using Serbian instead of Croatian induces some errors mainly due to differences in
verb structures; the best option is the use of Croatian Coursera with or without additional data.
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1) Is this a problem?
setimes Je {} to problem{a}?
coursera Da li <bi> to <bio> problem?
coursera+sr Je {} <bi> to <bio> problem?
coursera+hr’ /Li/ <bi> to <bio> problem?
all Je li to problem?
asistent Je li to problem?
google Je li to problem?
2) Then the next thing we need, is energy.
setimes {Tada} sljedeća stvar {} nam treba, je energija.
coursera {Onda} sljedeće {} trebamo je energije.
coursera+sr Sljedeća stvar koju {moramo}, je energije.
coursera+hr’ Sljedeća stvar koju {moramo} je energije.
all Sljedeća stvar koj{u} nam treba, je energij{e}.
asistent {onda} sljedeća stvar koju trebamo, je energija.
google {onda je} sljedeća stvar koju trebamo, je energija.
3) Now on an Android device, of course yeah, there is no mouse.
setimes {Sada} {o} Android <naprava>, naravno {yeah}, nema miša.
coursera Na Android uredjaju, naravno, nema miša.
coursera+sr Na Android uredjaju, naravno, nema miša.
coursera+hr’ Na Android uredjaju, naravno, nema miša.
all Na Android uredjaju, naravno, nema miša.
asistent {Sada} Android uredjaj, naravno, nema miša.
google {Sada} na Android uredjaju, naravno da{,} nema miš{}.
4) but the number of insects flying in the
setimes ali broj {insects} {} lete{nja} u
coursera ali broj insek{ti} {} {flying} u
coursera+sr ali broj insek{ti} {} lete{ći} u
coursera+hr’ ali broj insek{ti} {} lete{ći} u
all ali broj insek{ti} {} lete{ći} u
asistent ali broj insek{tima} koji lete u
google ali broj insekata {} let{i} u
5) that he learned French and English later in life.
setimes {kako} nauči{la} francusk{e} i englesk{e} kasnije u životu.
coursera da je naučio francu{zi} i {jezikom} {later} u {life}.
coursera+sr da je naučio francuski i engleski kasnije u životu.
coursera+hr’ da je naučio francuski i engleski kasnije u životu.
all da je naučio francusk{e} i englesk{e} kasnije u životu.
asistent {to} je naučio francuski i engleski kasnije u životu.
google {koji} je kasnije u životu naučio francuski i engleski.
6) Now you can see up here that I need to select Android mode, so these are the
setimes {Sada} možete vidjeti {iz} ovdje {kako} trebam izabrati android način, tako {} to /su/
coursera Ovdje gore možete vidjeti da trebam odabrati android način rada. dakle, ovo
coursera+sr Ovdje gore možete videti {koji} <ja> treba da izabere{te} android način rada. znači ovo su
coursera+hr’ Ovdje gore možete vidjeti da trebam odabrati android način rada. dakle, ovo
all Ovdje gore možete vidjeti da trebam odabrati android način rada. dakle, ovo
asistent {Sada} možeš vidjeti {što} ja moram odabrati android {}, {} ovo su
google {Sada} možete vidjeti ovdje da moram odabrati android mod{u}, tako da su to

Table 4: Examples of six English source sentences and their translations by different SMT system set-
ups; erroneous parts are annotated by {} (mistranslations, additions, omissions, inflections), // (order)
and <> (style).
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It can be noted that the additional Serbian data does not help only in the first example – only when a
larger out-of-domain data is added, a correct translation is obtained. For segment 2), the baseline English-
Croatian corpus already yielded a correct translation and there is no change when any of additional
corpora is used. In example 3) both the direct use of Serbian and translating into Croatian help to
some extent but some errors are still present. For segments 4) and 5) both untranslated and translated
Serbian texts result in the same correct translation. For the example 6) using the translated additional
data significantly improves the performance in comparison with the “raw” Serbian data.

7 Summary and outlook

This work has shown that a small amount of in-domain training data is very important for the English-to-
Croatian statistical machine translation of the specific genre of Massive Open Online Courses, especially
for capturing appropriate morpho-syntactic structure. Adding in-domain data containing the closely
related Serbian language improves the performance, especially when the Serbian part is translated into
Croatian thus producing an artificial English-Croatian in-domain corpus. The improvements consist
mainly from reducing the number of lexical errors. Further improvements have been achieved by adding
a relatively large out-of-domain news corpus reaching performance comparable with systems trained on
much larger (out-of-domain) parallel texts. Adding this corpus reduces the number of additions and
lexical errors, nevertheless it introduces more morphological and ordering errors due to the different
nature and structure of the segments.

Future work should include investigating better ways of combining and extracting relevant information
from original (in-domain) and additional (out-of-domain and/or “out-of-language”) data. In addition, the
use of morpho-syntactic information should be explored, especially since this also represents a challeng-
ing task for the peculiar genre such as educational material.
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machine translator between Croatian and Serbian. In Proceedings of the 19th Annual Conference of the Euro-
pean Association for Machine Translation (EAMT), volume 4, Riga, Latvia. Baltic Journal of Modern Comput-
ing.

104



Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola Bertoldi, Brooke
Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra Constantin, and Evan
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Maja Popović. 2011. Hjerson: An Open Source Tool for Automatic Error Classification of Machine Translation
Output. The Prague Bulletin of Mathematical Linguistics, (96):59–68, October.
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Abstract

In this paper we describe a system developed to identify a set of four regional Arabic dialects
(Egyptian, Gulf, Levantine, North African) and Modern Standard Arabic (MSA) in a transcribed
speech corpus. We competed under the team name MAZA in the Arabic Dialect Identification
sub-task of the 2016 Discriminating between Similar Languages (DSL) shared task. Our system
achieved an F1-score of 0.51 in the closed training track, ranking first among the 18 teams that
participated in the sub-task. Our system utilizes a classifier ensemble with a set of linear models
as base classifiers. We experimented with three different ensemble fusion strategies, with the
mean probability approach providing the best performance.

1 Introduction

The interest in processing Arabic texts and speech data has grown substantially in the last decade.1 Due
to its intrinsic variation, research has been carried out not only on Modern Standard Arabic (MSA),
but also on the various Arabic dialects spoken in North Africa and in the Middle East. Research in
NLP and Arabic dialects includes, most notably, machine translation of Arabic dialects (Zbib et al.,
2012), corpus compilation for Arabic dialects (Al-Sabbagh and Girju, 2012; Cotterell and Callison-
Burch, 2014), parsing (Chiang et al., 2006), and Arabic dialect identification (Zaidan and Callison-Burch,
2014). The latter has become a vibrant research topic with several papers published in the last few years
(Sadat et al., 2014; Malmasi et al., 2015).

In this paper we revisit the task of Arabic dialect identification proposing an ensemble method applied
to a corpus of broadcast speeches transcribed from MSA and four Arabic dialects: Egyptian, Gulf,
Levantine, and North African (Ali et al., 2016). The system competed in the Arabic dialect identification
sub-task of the 2016 edition of the DSL shared task (Malmasi et al., 2016b)2 under the team name
MAZA. The system achieved very good performance and was ranked first among the 18 teams that
participated in the closed submission track.

2 Related Work

There have been several studies published on Arabic dialect identification. Shoufan and Al-Ameri (2015)
presents a survey on NLP methods for processing Arabic dialectal data with a comprehensive section on
Arabic dialect identification.

Two studies on Arabic dialect identification use the Arabic online commentary dataset (Zaidan and
Callison-Burch, 2011), namely the one by Elfardy and Diab (2013) and the one by Tillmann et al. (2014)
who developed systems to discriminate between MSA and Egyptian Arabic at the sentence level. The
first study reports results of 85.5% accuracy and the latter reports 89.1% accuracy using a linear SVM
classifier.

This work is licenced under a Creative Commons Attribution 4.0 International License. License details:
http://creativecommons.org/licenses/by/4.0/

1See Habash (2010) for an overview on Arabic NLP.
2http://ttg.uni-saarland.de/vardial2016/dsl2016.html
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Malmasi et al. (2015) evaluates the performance of different methods and features to discriminate
between MSA and five Arabic dialects: Egyptian, Jordanian, Palestinian, Syrian, and Tunisian using
the Multidialectal Parallel Corpus of Arabic (MPCA) (Bouamor et al., 2014). Malmasi et al. (2015)
report results of 74.0% accuracy using a meta-classifier. Darwish et al. (2014) identified important
lexical, morphological, and syntactic features to discriminate between MSA and Egyptian Arabic tweets
reporting 94.4% accuracy.

Using the same dataset as the DSL 2016 Arabic dialect identification sub-task, Ali et al. (2016) propose
an SVM method to discriminate between MSA and dialectal Arabic achieving perfect performance. Ali
et al. (2016) proposes the same method to identify the four aforementioned Arabic dialects and MSA and
reports 59.2% accuracy.

The work on Arabic dialect identification is related to several studies published on computational
methods to discriminate between pairs or groups of similar languages, language varieties and dialects.
This includes South Slavic languages (Ljubešić et al., 2007), Portuguese varieties (Zampieri and Gebre,
2012), English varieties (Lui and Cook, 2013), Persian and Dari (Malmasi and Dras, 2015a), Romanian
dialects (Ciobanu and Dinu, 2016), and the two editions of the DSL shared task organized in 2014 and
2015 which included several groups of closely-related languages and language varieties such as Bosnian,
Croatian and Serbian, Bulgarian and Macedonian, Czech and Slovak, and Mexican and Peninsular Span-
ish (Zampieri et al., 2014; Zampieri et al., 2015).

3 Methods

3.1 Data
For the first time, the DSL challenge includes a sub-task on Arabic dialect identification. The data for
this sub-task was provided by the DSL shared task organizers and it is described in the aforementioned
study by Ali et al. (2016). The corpus contains transcribed speech from Egyptian (EGY), Gulf (GLF),
Levantine (LAV), North African (NOR), and MSA.

The training corpus contains a total of 7,619 sentences. An additional unlabelled test set containing
1,540 sentences was released one month later for the official evaluation. A breakdown of the number of
training sentences for each of these classes is listed in Table 1.

Dialect Class Sentences
Egyptian EGY 1,578
Gulf GLF 1,672
Levantine LAV 1,758
Modern Standard MSA 999
North African NOR 1,612
Total 7,619

Table 1: The breakdown of the dialectal training data provided (Ali et al., 2016).

3.2 Approach
There have been various methods proposed for dialect identification in recent years. Given its success
in previous work, we decided to use an ensemble classifier for our entry. We follow the methodology
described by Malmasi and Dras (2015b): we extract a number of different feature types and train a single
linear model using each feature type. We extract the following feature types, each of them used to train
a single classification model:

• Character n-grams (n = 1–6): these substrings, depending on the order, can implicitly capture
various sub-lexical features including single letters, phonemes, syllables, morphemes and suffixes.
They could capture interesting inter-dialectal differences that generalize better than word n-grams.

• Word unigrams: entire words can capture lexical differences between dialects.
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We did not perform any pre-processing3 on the data prior to feature extraction. This was not needed as
the data are machine-generated ASR transcripts.4

For our base classifier we utilize a linear Support Vector Machine (SVM). SVMs have proven to de-
liver very good performance in discriminating between language varieties and in other text classification
problems, SVMs achieved first place in both the 2015 (Malmasi and Dras, 2015b) and 2014 (Goutte et
al., 2014) editions of the DSL shared task.5

The best performing system in the 2015 edition of the DSL challenge (Malmasi and Dras, 2015b) used
SVM ensembles evidencing the adequacy of this approach for the task of discriminating between similar
languages and language varieties. In light of this, we decided to test three ensemble methods described
next.

• System 1 - Plurality Ensemble
In this system each classifier votes for a single class label. The votes are tallied and the label with
the highest number6 of votes wins. Ties are broken arbitrarily. This voting method is very simple
and does not have any parameters to tune. An extensive analysis of this method and its theoretical
underpinnings can be found in the work of (Kuncheva, 2004, p. 112). We submitted this system as
run 1.

• System 2 - Median Probability Ensemble
In this ensemble method the probabilities assigned to each class by each classifier are ordered, and
the median probability for each label is selected. Among these, the label with the highest median is
selected (Kittler et al., 1998). As with the mean probability combiner, which we describe in the next
section, this method measures the central tendency of support for each label as a means of reaching
a consensus decision. We submitted this system as run 2.

• System 3 - Mean Probability Ensemble
The probability estimates for each class are added together and the class label with the highest
average probability is the winner. An important aspect of using probability outputs in this way
is that a classifier’s support for the true class label is taken in to account, even when it is not the
predicted label (e.g. it could have the second highest probability). This method has been shown to
work well on a wide range of problems and, in general, it is considered to be simple, intuitive, stable
(Kuncheva, 2014, p. 155) and resilient to estimation errors (Kittler et al., 1998) making it one of the
most robust combiners discussed in the literature. We submitted this system as run 3.

4 Cross-validation Results

In this section we investigate the impact of three variables in the classification performance: the features
used, the data, and the type of ensemble used in our system.

We used the training data provided by the shared task organizers and performance cross-validation
experiments testing 1) the performance of each individual feature in dialect identification (described in
Section 4.1); 2) the impact of the amount of training data on the classification performance (presented in
Section 4.2); and 3) the accuracy of each proposed ensemble method (discussed in Section 4.3).

4.1 Feature Performance
We first report our cross-validation results on the training data. We began by testing individual feature
types, with results displayed in Figure 1.

As expected we observe that most character n-grams outperform word features. Character 4-grams,
5-grams, and 6-grams obtained higher results than those obtained using word uni-grams. The best re-
sults were obtained with character 4-grams achieving 65.95% accuracy and character 5-grams obtaining
65.70% accuracy.

3For example, case folding or tokenization.
4The data was transliterated using the Buckwalter scheme: http://www.qamus.org/transliteration.htm
5See Goutte et al. (2016) for a comprehensive evaluation.
6This differs with a majority voting combiner where a label must obtain over 50% of the votes to win. However, the names

are sometimes used interchangeably.
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Figure 1: Cross-validation performance for each of our individual feature types.

4.2 Influence of Training Data
Next we look at the influence of the amount of training data in the Arabic dialect identification task. As
the size of the training corpus provided by the shared task organizers is relatively small, we are interested
in evaluating how this affects performance. A learning curve for a classifier trained on character 4-grams
is shown in Figure 2. We observe that accuracy continues to increase, demonstrating potential for even
better performance given a larger training corpus.7
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Figure 2: Learning curve for a classifier trained on character 4-grams using the training data.

4.3 Ensemble Methods
In this section we test our three ensemble configurations on the training data. Results are shown in
Table 2. We note that all of the ensembles outperform individual features, with the mean probability
combiner achieving the best result of 68%. For the voting ensemble, 344 of the 7619 samples (4.52%)
resulted in ties which were broken arbitrarily.

7Due to lack of available comparable data, we only participated in the closed submission track.
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System Accuracy
Majority Class Baseline 0.2307

Voting Ensemble (System 1) 0.6755
Median Ensemble (System 2) 0.6782

Mean Probability Ensemble (System 3) 0.6800

Table 2: Cross-validation results for the Arabic training data.

5 Test Set Results

Finally, in this section we report the results of our three submissions generated from the unlabelled test
data. The samples in the test set were slightly unbalanced with a majority class baseline of 22.79%.
Shared task performance was evaluated and teams ranked according to the weighted F1-score which
provides a balance between precision and recall. Accuracy, along with macro- and micro-averaged F1-
scores were also reported.

Run Accuracy F1 (micro) F1 (macro) F1 (weighted)
Baseline 0.2279 — — —

System 1 (run1) 0.4916 0.4916 0.4888 0.4924
System 2 (run2) 0.4929 0.4929 0.4908 0.4937
System 3 (run3) 0.5117 0.5117 0.5088 0.5132

Table 3: Results for test set C (closed training).

Results for our three submissions are listed in Table 3. While Systems 1 and 2 achieved similar per-
formance, System 3 outperformed them by approximately 2%, ranking first among the 18 teams who
competed in the sub-task.

A confusion matrix for our best performing system is shown in Figure 3. We note that MSA is the
most distinguishable dialect, while the Gulf dialect has the most misclassifications. Table 4 also shows
per-class performance for our best system.

Class Precision Recall F1-score Sentences
EGY 0.50 0.56 0.53 315
GLF 0.33 0.36 0.35 256
LAV 0.51 0.48 0.49 344
MSA 0.60 0.63 0.61 274
NOR 0.62 0.52 0.56 351

Average/Total 0.52 0.51 0.51 1,540

Table 4: Per-class performance for our best system.

The results for all of our systems are much lower than the cross-validation results. This was a trend noted
by other teams in the task. It is likely related to the sampling of the test set; it may have not been drawn
from the same source as the training data.
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Figure 3: Confusion matrix for our top performing system on the test set.

5.1 Discussion

An important highlight from this work goes beyond Arabic dialect identification. Our work confirms the
utility of ensemble methods for different text classification tasks. These methods have proven to perform
well in similar shared tasks such as the recent Complex Word Identification (CWI) task at SemEval-
2016 (Paetzold and Specia, 2016). A description of the ensemble system applied to CWI is presented in
Malmasi et al. (2016a).

Regarding the task itself, this initial experiment shows that accurate dialect identification using ASR
transcripts is not a trivial task. An interesting extension is the creation of joint audio-transcript classifica-
tion models where transcript-based features like the ones used here are combined with acoustic features
to capture phonological variation.

6 Conclusion

We presented three robust ensemble methods trained to discriminate between four Arabic dialects and
MSA in speech transcripts. The best results were obtained by the Mean Probability Ensemble system (run
3) achieving 0.51 F1-score in the test data. The system outperformed all the 18 teams that participated
in the Arabic dialect identification task of the DSL shared task 2016. A comprehensive overview of
the 2016 DSL challenge including the results obtained by all participants is presented in Malmasi et al.
(2016b).

Our paper also discusses two important variables in Arabic dialect identification, namely the perfor-
mance of individual character- and word-based features for this task, highlighting that character 4-grams
were the features which performed best using this dataset, and the influence of the amount of training
data in the classifiers’ performance.

As discussed in Section 2, Arabic dialect identification methods are related to methods developed to
discriminate between similar languages and language varieties. In future work we would like to evaluate
whether our system also achieves good performance discriminating between the languages and language
varieties available in the DSL corpus collection (DSLCC) (Tan et al., 2014).
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Abstract

We investigate two approaches to automatic discrimination of similar languages: Expectation-
maximization algorithm for estimating conditional probability P (word|language) and a series
of byte level language models. The accuracy of these methods reached 86.6 % and 88.3 %, re-
spectively, on set A of the DSL Shared task 2016 competition.

1 Introduction

Discriminating similar languages is a very important step in building monolingual text corpora. Given a
focus language, the aim is to get rid of all documents in languages other than the focus language. Our
goal is to implement language-independent and efficient algorithms able to process billion-word corpora
with sufficient accuracy and at a reasonable speed.

Organizers of the DSL shared task in 2016 provided three datasets for 2 subtasks: discrimination of a)
similar languages and language varieties in newspaper texts (Bosnian, Croatian, and Serbian; Malay and
Indonesian; Portuguese: Brazil and Portugal; Spanish: Argentina, Mexico, and Spain; French: France
and Canada), b) in social media “texts” and c) Arabic dialects. Participants could submit closed or
open variants: whether using only training and development data provided by organizers or using any
additional language resources. Details are available at the website of the task.1

2 Related Work

The previous DSL tasks were organised in 2014 (Zampieri et al., 2014) and 2015 (Zampieri et al., 2015).
Unlike the two stage statistical classifier trained on character and word ngram features (Goutte and

Leger, 2015) which performed the best in 2015 we wanted to try the EM algorithm in the steps of
(Nigam et al., 2000) who used the EM to improve accuracy of a classifier trained on a small number
of documents by adding a large number of unlabelled instances (aiming on the open submission). We
also did not implement a separate classification stage for identifying the language group. Neither we
implemented a special algorithm to discriminate Arabic dialects. The same approaches were used for all
subtasks.

This year’s competition (Malmasi et al., 2016) introduced languages harder to discriminate while
Czech/Slovak which is easy to distinguish because of differences in high frequency words was aban-
doned.

3 Expectation-Maximization of P (word|language)

This method is an implementation of the EM algorithm for all sentence words. Given a sentence of
words w1, w2, . . . , wn, the aim is to find the language with the highest probability “the sentence is in the
language”. That can be reduced to maximizing probabilities of separate words belonging to the language.

This work is licenced under a Creative Commons Attribution 4.0 International Licence.
Licence details: http://creativecommons.org/licenses/by/4.0/

1http://ttg.uni-saarland.de/vardial2016/dsl2016.html
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P (lang|sentence) = P (lang|w1, w2, . . . , wn) =
n∏
i=1

P (lang|wi)

That can be decomposed by applying the Bayes’ theorem:

P (lang|word) =
P (word|lang) · P (lang)

P (word)

P (lang) is determined by the distribution of samples in the training data. A uniform distribution was
used in the case of the competition. The value can be adjusted accordingly for other uses, e.g. separating
a minority dialect represented by less text from a standard text in a language. P (word) can also be
obtained from the training data (closed submission) or from a large text corpus (open submission).

P (lang) =
1

language count
, P (word) =

countall data(word)
countall data(any word)

The iterative algorithm is initialized with relative counts of words in texts in the language from the
training set (closed submission) or from our own big web corpora (open submission) (Jakubı́ček et al.,
2013).

P (word|lang) =
countlanguage data(word)

countlanguage data(any word)

It can be observed that some words occur quite frequently in a single language (and significantly
infrequently in other languages) while other words occur in multiple languages. To represent the ratio
of words in a language within a sentence, λlang(sent) is introduced. This enables the algorithm to learn
the weight of words from more relevant sentences with regards to the language.2

λlang(sent) =
P (lang|sent)∑languages

lang P (lang|sent)

λlang(sent) is raised to the power of α to give even more weight to words occurring in sentences
with a high probability of belonging to the language. We experimented with α ∈ {0, 1, 2, 3}. The best
results were obtained with α ∈ {0, 1}. α = n+ 1 always performed a bit worse than α = n for n ≥ 1.
Therefore it seems this kind of weight adjustment does not help in the case of the uniformly distributed
classes in the datasets.

Then, in each iteration λlang(sent) and P ′(lang|sentence) is re-calculated for each language and
each sentence.

The higher the probability lang is the language of a sentence, the higher the probability word is in
language lang for each word in the sentence.

P ′(word|lang) =

∑sentences
sent λαlang(sent) · λlang(sent)·P (word|lang)·countsent(word)∑languages

lang λlang(sent)·P (word|lang)∑sentences
sent λα+1

lang(sent) · |sent|

Results after the initialization step (zero iterations) and after the first iteration were submitted. Calcu-
lating more iterations did not contribute to accuracy improvement. It would be interesting to repeat the
experiment with unevenly distributed data.

2Let sent =“w1 w1 w1 w2” be a sentence comprised of words w1 appearing only in language L1 and word w2 appearing
only in language L2. Then λL1(sent) = 0.25 and λL2(sent) = 0.75.
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4 Chunk-based Language Model

Chunk-based language model (Baisa, 2016), CBLM, is a byte level model similar to prediction-by-
partial-match compression language models (Teahan and Harper, 2003). It stores all sufficiently frequent
sequences of bytes from training data in a prefix tree. A following byte is predicted using the longest
prefix stored in the model which ends with that byte. The length of prefixes is variable and is not limited
by their length as in n-gram models. Instead, a threshold—the number of occurrence of prefixes in
training data—is used (usually 2 or 3).

The model can assign scores3 M(s) to any unseen byte sequence s. We built models Mi for each lan-
guage in the training data separately. The language of an unknown sentence (byte sequence) LANG(s)
is then determined by the model which assigns it the highest score:

LANG(s) = arg max
i
Mi(s).

CBLM is robust because it operates on byte level. The only preprocessing used for building and
evaluation of the models was lowercasing all data. The models have one main parameter: the threshold
for the minimum frequency of byte sequences stored in the prefix tree. Using the development part of
the dataset we found out that threshold 3 performed the best, so the parameter was set to 3 in all runs.
It means that all byte sequences occurring at least 3× in training data were stored and used in language
prediction.

5 Results

The DSL competition dataset (Tan et al., 2014) was used for training and evaluation. Frequency word
lists extracted from several big web corpora described in (Jakubı́ček et al., 2013) were used for the open
submission.

Two variants of the EM algorithm based method and one run of the chunk-based language model were
submitted. The results are summarised in Tables 1–6.

Test set A had 12 classes while test sets B1 and B2 had 5 classes. The samples were evenly distributed
across the classes and so a random baseline is used. The samples in test set C were slightly unbalanced,
so a majority class baseline of 22.79 % is used. The baselines for each data set were: A—Random
baseline: 0.083, B1/B2—Random baseline: 0.20, C—Majority class baseline: 0.2279.

Run Accuracy F1 (micro) F1 (macro) F1 (weighted)
EM, 0 iter 0.8651 0.8651 0.8643 0.8643
EM, 1 iter 0.8659 0.8659 0.865 0.865
CBLM 0.8827 0.8827 0.8829 0.8829

Table 1: Results for test set A (closed training).

Run Accuracy F1 (micro) F1 (macro) F1 (weighted)
E–M, 0 iter 0.8 0.8 0.5663 0.7929
E–M, 1 iter 0.712 0.712 0.528 0.7392
CBLM 0.424 0.424 0.1899 0.4557

Table 2: Results for test set B1 (closed training).

As can be seen, the EM algorithm performed better on datasets B and C while CBLM proved better on
dataset A. By checking the errors made by our classifiers we found that in some cases one method deals
with the sample well while the other not, for example EM cannot make use of n-grams of characters in
suffixes of words characteristic for certain languages but not seen in the training data. Combining both
approaches could result in further improving the accuracy.

3For our purpose we do not need models to provide true probability distributions.
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Run Accuracy F1 (micro) F1 (macro) F1 (weighted)
E–M, 0 iter 0.8 0.8 0.5093 0.8149
E–M, 1 iter 0.51 0.51 0.4632 0.6484

Table 3: Results for test set B1 (open training).

Run Accuracy F1 (micro) F1 (macro) F1 (weighted)
E–M, 0 iter 0.76 0.76 0.5404 0.7565
E–M, 1 iter 0.692 0.692 0.5155 0.7216
CBLM 0.602 0.602 0.3052 0.6103

Table 4: Results for test set B2 (closed training).

Run Accuracy F1 (micro) F1 (macro) F1 (weighted)
E–M, 0 iter 0.728 0.728 0.5418 0.7586
E–M, 1 iter 0.54 0.54 0.4207 0.6731

Table 5: Results for test set B2 (open training).

Run Accuracy F1 (micro) F1 (macro) F1 (weighted)
E–M, 0 iter 0.3961 0.3961 0.3622 0.3666
E–M, 1 iter 0.461 0.461 0.4481 0.4516
CBLM 0.4474 0.4474 0.4459 0.4473

Table 6: Results for test set C (closed training).

6 Discussion

Our main motivation is to clean big monolingual corpora built from web documents used for lexicog-
raphy or language studies. For example, we are dealing with separation of Bokmal and Nynorsk from
Norwegian texts or removing Danish and Swedish from the same data. Our methods were devised for
processing larger texts, e.g. paragraphs or documents rather than sentences, yet the results show they can
be applied to the competition data as well.

According to our inspection of the competition data a large part seems not to contain linguistically
rich sentences or even continuous text. Some samples looked like sports results or rows from tabular
data. We believe both methods would yield better results when trained and evaluated on longer samples
of fluent language.

Furthermore, all datasets were balanced in the sense that all languages and dialects were evenly rep-
resented (or almost evenly in some cases). This fact might help some machine learning techniques and
also could be exploited explicitly but we believe that this is not the case for real scenarios and thus our
methods do not exploit this knowledge at all.

Both methods presented in this paper will be applied to cleaning big web corpora. We also plan to
combine the methods by applying CBLM to cases where EM is not sure.
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Liling Tan, Marcos Zampieri, Nikola Ljubešic, and Jörg Tiedemann. 2014. Merging comparable data sources
for the discrimination of similar languages: The dsl corpus collection. In Proceedings of the 7th Workshop on
Building and Using Comparable Corpora (BUCC), pages 11–15, Reykjavik, Iceland.

William J Teahan and David J Harper. 2003. Using compression-based language models for text categorization.
In Language modeling for information retrieval, pages 141–165. Springer.
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Abstract

We report on our system for the shared task on discrimination of similar languages (DSL 2016).
The system uses only byte representations in a deep residual network (ResNet). The system,
named ResIdent, is trained only on the data released with the task (closed training). We obtain
84.88% accuracy on subtask A, 68.80% accuracy on subtask B1, and 69.80% accuracy on subtask
B2. A large difference in accuracy on development data can be observed with relatively minor
changes in our network’s architecture and hyperparameters. We therefore expect fine-tuning of
these parameters to yield higher accuracies.

1 Introduction

Language identification is an unsolved problem, certainly in the context of discriminating between very
similar languages (Baldwin and Lui, 2010). This problem is tackled in the Discriminating between
Similar Languages (DSL) series of shared tasks (Zampieri et al., 2014; Zampieri et al., 2015). Most suc-
cessful approaches to the DSL shared task in previous years have relied on settings containing ensembles
of classifiers (Goutte et al., 2016). These classifiers often use various combinations of features, mostly
based on word, character, and/or byte n-grams (see, e.g., Cavnar et al. (1994), Lui and Baldwin (2012)).

We are interested in exploring a single methodological aspect in the current edition of this shared task
(Malmasi et al., 2016). We aim to investigate whether reasonable results for this task could be obtained
by applying recently emerged neural network architectures, coupled with sub-token input representa-
tions. To address this question, we explore convolutional neural networks (CNNs) and recurrent neural
networks (RNNs). Deep residual networks (ResNets) are a recent building block for CNNs which have
yielded promising results in, e.g., image classification tasks (He et al., 2015; He et al., 2016). ResNets are
constructed by stacking so-called residual units. These units can be viewed as a series of convolutional
layers with a ‘shortcut’ which facilitates signal propagation in the neural network. This, in turn, allows
for training deeper networks more easily (He et al., 2016). In Natural Language Processing (NLP),
ResNets have shown state-of-the-art performance for Semantic and Part-of-Speech tagging (Bjerva et
al., 2016). However, no previous work has attempted to apply ResNets to language identification.

2 Method

Several previous approaches in the DSL shared tasks have formulated the task as a two-step classification,
first identifying the language group, and then the specific language (Zampieri et al., 2015). Instead of
taking this approach, we formulate the task as a multi-class classification problem, with each language /
dialect representing a separate class. Our system is a deep neural network consisting of a bidirectional
Gated Recurrent Unit (GRU) network at the upper level, and a Deep Residual Network (ResNet) at the
lower level (Figure 1). The inputs of our system are byte-level representations of each input sentence,
with byte embeddings which are learnt during training. Using byte-level representations differs from
character-level representations in that UTF-8 encodes non-ascii symbols with more than one byte, which

This work is licensed under a Creative Commons Attribution 4.0 International License. License details:
http://creativecommons.org/licenses/by/4.0/

119



potentially allows for more disambiguating power. A concrete example can be found when considering
the relatively similar languages Norwegian and Swedish. Here, there are two pairs of letters which are
interchangeable: where Swedish uses ‘ä’ (C3 A4) and ‘ö’ (C3 B6), Norwegian uses ‘æ’ (C3 A6) and
‘ø’ (C3 B8). Hence, using the lower-level byte representation, we allow the model to take advantage
of the first shared byte between these characters. The architecture used in this work is based on the
sequence-to-sequence labelling architecture used in Bjerva et al. (2016), modified for the task of language
identification. Our system is implemented in Keras using the Tensorflow backend (Chollet, 2015; Abadi
et al., 2016).

Figure 1: Model architecture: ResNet with byte representations (~b), with a bi-GRU at the upper level.
The input example sequence is converted to a sequence of byte identifiers (one integer per byte, rather
than one integer per character), which are converted to a byte embedding representation. This input is
treated by the ResNet, followed by the bi-GRU, finally yielding the language id BS (Bosnian).

2.1 Gated Recurrent Unit Networks
GRUs (Cho et al., 2014) are a recently introduced variant of RNNs, and are designed to prevent van-
ishing gradients, thus being able to cope with longer input sequences than vanilla RNNs. GRUs are
similar to the more commonly-used Long Short-Term Memory networks (LSTMs), both in purpose and
implementation (Chung et al., 2014). A bi-directional GRU makes both forward and backward passes
over sequences, and can therefore use both preceding and succeeding contexts to predict a tag (Graves
and Schmidhuber, 2005; Goldberg, 2015). Bi-directional GRUs and LSTMs have been shown to yield
high performance on several NLP tasks, such as POS and semantic tagging, named entity tagging, and
chunking (Wang et al., 2015; Yang et al., 2016; Plank et al., 2016; Bjerva et al., 2016).

2.2 Deep Residual Networks
Deep Residual Networks (ResNets) are built up by stacking residual units. A residual unit can be ex-
pressed as:

yl = h(xl) + F(xl,Wl),
xl+1 = f(yl),

(1)

where xl and xl+1 are the input and output of the l-th layer, Wl is the weights for the l-th layer, and
F is a residual function (He et al., 2016), e.g., the identity function (He et al., 2015), which we also
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use in our experiments. ResNets can be intuitively understood by thinking of residual functions as paths
through which information can propagate easily. This means that, in every layer, a ResNet learns more
complex feature combinations, which it combines with the shallower representation from the previous
layer. This architecture allows for the construction of much deeper networks. ResNets have recently
been found to yield impressive performance in both image recognition and NLP tasks (He et al., 2015;
He et al., 2016; Östling, 2016; Conneau et al., 2016), and are an interesting and effective alternative to
simply stacking layers. In this paper we use the assymetric variant of ResNets as described in Equation
9 in He et al. (2016):

xl+1 = xl + F(f̂(xl),Wl). (2)

Our residual block, using dropout and batch normalization (Srivastava et al., 2014; Ioffe and Szegedy,
2015), is defined in Table 1. In the table, merge indicates the concatenation of the input of the residual
block, with the output of the final convolutional layer.

type patch/pool size

Batch normalization + ReLu + Dropout (p = 0.5)
Convolution 8
Batch normalization + ReLu + Dropout (p = 0.5)
Convolution 4
Merge
Maximum pooling 2

Table 1: Residual block overview.

2.3 System Description
We represent each sentence using a byte-based representation (Sb). This representation is a 2-
dimensional matrix Sb ∈ Rs×db , where s is the zero-padded sentence length and db is the dimensionality
of the byte embeddings. Byte embeddings are first passed through a ResNet in order to obtain a repre-
sentation which captures something akin to byte n-gram features.1 The size of n is determined by the
convolutional window size used. We use a convolutional window size with length 8, meaning that for
each byte in the input, the ResNet can learn a suitable representation incorporating up to 8 bytes of con-
text information. These overlapping byte-based n-gram features are then passed through to the bi-GRU,
which yields a sentence level representation. The softmax layer applied to the bi-GRU output is then
used in order to obtain the network’s predicted class per input.

2.3.1 Hyperparameters
The hyperparameters used by the system were tuned on an altogether different task (semantic tagging),
and adapted for the current task. The dimensionality of our byte embeddings, db, is set to 64. Our
residual block is defined in Section 2.2. We use rectified linear units (ReLUs) for all activation functions
(Nair and Hinton, 2010), and apply dropout with p = 0.1 to both input weights and recurrent weights in
the bi-GRU. All GRU layers have 100 hidden units.

All experiments were run with early stopping monitoring validation set loss, using a maximum of 50
epochs, and a batch size of 100. Optimisation is done using the ADAM algorithm (Kingma and Ba,
2015), with the categorical cross-entropy loss function as training objective.

For the B tasks, we train the model in the same way as for the A tasks. Only a handful of instances
(n ≈ 5) per B run are classified as belonging to a language which the B group does not contain. These
cases are automatically converted to being in the class hr. For the B tasks, we also perform a simple
clean-up of the data. We first remove all hyperlinks, hashtags and usernames from the text with a simple
regex-based script. We then remove all tweets classified as English. We submitted three runs for each
subtask. The system used for runs 1, 2 and 3 contain five, four and three residual blocks respectively.

1Note that bytes are passed through the ResNet one by one, yielding one representation per byte, rather than as a whole
sequence, which would yield a single representation per sentence.
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3 Results

Test Set Track Run Accuracy F1 (micro) F1 (macro) F1 (weighted)

A closed Baseline 0.083
A closed run1 0.8462 0.8462 0.8415 0.8415
A closed run2 0.8324 0.8324 0.8272 0.8272
A closed run3 0.8488 0.8488 0.8467 0.8467

B1 closed Baseline 0.020
B1 closed run1 0.682 0.682 0.6802 0.6802
B1 closed run2 0.676 0.676 0.6708 0.6708
B1 closed run3 0.688 0.688 0.6868 0.6868

B2 closed Baseline 0.020
B2 closed run1 0.684 0.684 0.6788 0.6788
B2 closed run2 0.698 0.698 0.6942 0.6942
B2 closed run3 0.664 0.664 0.6524 0.6524

Table 2: Results for all runs in subtasks A, B1 and B2 (closed training).

es-ar es-es es-mx fr-ca fr-fr id my pt-br pt-pt hr bs sr

es-ar 824 77 94 0 1 1 0 2 1 0 0 0
es-es 90 778 127 0 1 0 0 1 2 0 1 0
es-mx 210 269 520 0 0 0 0 1 0 0 0 0

fr-ca 0 0 0 956 44 0 0 0 0 0 0 0
fr-fr 0 0 0 93 905 0 0 1 0 1 0 0

id 0 0 0 0 0 951 48 0 0 0 0 1
my 0 0 0 0 0 30 970 0 0 0 0 0

pt-br 0 0 1 0 0 0 0 891 107 1 0 0
pt-pt 0 1 0 0 0 0 0 78 920 0 1 0

hr 0 0 0 0 0 0 0 0 0 823 150 27
bs 0 0 0 0 1 0 0 1 0 143 730 125
sr 0 0 0 0 1 0 0 0 0 15 67 917

Table 3: Confusion matrix, closed run 3, on test set A. The x-axis indicates predicted labels, and the
y-axis indicates true labels.

We evaluate our system in subtasks A, B1 and B2. Subtask A contains data for five language groups,
with two to three languages in each group (Tan et al., 2014). Subtask B1 and B2 contain data for a
subset of the languages in subtask A, compiled from Twitter. Subtask B1 contains the amount of tweets
necessary for a human annotator to make reliable judgements, whereas B2 contains the maximum amount
of data available per tweet.

For subtasks A and B1, run 3 results in the best accuracy on test, whereas run 2 results in the best
accuracy on B2. The results are shown in Table 2. Table 3 and Table 4 contain confusion matrices for
the results in subtask A and B respectively.

4 Discussion

Judging from the confusion matrices in Section 3, our system has very low confusion between language
groups. However, confusion can be observed within all groups. Although the system achieves reasonable
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B1 B2

pt-br pt-pt hr bs sr pt-br pt-pt hr bs sr

pt-br 74 24 1 0 1 54 40 3 2 1
pt-pt 31 67 1 0 1 15 80 5 0 0

bs 0 0 60 31 9 0 0 75 20 5
hr 1 0 20 62 17 0 0 31 56 13
sr 4 0 5 10 81 2 0 8 6 84

Table 4: Confusion matrix, closed run 3 on test set B1 (left) and closed run 2 on test set B2 (right). The
x-axis indicates predicted labels, and the y-axis indicates true labels.

performance, there is a large gap between our system and the best performing systems (e.g. Çöltekin and
Rama (2016), who obtain 89.38% accuracy on task A, 86.2% on B1, and 82.2% on B2). This can to
some extent be explained by limitations caused by our implementation.

The largest limiting factor can be found in the fact that we only allowed our system to use the first ca.
384 bytes of each training/testing instance. For the training and development set, and subtask A, this was
no major limitation, as this allowed us to use more than 90% of the available data. However, for subtasks
B1 and B2, this may have seriously affected the system’s performance. Additionally, we restricted our
system to using only byte embeddings as input. Adding word-level representations into the mix, would
likely increase system performance.

We also observed considerable differences in development accuracy when changing hyperparameters
of our network in relatively minor ways. For instance, altering the patch sizes used in our CNNs had
a noticeable impact on validation loss. However, altering the amount of residual blocks used, did not
have a large effect on results. The neural network architecture, as well as most of the hyperparameters,
were tuned on an altogether different task (semantic tagging), and adapted for the current task. Further
fine tuning of the network architecture and hyperparameters for this task would therefore likely lead to
narrowing the performance gap.

5 Conclusions

We implemented a language identification system using deep residual networks (ResNets) coupled with a
bidirectional Gated Recurrent Unit network (bi-GRU), using only byte-level representations. In the DSL
2016 shared task, we achieved reasonable performance, with 84.88% accuracy on subtask A, 68.80%
accuracy on subtask B1, and 69.80% accuracy on subtask B2. Although acceptable performance was
achieved, further fine tuning of input representations and system architecture would likely improve per-
formance.
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Abstract

We describe several systems for identifying short samples of Arabic dialects, which were pre-
pared for the shared task of the 2016 DSL Workshop (Malmasi et al., 2016). Our best system,
an SVM using character tri-gram features, achieved an accuracy on the test data for the task of
0.4279, compared to a baseline of 0.20 for chance guesses or 0.2279 if we had always chosen the
same most frequent class in the test set. This compares with the results of the team with the best
weighted F1 score, which was an accuracy of 0.5117. The team entries seem to fall into cohorts,
with the all the teams in a cohort within a standard-deviation of each other, and our three entries
are in the third cohort, which is about seven standard deviations from the top.

1 Introduction

In 2016 the Distinguishing Similar Languages workshop (Malmasi et al., 2016) added a shared task
to classify short segments of text as one of five Arabic dialects. The workshop organizers provided a
training file and a schedule. After allowing the participants development time, they distributed a test file,
and evaluated the success of participating systems.

We built several systems for dialect classification, and submitted runs from three of them. Interestingly,
our results on the workshop test data were not consistent with our tests on reserved training data.

Our accuracy rates cluster around 40%; the rates of the best systems were a little better than 50%. If we
take the raw scores as drawn from a binomial distribution, the standard deviation is

√
p(1− p)n. With

n = 1540, and p = 0.5 or p = 0.4 the standard deviation is 19.2 or 19.6 correct answers respectively,
corresponding to a difference in accuracy of about 1.25%. Since the best overall accuracy score is
51.33%, our best score is 6.9 standard deviations below it. (The scores of the top three teams don’t seem
to be significantly different from each other.)

On reserved training data, our systems all scored much better than they did on the test data, with
our best system achieving an accuracy rate of 57%. No doubt the best systems in the trial also scored
better in training. In addition to describing our systems, we speculate what factors might account for the
difference in training and test results.

2 Related Work

The Arabic dialects have a common written form and unified literary tradition, so it seems most logical to
distinguish dialects on the basis of acoustics, and there is a fair amount of work there, including (Hanani
et al., 2013; Hanani et al., 2015; Ali et al., 2016). Determining the contents of a transcript, i.e. what word
that sound sequence is most likely to be, is easier if you know what language model and what dictionary
to apply. (Najafian et al., 2014)

Language modeling of Arabic dialects has been held back by an absence of appropriate corpora. Work
has been done by Al-Haj et al. (2009; Ali et al. (2008; Elmahdy et al. (2012; Elmahdy et al. (2010;
Novotney et al. (2011; Elmahdy et al. (2013; Vergyri et al. (2005; Zaidan and Callison-Burch (2011) and

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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EGY Egyptian The dialect most often called Egyptian is an ur-
ban dialect used in Cairo and Alexandria. The
next largest Egyptian dialect, Sa’idi, with 20 million
speakers, is said to be incomprehensible to Cairene
speakers.

GLF Gulf The dialects from the Arabic Gulf countries of
Bahrain, Kuwait, Oman, Saudi Arabia, United Arab
Emirates, and sometimes Iraq are often grouped to-
gether.

LAV Levantine This group may include dialects from Jordan, Pales-
tine, Syria. (The label LAV is used consistently in
this corpus.)

MSA Modern Standard Arabic This includes most Arabic literature and most formal
speech, including television news.

NOR North African Dialects from north Africa including the countries
of Algeria, Libya, Morocco, Tunisia.

Table 1: Dialect Labels

Ali et al. (2016), most of whom developed corpora for the purpose, several of which are now publicly
available.

Ali et al. (2016) developed the corpus on which the DSL Arabic shared task is based. Their own
dialect detection efforts depended largely on acoustical cues. Malmasi et al. (2015) do Arabic dialect
identification from text corpora, including the Multi-Dialect Parallel Corpus of Arabic (Bouamor et al.,
2014) and the Arabic Online Commentary database (Zaidan and Callison-Burch, 2011). Zaidan and
Callison-Burch (2014) builds on their own corpus to do dialect identification. ElFardy and Diab (2013)
also build a classifier based on the Zaidan and Callison-Burch (2011) corpus.

Most of the work identifying Arabic dialects from text uses character features; many also use word
features. Many use Support Vector Machines (SVM.) We investigated building SVM models using
character n-gram features.

In the 2014 DSL workshop shared task, the second place entry (Porta and Sancho, 2014) used a
whitelisted words feature, the 10,000 most frequent words in each language, which is slightly similar
to the idea we implement in Section 4.3. However, given the substantial overlap in vocabulary between
Arabic dialects, our approach is to look for unusual frequencies, both excesses and scarcities.

3 Methodology and Data

3.1 Training and Test Data

The training data is drawn from the speech corpus collected by Ali et al. (2016). The text is provided in
the Buckwalter transcription (Buckwalter, 2002). There are no vowels, and no punctuation, except for
the space character.

The training data comprises 7619 segments, ranging in size from one to 18017 characters each. Each
segment is labeled with one of five Arabic dialects as shown in table 3.1. The labels are broad and
imprecise. For example rural and urban dialects in a single country are likely to differ a great deal,
and both accents and vocabulary might have big differences between countries. For another example,
urban Palestinian and urban Syrian are both Levantine, but are easily distinguished by pronunciation,
vocabulary, and the grammar of negation.

Many of the very short segments appear more than once, with different dialect labels. For example,
B lA “no” appears three times, labelled Gulf, Levantine, and North African. This reflects vocabulary
overlap between dialects, as well as a small sample bias (less than 300 of the segments are only a single
word) since this word could also appear in Egyptian and MSA.

127



The number of segments of various sizes is shown in table 2. Notice that almost 20% of the segments
are less than 40 characters long, but less than 2% of the data is in these segments. Similarly only 10%
of the segments are greater than 520 characters, but 38% of the training data is in these segments, with
18017 characters, 1% of the data, in a single segment.

The most common segment size is seven characters, with 61 occurences, slightly less than 1% of the
segments. Three and five character segments are in second and third place, with 3.4% of all segments
less than eight characters in length. One might expect that segmental structure would be an unreliable
feature for small segments.

In contrast, the test data for the shared task, also shown in Table 2, has less than 8% of the segments
less than 40 characters in size. The largest segment is 2454 characters, the mean is 239 characters. There
are only 21 segments, or 1.4% less than 10 characters in length. The twenty commonest sizes are all
larger than 90 characters. This is much more suitable for discovering features in segments, but doesn’t
perfectly match the training data.

segment size number of segments total characters in all in this range
training test training test

1 - 40 1510 119 30027 2576
41 - 80 1063 169 64032 10593
81 - 120 898 224 89242 23002
121 - 160 702 227 98197 31975
161 - 200 556 219 99443 39220
201 - 240 512 145 112377 31748
241 - 280 387 110 100655 28418
181 - 320 327 60 98136 18192
321 - 360 251 51 85298 17276
360 - 400 215 23 81505 8759
401 - 440 167 21 70047 8724
441 - 480 155 15 71291 6904
481 - 520 114 14 57125 7012
521 -∞ 762 143 651156 132073

sums 7619 1540 1708531 366472

Table 2: Training and Test data by segment size

3.2 Character N-gram feature vectors
The N-gram components of the sequence of characters generated from a sentence S can be represented
as a D-dimensional vector p where, D is the number of all N-grams, Cj is the jth N-gram and the
probability pj of Cj is estimated using counts of N-grams,

pj =
count(Cj)∑
i count(Ci)

(1)

Where the sum in (1) is performed over all N-grams and Count(Cj) is the number of times the N-gram
component Cj occurs in the produced sequence of tokens.

Assuming ptar and pbkg are probability vectors of the target and background Arabic dialects respec-
tively, the SVM can be applied to find a separating hyperplane h by using different kinds of kernel
functions. The most commonly used SVM kernels are the Gaussian and the polynomial. The simple
linear dot-product kernel is used in this system because other kernels gave no improvement.

3.3 Weighting
Before applying SVM, the generated probabilities vectors, pj , are weighted to emphasize the most dis-
criminative components (i.e. those which occur frequently in one dialect and infrequently in others). The
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N-gram components which are common in most dialects, such as common characters or words, contain
little discriminative information and are de-emphasized. Numerous weighting techniques are available
for this purpose, such as the Inverse Document Frequency (IDF) from Information Retrieval (IR), Use-
fulness from Topic Spotting and Identification, and the Log-Likelihood Ratio (LLR) weighting technique
proposed in (Campbell et al., 2007).

The LLR weighting wj for component Cj is given by:

wj = g

(
1

P (Cj/all)

)
(2)

Here g() is a function used to smooth and compress the dynamic range (for example, g(x) =
√

x, or
g(x) = log(x) + 1). p(Cj/all) is the probability of N-gram component Cj across all dialects.

The components which have zero occupancy in all dialects are removed since they do not carry any
useful information. A benefit of discarding these non-visited components is that it reduces the feature
dimension dramatically, particularly for the high order N-gram system as the dimension of the N-gram
increases exponentially (Mn), where M is the number of distinct Buckwalter Arabic transcription char-
acters in the data set (M = 51 for the training data.)

Those N-gram components which have a very small probability have a very high weighting, allowing
a minority of components to dominate the scores. To prevent this, a minimum threshold T1 on the
weighting wj was applied. According to Zipfs law, the rank-frequency distribution of words in a typical
document follows a decaying exponential. The high ranking words with high probability are not useful
for discrimination because they appear in most of the documents. Conversely, the low-rank words are too
rare to gather useful statistical information. The area of interest is somewhere in the middle. To address
this we apply a second, maximum, threshold T2 on the weighting vector to deemphasize the common
components. The values of T1 and T2 were determined empirically on the training data set.

3.4 Feature Selection

In addition to the weighting and thresholds described in the above sub-section, a feature selection tech-
nique is needed to minimize the number of N-gram components by keeping only those which are most
discriminative. This is particularly necessary in high-order N-gram systems because the dimension is
increased exponentially. Consequently, reducing the number of N-gram components decreases the com-
putational cost and the required amount of memory.

A powerful feature selection technique based on the information entropy is applied to all n-gram
feature vectors.

4 The systems

Six different systems were investigated during development; test runs were submitted for three of these.
In addition, after the testing was completed, we ran some experiments on three additional SVM variants.

• Two of the systems, discussed in section 4.1, are based on the same set of extracted character n-
grams. One run was submitted from these two systems, an SVM based on a subset of 3-gram
character sequences.

• Our second run is the output of a system based on word frequencies (section 4.3.)

• Two neural network models were built (section 4.2.) Neither appears as a stand-alone run, but their
output is incorporated into into the input for the system used for our final run.

• A neural network system (section 4.4) was built to combine the word and neural-network models,
and this system was used for our third run.
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4.1 Characteristics of the SVM systems

In developing these system, the provided training data was split, with 70% going into a training set, and
30% retained for validation and testing.

For the submitted system, the model was built using the WEKA tool (Hall et al., 2009).
The model was trained on all training tri-gram data set using 10-fold cross validation on SVM classifier

after doing feature selection using information gain.
This system gave our best run on the test data, with an accuracy of 0.4279220779 and a weighted F1

score of 0.4264282701. It performed much better against the reserved test data, achieving an accuracy
rate on that set of 57% with character trigram features.

4.2 LSTM systems

For the LSTM and word-feature systems, we chose a different split of the training data, into 90% training,
5% validation, and 5% test.

Our LSTM system is based on the char rnn software described in (Karpathy et al., 2016). This is a
character-based language model for text, built with a neural net.

The char rnn software implements a Long Short Term Memory recurrent neural network (LSTM
RNN) which reads the test or training data one character at a time. In training, the error function is
effectively the entropy of the next character; in testing, the same network is repeatedly used to predict
the most likely next character, resulting in excerpts in the style of the training data.

We modified the program1, which is written in the Torch language (Collobert et al., 2011) so that it
classifies text samples, instead of predicting the next character.

We developed two LSTM RNN models. Both have one-of-48 character inputs, and the hidden (LSTM)
layers have forget gates, etc. at each node. As in other RNN models, the state of each node in a hidden
layer is an input to the next input step, so that at each character input, not only the current input character,
but the past input history affects the output.

We specify a maximum sequence length n in training, and at each training step the past states of the
neural net are unrolled, so that internal states of the hidden layers for past states are considered while
adjusting the parameters being trained.

Our better-performing LSTM has two hidden layers of 128 nodes each. This amounts to 223877
parameters to train. It was trained with a maximum sequence length of 520 characters, so during training
up to 520 complete past states of the neural net need to be retained. (520 was chosen as the 90th
percentile of sizes from the training data.) In addition, Karpathy’s code was built to take advantage of
parallel processing in a graphics controller, and handles batches of sequences at a time. Typically, at each
training step a batch of sequences, all the same length, would be processed through a single character of
input, and the single set of parameters used by all batches would be adjusted to optimize the loss function
for the current character, given that changes in the parameters would have affected previous states.

Although we did not use a graphics controller, we kept the batch structure, which averages out the
parameter changes, and reduces the training time per segment, since all the segments in a batch contribute
to the training step.

We trained with a maximum batch size of 50, but given the training data, such large batches occurred
only for small sequence sizes.

Our training technique was to check the loss function for the validation set every thousand training
steps, roughly seven times an epoch. When the validation loss began to diverge, we’d reduce the learning
rate and continue to train from the last good point. Our best loss function is 1.3176 (compare below.)
This gave us an accuracy rate on the reserved test data of 0.4368.

We also experimented with a three hidden layer LSTM, again with 128 nodes in each hidden layer.
The number of parameters in this LSTM is 355973, and this proved to be an issue. For longer sequences,
there was not enough memory available to keep copies of the state for each character in the sequence for
modest batch sizes. It proved necessary to train with a smaller batch size (25) and a smaller sequence

1Our changes are available at https://github.com/StephenETaylor/varDialNN
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length (420.) For whatever reason, this network did not converge as well. We achieved a best loss
function of 1.4369.

4.3 Outlier unigram system
This system uses word features, in the hope that they would be independent of the character features other
models were using. It goes through the training data, and builds frequencies for uni-grams, bi-grams,
and tri-grams for the whole set and for each dialect.

For n-grams which occur five or more times in the training set, it estimates by how many standard
deviations the count in each dialect diverges from the expected mean, assuming a binomial distribution.

An advantage feature of this model is that it gives an intermediate result which is easily interpretable.
The list of common and uncommon words is interesting, and probably forms a big part of how a human
would make the distinction between dialect samples. Of course, many of the most-divergent words are
named entities. The commonness of place names in language samples supposedly tied to geographic
areas isn’t surprising, but there’s no reason that a discussion of Casablanca shouldn’t be carried out in
Gulf Arabic, so the fact that it happens not to have been doesn’t convey deep information about the
dialect.

Tallying standard deviations of words in a sample as positive and negative votes for whether the sample
is in a dialect turns out to be very effective.

Using unigrams alone, it gave an accuracy rate on the 5% reserved test data of 0.5103.
Before considering how to merge in bigram and trigram data, we turned to attempting to combine the

results from this program with the output of our two LSTM models.

4.4 System Combiners
As soon as it became clear that the two-layer LSTM was nearing a local if not global maximum per-
formance, we looked for models with independent errors which could be combined with it (or replace
it.)

The three-layer LSTM and two-layer LSTM use a soft-max function to determine the dialect; we
arranged to normalize and output the assigned probabilities for each dialect from the two LSTMs and the
unigram frequency model. A Python script was written to combine the probabilities from each model
with addition. This is the plurality model of Malmasi and Dras (2015).

However, the normalized output of the section 4.3 model was too extreme. The rankings were not
probabilities and after normalization, ”probabilities” came out to either almost zero or almost one. We
tried various rescaling functions to get the ”probabilities” better distributed, without hurting the accuracy
rate. This helped the voting work better, but not significantly. And it seemed logical that the two LSTMs,
which have lower accuracy, should be down-weighted somehow.

Therefore we trained a simple neural network on the validation data. This combiner network has 15
inputs – the dialect weights from each system, one hidden layer of 10 nodes, and 5 softmax outputs. This
system accepted the outputs from the two LSTM systems and the outlier system, and gave us an accuracy
rate of 0.57 on our reserved training data.

4.5 Post-test experiments
After the results of the test runs came back, we conducted some experiments to see whether using all
7619 segments of the training data would have made any difference to our SVM models.

Three different orders of n-grams, 2, 3 and 4-gram, are used to model the sentences of training and
testing data set. The n-gram feature vectors produced from training data are used to train Multi-class
SVM model. This results in three SVMs; 2, 3 and 4-gram based models.

After removing the n-gram components with zero counts over all training data, the dimensions of
resulted feature vectors are 2601, 13656 and 82790 for 2-gram, 3-gram and 4-gram, respectively.

Three SVM systems were trained on bigram features, trigram features and 4-gram features respec-
tively, and evaluated on testing data (1540 sentences.) The bigram system achieved a score of 515 out
of 1540 correct, or 0.3344. The trigram system’s score was 597 out of 1540, or 0.3877. The 4-gram
system’s score was 649 out of 1540 or 0.4214, essentially the same as our best submitted system.
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5 Results

The results are rather modest – substantially above the baseline, but significantly below the best systems.
In the discussion below, we attempt to address why our test results in the shared task were so far below

our test results during development.
Herewith the judgement on our runs:

Run Accuracy F1 (micro) F1 (macro) F1 (weighted)
SVM 0.4279 0.4279 0.4257 0.4264
unigram outliers 0.3948 0.3948 0.3462 0.3409
combined unigram and LSTMs 0.4091 0.4091 0.4112 0.4117

Table 3: Results for test set C (closed training).

6 Discussion and ideas for future work

There are a few possible reasons our results on the training data were better than our results on the test
data. Dealing with some of them might have made our systems not only more robust, but perform better
in both contexts.

For the two SVM systems, we split the training data into 70% training data, 30% evaluation data. For
the LSTM and word-feature systems, we chose a different split of the training data, into 90% training,
5% validation, and 5% test. A consequence of the small amount of validation and testing data is a
fairly large standard deviation in the test results, not observed during our testing, but perhaps apparent in
the difference between results with the reserved training data (380 samples) and the workshop test data
(1540 samples.) With accuracy/error rates about 0.50 we’d expect standard deviations of 8.5 out of 380
or 2.2% and 20 out of 1540 or 1.2%, respectively. While a jack-knife approach to cross-validation might
have given us a better judgement for the mean accuracy achieved by this technique, the time involved in
re-training the LSTM would have been substantial.

There are numerous experiments that we did not carry out, which might also have improved our
development.

• Experimenting with shorter sequence lengths should have sped up training our LSTM systems. This
would have let us experiment more with different configurations.

• Seeking out a system or cloud system with a graphics coprocessor could have also sped up neural
network development.

• In general, we did not experiment with many constants, but chose them based on plausibility.

• Our word and neural net systems are both attentive to segment size, and the distribution of segment
sizes in the test data is different than the training data.

• In spite of its surprising effectiveness on the reserved training data, our unigram word system isn’t
well-thought-out. A better mathematical foundation for combining standard deviations of words is
the cumulative probability distribution of the normal curve. Adding logs of the cpdf is equivalent to
multiplying probabilities, and seems mathematically justified, whereas adding positive and negative
deviations is very ad-hoc.

Even using the cpdf will over-emphasize variability in common words, however. Reviewing the
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standard deviations of words, we see that, for example, ú

	æªK
 yEny “that is”, which occurs in MSA in

the training data 16 standard deviations less frequently than might be expected from its occurrence
in the whole corpus, still has 190 occurrences in 917 MSA training segments, and a frequency of
190/44932 = 0.004 in MSA data. So the presence of yEny in a test segment, while interesting, is
nowhere near as exciting for ruling out MSA as its standard deviation indicates.

In fact, the second and fourth ’most unusually frequent’ words in the MSA training data, respec-
tively 18.2 and 16.3 standard deviations more common than expected, are �éJ
 	�J
¢�Ê 	®Ë @ AlflsTynyp

“female Palestinian” and �é J
 Ê J
 
K @Qå�B
 @ Al<srA}ylyp “female Israeli”. These words are probably
topical, rather than typical of MSA. The frequency of AlflsTynyp in the MSA training data is about
0.002 (87 occurences) – and once in EGY, twice in GLF, eleven times in LAV. Judging from the
metadata labels in the original dataset, it is used in six or more different stories in MSA. AlflsTynyp
occurs twice in the training data we reserved for testing. In the test data, it occurs twice in EGY,
seven times in LAV, and seven times in MSA.

Similarly, Al<srA}ylyp occurs 45 times in the MSA training data and five times in all other dialects,
and occurs three times in the reserved testing data. In the test data it occurs once in EGY, 8 times in
LAV, 6 times in MSA.

It seems plausible that this story-topic effect may apply to other words in the training data, and that
this alone might be sufficient to account for a fall-off in the performance of our software on the test
task.

• Our procedure for splitting the training data was non-random, so that evaluation, verification and
test data may have shared common prefixes, since the training sentences were sorted.

• We should have used a common split of the training data for all systems, so that the SVM systems
could be combined with the others. As things stand, testing data reserved for one set of systems
overlaps training data for others.

In the months to come, we hope to use the training and test data from the workshop to carry out some
of the experiments we did not do in time to present. We owe a big ‘thank you’ to the organizers for giving
us this opportunity!
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Abstract

The most common approach in text mining classification tasks is to rely on features like words,
part-of-speech tags, stems, or some other high-level linguistic features. Unlike the common
approach, we present a method that uses only character p-grams (also known as n-grams) as
features for the Arabic Dialect Identification (ADI) Closed Shared Task of the DSL 2016 Chal-
lenge. The proposed approach combines several string kernels using multiple kernel learning. In
the learning stage, we try both Kernel Discriminant Analysis (KDA) and Kernel Ridge Regres-
sion (KRR), and we choose KDA as it gives better results in a 10-fold cross-validation carried out
on the training set. Our approach is shallow and simple, but the empirical results obtained in the
ADI Shared Task prove that it achieves very good results. Indeed, we ranked on the second place
with an accuracy of 50.91% and a weighted F1 score of 51.31%. We also present improved
results in this paper, which we obtained after the competition ended. Simply by adding more
regularization into our model to make it more suitable for test data that comes from a different
distribution than training data, we obtain an accuracy of 51.82% and a weighted F1 score of
52.18%. Furthermore, the proposed approach has an important advantage in that it is language
independent and linguistic theory neutral, as it does not require any NLP tools.

1 Introduction

It seems natural to use words as basic units in text categorization, authorship identification, plagiarism
detection or similar text mining tasks. Perhaps surprisingly, recent results indicate that methods handling
the text at the character level can also be very effective (Lodhi et al., 2002; Sanderson and Guenter, 2006;
Kate and Mooney, 2006; Popescu and Dinu, 2007; Grozea et al., 2009; Popescu, 2011; Escalante et al.,
2011; Popescu and Grozea, 2012; Ionescu et al., 2014; Ionescu et al., 2016). By avoiding to explicitly
consider features of natural language such as words, phrases, or meaning, an approach that works at the
character level has an important advantage in that it is language independent and linguistic theory neutral.
In this context, we present a method based on character p-grams that we designed for the Arabic Dialect
Identification (ADI) Shared Task of the DSL 2016 Challenge (Malmasi et al., 2016). In this task, the
participants had to discriminate between Modern Standard Arabic (MSA) and 4 Arabic dialects, in a 5-
way classification setting. A number of 18 teams have submitted their results on the final test set, and our
team (UnibucKernel) ranked on the second place with an accuracy of 50.91% and a weighted F1 score
of 51.31%. Our best scoring system is based on combining three different string kernels via multiple
kernel learning (MKL) (Gonen and Alpaydin, 2011). The first kernel that we considered is the p-grams
presence bits kernel1, which takes into account only the presence of p-grams instead of their frequency.
The second kernel is the (histogram) intersection string kernel2, which was first used in a text mining task
by Ionescu et al. (2014), although it is much more popular in computer vision (Maji et al., 2008; Vedaldi
and Zisserman, 2010). The third kernel is derrived from Local Rank Distance3, a distance measure that

This work is licensed under a Creative Commons Attribution 4.0 International License. License details:
http://creativecommons.org/licenses/by/4.0

1We computed the p-grams presence bits kernel using the open source code provided at http://string-kernels.herokuapp.com
2We computed the intersection string kernel using the open source code provided at http://string-kernels.herokuapp.com
3We computed the Local Rank Distance using the open source code provided at http://lrd.herokuapp.com
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was first introduced in computational biology (Ionescu, 2013; Dinu et al., 2014), but it has also shown its
application in NLP (Popescu and Ionescu, 2013; Ionescu, 2015). Although character p-grams have been
employed for ADI in several works (Darwish et al., 2014; Zaidan and Callison-Burch, 2014; Malmasi
et al., 2015), to the best of our knowledge, none of these string kernels have been previously used for
ADI. Interestingly, these kernels have also been used for native language identification (Popescu and
Ionescu, 2013; Ionescu et al., 2014; Ionescu et al., 2016), obtaining state-of-the-art performance for
several languages, including Arabic.

Two kernel classifiers (Shawe-Taylor and Cristianini, 2004) were considered for the learning task,
namely Kernel Ridge Regression (KRR) and Kernel Discriminant Analysis (KDA). The KDA classifier
is sometimes able to improve accuracy by avoiding the masking problem (Hastie and Tibshirani, 2003).
In a set of preliminary experiments performed on the training set, we found that KDA gives slightly
better results than KRR. Hence, all our submissions are based on learning with KDA. Before submitting
our results, we have also tuned our string kernels for the task. First of all, we tried out p-grams of
various lengths, including blended variants of string kernels as well. The best accuracy was obtained
with blended kernels of 3 to 6 p-grams. Second of all, we have evaluated the individual kernels and
various MKL combinations. The empirical results indicate that combining kernels via MKL can help to
improve the accuracy by nearly 1%. All these choices played a significant role in obtaining the second
place in the final ranking of the ADI Shared Task. After the challenge, as we learned that the test set
comes from a different source, we further improved our models just by adding more regularization.
Interestingly, our approach treats the text documents simply as strings, since it does not involve any
linguistic processing of the text, not even tokenization. Therefore, our method is language independent
and linguistic theory neutral. Furthermore, the proposed approach is simple and effective, as it is just
based on shallow features (character p-grams).

The paper is organized as follows. Work related to Arabic dialect identification and to methods based
on string kernels is presented in Section 2. Section 3 presents the string kernels that we used in our
approach. The learning methods used in the experiments are described in Section 4. Section 5 presents
details about experiments, including parameter tuning, combining kernels and results of submitted sys-
tems. Finally, we draw our conclusion in Section 6.

2 Related Work

2.1 Arabic Dialect Identification

Arabic dialect identification is a relatively new NLP task with only a handful of works to address it (Bi-
adsy et al., 2009; Zaidan and Callison-Burch, 2011; Elfardy and Diab, 2013; Darwish et al., 2014; Zaidan
and Callison-Burch, 2014; Malmasi et al., 2015). Although it did not received too much attention, the
task is very important for Arabic NLP tools, as most of these tools have only been design for Modern
Standard Arabic. Biadsy et al. (2009) describe a phonotactic approach that automatically identifies the
Arabic dialect of a speaker given a sample of speech. While Biadsy et al. (2009) focus on spoken Arabic
dialect identification, others have tried to identify the Arabic dialect of given texts (Zaidan and Callison-
Burch, 2011; Elfardy and Diab, 2013; Darwish et al., 2014; Malmasi et al., 2015). Zaidan and Callison-
Burch (2011) introduce the Arabic Online Commentary (AOC) data set of 108K labeled sentences, 41%
of them having dialectal content. They employ a language model for automatic dialect identification on
their collected data. A supervised approach for sentence-level dialect identification between Egyptian
and MSA is proposed by Elfardy and Diab (2013). Their system outperforms the approach presented by
Zaidan and Callison-Burch (2011) on the same data set. Zaidan and Callison-Burch (2014) extend their
previous work (Zaidan and Callison-Burch, 2011) and conduct several ADI experiments using word and
character p-grams. Different from most of the previous work, Darwish et al. (2014) have found that word
unigram models do not generalize well to unseen topics. They suggest that lexical, morphological and
phonological features can capture more relevant information for discriminating dialects. As the AOC
corpus is not controlled for topic bias, Malmasi et al. (2015) also state that the models trained on this
corpus may not generalize to other data as they implicitly capture topical cues. They perform ADI ex-
periments on the Multidialectal Parallel Corpus of Arabic (MPCA) (Bouamor et al., 2014) using various
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word and character p-grams models in order to assess the influence of topic bias. Interestingly, Malmasi
et al. (2015) find that character p-grams are “in most scenarios the best single feature for this task”, even
in a cross-corpus setting. Their findings are consistent with our results in the ADI Shared Task of the
DSL 2016 Challenge (Malmasi et al., 2016), as we ranked on the second place using solely character
p-grams. It is important to remark that the ADI Shared Task data set contains Automatic Speech Recog-
nition (ASR) transcripts of Arabic speech collected from the Broadcast News domain (Ali et al., 2016).
The fact that the data set may contain ASR errors (perhaps more in the dialectal speech segments) makes
the ADI task much more difficult than in previous studies.

2.2 String Kernels
In recent years, methods of handling text at the character level have demonstrated impressive perfor-
mance levels in various text analysis tasks (Lodhi et al., 2002; Sanderson and Guenter, 2006; Kate and
Mooney, 2006; Popescu and Dinu, 2007; Grozea et al., 2009; Popescu, 2011; Escalante et al., 2011;
Popescu and Grozea, 2012; Ionescu et al., 2014; Ionescu et al., 2016). String kernels are a common
form of using information at the character level. They are a particular case of the more general con-
volution kernels (Haussler, 1999). Lodhi et al. (2002) used string kernels for document categorization
with very good results. String kernels were also successfully used in authorship identification (Sander-
son and Guenter, 2006; Popescu and Dinu, 2007; Popescu and Grozea, 2012). For example, the system
described by Popescu and Grozea (2012) ranked first in most problems and overall in the PAN 2012
Traditional Authorship Attribution tasks. More recently, Ionescu et al. (2016) have used various blended
string kernels to obtain state-of-the-art accuracy rates for native language identification.

3 Similarity Measures for Strings

3.1 String Kernels
The kernel function gives kernel methods the power to naturally handle input data that is not in the form
of numerical vectors, for example strings. The kernel function captures the intuitive notion of similarity
between objects in a specific domain and can be any function defined on the respective domain that is
symmetric and positive definite. For strings, many such kernel functions exist with various applications
in computational biology and computational linguistics (Shawe-Taylor and Cristianini, 2004). String
kernels embed the texts in a very large feature space, given by all the substrings of length p, and leave
it to the learning algorithm to select important features for the specific task, by highly weighting these
features.

Perhaps one of the most natural ways to measure the similarity of two strings is to count how many
substrings of length p the two strings have in common. This gives rise to the p-spectrum kernel. Formally,
for two strings over an alphabet Σ, s, t ∈ Σ∗, the p-spectrum kernel is defined as:

kp(s, t) =
∑
v∈Σp

numv(s) · numv(t),

where numv(s) is the number of occurrences of string v as a substring in s.4 The feature map defined
by this kernel associates a vector of dimension |Σ|p containing the histogram of frequencies of all its
substrings of length p (p-grams) with each string.

A variant of this kernel can be obtained if the embedding feature map is modified to associate a vector
of dimension |Σ|p containing the presence bits (instead of frequencies) of all its substrings of length p
with each string. Thus, the character p-grams presence bits kernel is obtained:

k0/1
p (s, t) =

∑
v∈Σp

inv(s) · inv(t),

where inv(s) is 1 if string v occurs as a substring in s, and 0 otherwise.
4Note that the notion of substring requires contiguity. Shawe-Taylor and Cristianini (2004) discuss the ambiguity between

the terms substring and subsequence across different domains: biology, computer science.

137



In computer vision, the (histogram) intersection kernel has successfully been used for object class
recognition from images (Maji et al., 2008; Vedaldi and Zisserman, 2010). Ionescu et al. (2014) have
used the intersection kernel as a kernel for strings. The intersection string kernel is defined as follows:

k∩p (s, t) =
∑
v∈Σp

min{numv(s), numv(t)},

where numv(s) is the number of occurrences of string v as a substring in s.
For the p-spectrum kernel, the frequency of a p-gram has a very significant contribution to the kernel,

since it considers the product of such frequencies. On the other hand, the frequency of a p-gram is
completely disregarded in the p-grams presence bits kernel. The intersection kernel lies somewhere in the
middle between the p-grams presence bits kernel and p-spectrum kernel, in the sense that the frequency
of a p-gram has a moderate contribution to the intersection kernel. In other words, the intersection kernel
assigns a high score to a p-gram only if it has a high frequency in both strings, since it considers the
minimum of the two frequencies. The p-spectrum kernel assigns a high score even when the p-gram has
a high frequency in only one of the two strings. Thus, the intersection kernel captures something more
about the correlation between the p-gram frequencies in the two strings. Based on these comments, we
decided to use only the p-grams presence bits kernel and the intersection string kernel for ADI.

Data normalization helps to improve machine learning performance for various applications. Since
the value range of raw data can have large variation, classifier objective functions will not work properly
without normalization. After normalization, each feature has an approximately equal contribution to the
similarity between two samples. To obtain a normalized kernel matrix of pairwise similarities between
samples, each component is divided by the square root of the product of the two corresponding diagonal
components:

K̂ij =
Kij√
Kii ·Kjj

.

This is equivalent to normalizing the kernel function as follows:

k̂(si, sj) =
k(si, sj)√

k(si, si) · k(sj , sj)
.

To ensure a fair comparison of strings of different lengths, normalized versions of the p-grams presence
bits kernel and the intersection kernel are being used. Taking into account p-grams of different length and
summing up the corresponding kernels, new kernels, termed blended spectrum kernels, can be obtained.
We have used various blended spectrum kernels in the experiments in order to find the best combination.

3.2 Local Rank Distance
Local Rank Distance (Ionescu, 2013) is a recently introduced distance measure for strings that aims to
provide a better similarity than rank distance (Dinu and Manea, 2006). Local Rank Distance (LRD) has
already shown promising results in computational biology (Ionescu, 2013; Dinu et al., 2014) and native
language identification (Popescu and Ionescu, 2013; Ionescu, 2015).

In order to describe LRD, we use the following notations. Given a string x over an alphabet Σ, the
length of x is denoted by |x|. Strings are considered to be indexed starting from position 1, that is
x = x[1]x[2] · · ·x[|x|]. Moreover, x[i : j] denotes its substring x[i]x[i+ 1] · · ·x[j − 1].

Local Rank Distance is inspired by rank distance (Dinu and Manea, 2006), the main differences being
that it uses p-grams instead of single characters, and that it matches each p-gram in the first string with
the nearest equal p-gram in the second string. Given a fixed integer p ≥ 1, a threshold m ≥ 1, and two
strings x and y over Σ, the Local Rank Distance between x and y, denoted by ∆LRD(x, y), is defined
through the following algorithmic process. For each position i in x (1 ≤ i ≤ |x| − p+ 1), the algorithm
searches for that position j in y (1 ≤ j ≤ |y| − p + 1) such that x[i : i + p] = y[j : j + p] and
|i − j| is minimized. If j exists and |i − j| < m, then the offset |i − j| is added to the Local Rank
Distance. Otherwise, the maximal offset m is added to the Local Rank Distance. An important remark
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is that LRD does not impose any mathematically developed global constraints, such as matching the i-th
occurrence of a p-gram in x with the i-th occurrence of that same p-gram in y. Instead, it is focused
on the local phenomenon, and tries to pair equal p-grams at a minimum offset. To ensure that LRD is
a (symmetric) distance function, the algorithm also has to sum up the offsets obtained from the above
process by exchanging x and y. LRD is formally defined in (Ionescu, 2013; Dinu et al., 2014).

Interestingly, the search for matching p-grams is limited within a window of fixed size. The size of
this window is determined by the maximum offset parameter m. This parameter must be set a priori and
should be proportional to the average length of the strings. We set m = 500 in our experiments, which
is about twice the average length of the ASR transcripts provided in the training set. In the experiments,
the efficient algorithm of Ionescu (2015) is used to compute LRD. However, LRD needs to be used as a
kernel function. We use the RBF kernel (Shawe-Taylor and Cristianini, 2004) to transform LRD into a
similarity measure:

k̂LRD
p (s, t) = e

−∆LRD(s, t)
2σ2

,

where s and t are two strings and p is the p-grams length. The parameter σ is usually chosen so that
values of k̂(s, t) are well scaled. In the above equation, ∆LRD is already normalized to a value in
the [0, 1] interval to ensure a fair comparison of strings of different length. Hence, we set σ = 1 in the
experiments. The resulted similarity matrix is then squared in order to make sure it becomes a symmetric
and positive definite kernel matrix.

4 Learning Methods

Kernel-based learning algorithms work by embedding the data into a Hilbert feature space, and searching
for linear relations in that space. The embedding is performed implicitly, that is by specifying the inner
product between each pair of points rather than by giving their coordinates explicitly. More precisely, a
kernel matrix that contains the pairwise similarities between every pair of training samples is used in the
learning stage to assign a vector of weights to the training samples. Let α denote this weight vector. In
the test stage, the pairwise similarities between a test sample x and all the training samples are computed.
Then, the following binary classification function assigns a positive or a negative label to the test sample:

g(x) =
n∑

i=1

αi · k(x, xi),

where x is the test sample, n is the number of training samples,X = {x1, x2, ..., xn} is the set of training
samples, k is a kernel function, and αi is the weight assigned to the training sample xi.

The advantage of using the dual representation induced by the kernel function becomes clear if the
dimension of the feature space m is taken into consideration. Since string kernels are based on character
p-grams, the feature space is indeed very high. For instance, using 5-grams based only on the 28 letters
of the basic Arabic alphabet will result in a feature space of 285 = 17, 210, 368 features. However, our
best model is based on a feature space that includes 3-grams, 4-grams, 5-grams and 6-grams. As long as
the number of samples n is much lower than the number of features m, it can be more efficient to use the
dual representation given by the kernel matrix. This fact is also known as the kernel trick (Shawe-Taylor
and Cristianini, 2004).

Various kernel methods differ in the way they learn to separate the samples. In the case of binary
classification problems, kernel-based learning algorithms look for a discriminant function, a function
that assigns +1 to examples belonging to one class and −1 to examples belonging to the other class.
For the ADI experiments, we used the Kernel Ridge Regression (KRR) binary classifier. Kernel Ridge
Regression selects the vector of weights that simultaneously has small empirical error and small norm in
the Reproducing Kernel Hilbert Space generated by the kernel function. KRR is a binary classifier, but
Arabic dialect identification is usually a multi-class classification problem. There are many approaches
for combining binary classifiers to solve multi-class problems. Typically, the multi-class problem is bro-
ken down into multiple binary classification problems using common decomposing schemes such as:
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EGY GLF LAV NOR MSA
Train set 1578 1672 1758 1612 999
Test set 315 256 344 351 274

Table 1: The sample distribution per class for the ADI Shared Task training and test sets.

one-versus-all and one-versus-one. We considered the one-versus-all scheme for our Arabic dialect clas-
sification task. There are also kernel methods that take the multi-class nature of the problem directly into
account, for instance Kernel Discriminant Analysis. The KDA classifier is sometimes able to improve
accuracy by avoiding the masking problem (Hastie and Tibshirani, 2003). In the case of multi-class ADI,
the masking problem may appear, for instance, when an Arabic dialectA is somehow related to two other
Arabic dialects B and C, in which case the samples that belong to class A can sit in the middle between
the samples of classes B and C. In this case, the class in the middle is masked by the other two classes,
as it never dominates. KDA can solve such unwanted situations automatically, without having to identify
what dialects are related by any means, such as geographical position or quantitative linguistic analysis.
More details about KRR and KDA are given in (Shawe-Taylor and Cristianini, 2004).

5 Experiments and Results

5.1 Data Set

The ADI Shared Task data set (Ali et al., 2016) contains Automatic Speech Recognition (ASR) tran-
scripts of Arabic speech collected from the Broadcast News domain. The task is to discriminate between
Modern Standard Arabic (MSA) and 4 Arabic dialects, namely Egyptian (EGY), Gulf (GLF), Levan-
tine (LAV), and North-African or Maghrebi (NOR). Table 1 shows the sample distribution per class for
the training and the test sets. As the samples are not evenly distributed, an accuracy of 22.79% can be
obtained with a majority class baseline. Another important aspect is that the training and the test set
are taken from different sources, and this could alter the performance of a classifier. However, we were
unaware of this fact before the submission deadline.

5.2 Parameter Tuning and Implementation Choices

In our string kernels approach, ASR transcripts are treated as strings. Because the approach works at
the character level, there is no need to split the texts into words, or to do any NLP-specific processing
before computing the string kernels. The only editing done to the texts was the replacing of sequences
of consecutive space characters (space, tab, and so on) with a single space character. This normalization
was needed in order to prevent the artificial increase or decrease of the similarity between texts, as a
result of different spacing.

In order to tune the parameters and to decide what kernel learning method works best, we fixed 10
folds in order to evaluate each option in a 10-fold cross-validation (CV) procedure on the training set.
We first carried out a set of preliminary experiments to determine the range of p-grams that gives the
most accurate results in the 10-fold CV procedure. We fixed the kernel method to KRR based on the
Local Rank Distance kernel (k̂LRD

p ) and we evaluated all the p-grams in the range 2-7. The results are
illustrated in Figure 1. Interestingly, the best accuracy (64.97%) is obtained with 4-grams. Furthermore,
experiments with different blended kernels were conducted to see whether combining p-grams of differ-
ent lengths could improve the accuracy. More precisely, we evaluated combinations of p-grams in three
ranges: 3-5, 4-6 and 3-6. In the end, the best accuracy (66.43%) was obtained when all the p-grams with
the length in the range 3-6 were combined. Hence, we used blended kernels with p-grams in the range
3-6 in the subsequent experiments.

Further experiments were also performed to establish what type of kernel works better, namely the
blended p-grams presence bits kernel (k̂0/1

3−6), the blended p-grams intersection kernel (k̂∩3−6), or the ker-
nel based on LRD (k̂LRD

3−6 ). These different kernel representations are obtained from the same data. The
idea of combining all these kernels is natural when one wants to improve the performance of a classifier.
When multiple kernels are combined, the features are actually embedded in a higher-dimensional space.
As a consequence, the search space of linear patterns grows, which helps the classifier to select a better
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Figure 1: Accuracy rates of the KRR based on the LRD kernel with p-grams in the range 2-7. The results
are obtained in a 10-fold cross-validation carried out on the training set.

Kernel KRR KDA
k̂

0/1
3−6 65.89% 66.18%

k̂∩3−6 65.74% 66.28%

k̂LRD
3−6 66.43% 66.54%

k̂
0/1
3−6 + k̂∩3−6 65.96% 66.42%

k̂
0/1
3−6 + k̂LRD

3−6 66.64% 67.17%

k̂∩3−6 + k̂LRD
3−6 66.81% 67.12%

k̂
0/1
3−6 + k̂∩3−6 + k̂LRD

3−6 66.98% 67.37%

Table 2: Accuracy rates of different blended string
kernels combined with either KRR or KDA. The re-
sults are obtained in a 10-fold cross-validation car-
ried out on the training set. The best result is high-
lighted in bold.

Dialects EGY GLF LAV NOR MSA
EGY 171 39 50 34 21
GLF 45 112 49 22 28
LAV 43 68 167 36 30
NOR 50 75 40 171 15
MSA 21 34 24 18 177

Table 3: Confusion matrix (on the test set) of
KDA based on the sum of the blended p-grams
presence bits kernel and the blended intersec-
tion kernel. The regularization parameter is set
to 0.8, so the F1 score of this model is 52.18%.

discriminant function. The most natural way of combining two kernels is to sum them up. Summing
up kernels or kernel matrices is equivalent to feature vector concatenation. The kernels were evaluated
alone and in various combinations, by employing either KRR or KDA for the learning task. All the
results obtained in the 10-fold CV carried out on the training set are given in Table 2.

The empirical results presented in Table 2 reveal several interesting aspects about the proposed meth-
ods. Regarding the two kernel classifiers, it seems that KDA gives consistently better results, although
the difference in terms of accuracy is almost always less than 0.5%. The individual kernels obtain fairly
similar results. Perhaps surprisingly, the best individual kernel is the kernel based on Local Rank Dis-
tance with an accuracy of 66.43% when it is combined with KRR, and an accuracy of 66.54% when it is
combined with KDA. Each and every kernel combination yields better results than each of its individual
components alone. For both KRR and KDA, the best accuracy is actually obtained when all three kernels
are combined together. Indeed, KRR reaches an accuracy of 66.98% when the blended p-grams presence
bits kernel, the blended intersection kernel and the blended LRD kernel are summed up. With the same
kernel combination, KDA yields an accuracy of 67.37%. As KDA gives consistently better results in
the 10-fold CV procedure, we decided to submit three KDA models for the test set. The first submission
(run1) is based on the LRD kernel, which seems to be the best one among the individual kernels, although
previous works (Ionescu et al., 2014; Ionescu et al., 2016) indicate that the other two kernels obtain better
results on native language identification. Influenced by these previous works, we also decided to give
a fair chance to the blended p-grams presence bits kernel and the blended intersection kernel. Hence,
the second submission (run2) is based on the sum between k̂0/1

3−6 and k̂∩3−6. Finally, our third submission
(run3) is based on the sum of all three kernels, as this combination yields the best overall accuracy in the
10-fold CV procedure carried out on the training set.
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Method Reg. Accuracy F1 (macro) F1 (weighted) Submitted
KDA and k̂LRD

3−6 0.1 49.29% 49.43% 49.54% Yes (run1)
KDA and k̂

0/1
3−6 + k̂∩3−6 0.4 50.84% 51.09% 51.23% Yes (run2)

KDA and k̂
0/1
3−6 + k̂∩3−6 + k̂LRD

3−6 0.2 50.91% 51.21% 51.31% Yes (run3)
KDA and k̂LRD

3−6 0.2 49.35% 49.51% 49.59% No
KDA and k̂

0/1
3−6 + k̂∩3−6 0.8 51.82% 52.00% 52.18% No

KDA and k̂
0/1
3−6 + k̂∩3−6 + k̂LRD

3−6 0.4 51.49% 51.52% 51.66% No
KRR and k̂LRD

3−6 10−4 50.19% 49.55% 49.72% No
KRR and k̂

0/1
3−6 + k̂∩3−6 10−4 52.21% 51.73% 51.99% No

KRR and k̂
0/1
3−6 + k̂∩3−6 + k̂LRD

3−6 10−4 51.88% 51.39% 51.56% No

Table 4: Results for test set C (closed training) of various models based on string kernels. Some models
that have not been submitted for the challenge are also included. For each model, the regularization
parameter used to control the trade-off between overfitting and underfitting is reported as well.

5.3 Results and Discussion

Table 4 presents our results for the Arabic Dialect Identification Closed Shared Task (test set C) of the
DSL 2016 Challenge, along with a few systems that were not submitted for the task. Among the three
submissions, the best performance is obtained when all three kernels are combined and KDA is used for
learning. The submitted systems were ranked by their weighted F1 score, and among the 18 participants,
our best model obtained the second place with a weighted F1 score of 51.31%. Nevertheless, the winning
solution is marginally better, with a difference of 0.0078% in terms of the weighted F1 score.

A very important remark is that all our submitted systems obtain significantly lower results on the test
set than in the 10-fold CV procedure carried out on the training set. This could be explained by the fact
that the test set comes from a different distribution. As described by Ali et al. (2016), it actually seems
that the training and the test sets come from different sources. In this context, regularization plays an
important role, as it can be used to reduce the overfitting of the training data. A straightforward exper-
iment, in which we simply double the regularization parameter of KDA, proves that all our submitted
models yield better results when they are forced to fit less of the training data. Our best weighted F1

score (52.18%) on the test set is obtained by the KDA based on the sum of the blended p-grams presence
bits kernel and the blended intersection kernel. The confusion matrix of this model is given in Table 3.
For this model, it takes about 12 minutes to compute the two kernels, train the KDA classifier and predict
the labels on a computer with Intel Core i7 2.3 GHz processor and 8 GB of RAM using a single Core.

Since the training and the test sets come from different distributions, the ADI task can also be regarded
as a cross-corpus evaluation task. An interesting remark is that Ionescu et al. (2014) have used KRR and
KDA in a cross-corpus setting for native language identification, and they have found that KRR is more
robust in such a setting. Thus, we have also included results with KRR instead of KDA, while using the
same kernels. The KRR based on the sum of the blended p-grams presence bits kernel and the blended
intersection kernel is the best KRR model on the test set, with a weighted F1 score of 51.99%.

6 Conclusion

We have presented a method based on character p-grams for the Arabic Dialect Identification (ADI)
Shared Task of the DSL 2016 Challenge (Malmasi et al., 2016). Our team (UnibucKernel) ranked on
the second place with a weighted F1 score of 51.31%. As we learned that the training and the test sets
come from different distributions (Ali et al., 2016), we were able to further improve our results after the
challenge to a weighted F1 score of 52.18%, which is better than the winning solution (51.32%). To
improve the results even further, more advanced techniques suitable for the cross-corpus setting, such as
semi-supervised or transfer learning, can be employed in future work.
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Abstract

Discriminating between closely-related language varieties is considered a challenging and im-
portant task. This paper describes our submission to the DSL 2016 shared-task, which included
two sub-tasks: one on discriminating similar languages and one on identifying Arabic dialects.
We developed a character-level neural network for this task. Given a sequence of characters, our
model embeds each character in vector space, runs the sequence through multiple convolutions
with different filter widths, and pools the convolutional representations to obtain a hidden vector
representation of the text that is used for predicting the language or dialect. We primarily focused
on the Arabic dialect identification task and obtained an F1 score of 0.4834, ranking 6th out of
18 participants. We also analyze errors made by our system on the Arabic data in some detail,
and point to challenges such an approach is faced with.1

1 Introduction

Automatic language identification is an important first step in many applications. For many languages
and texts, this is a fairly easy step that can be solved with familiar methods like n-gram language models.
However, distinguishing between similar languages is not so easy. The shared-task on discriminating
between similar languages (DSL) has offered a test bed for evaluating models on this task since 2014 (Tan
et al., 2014; Zampieri et al., 2014; Zampieri et al., 2015). The 2016 shared-task included two sub-tasks:
(1) discriminating between similar languages from several groups; and (2) discriminating between Arabic
dialects (Malmasi et al., 2016). The following language varieties were considered in sub-task 1: Bosnian,
Croatian, and Serbian; Malay and Indonesian; Portuguese of Brazil and Portugal; Spanish of Argentina,
Mexico, and Spain; and French of France and Canada. In sub-task 2, the following Arabic varieties were
considered: Levantine, Gulf, Egyptian, North African, and Modern Standard Arabic (MSA).

The training datasets released in the two sub-tasks were very different. Sub-task 1 was comprised of
journalistic texts and included training and development sets. Sub-task 2 had automatic transcriptions
of spoken recordings and included only a training set. This was the first time DSL has offered a task
on Arabic dialects. The shared-task also included an open track that allows additional resources, but we
have only participated in the closed track.

Previous DSL competitions attracted a variety of methods, achieving very high results with accuracies
of over 95%. Most teams used character and word n-grams with various classifiers. One team in 2015
used vector embeddings of words and sentences (Franco-Salvador et al., 2015), achieving very good,
though not state-of-the-art results. They trained unsupervised vectors and fed them as input to a classifier.
Here we are interested in character-level neural network models. Such models showed recent success
in other tasks (Kim et al., 2016, among many others). The basic question we ask is this: how well can
a character-level neural network perform on this task without the notion of a word? To answer this, our
model takes as input a sequence of characters, embeds them in vector space, and generates a high-level

1The code for this work is available at https://github.com/boknilev/dsl-char-cnn.
This work is licensed under a Creative Commons Attribution 4.0 International License. License details:
http://creativecommons.org/licenses/by/4.0/
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representation of the sequence through multiple convolutional layers. At the top of the network, we
output a probability distribution over labels and backpropagate errors, such that the entire network can
be learned end-to-end.

We experimented with several configurations of convolutional layers, focusing on Arabic dialect iden-
tification (sub-task 2). We also participated in sub-task 1, but have not tuned our system to this scenario.
Our best system obtained an F1 score of 0.4834 on the Arabic sub-task, ranking 6th out of 18 participants.
The same system did not perform well on sub-task 1 (ranked 2nd to last), although we have not spent
much time on adapting it to this task. In the next section, we discuss related work on identifying similar
languages and dialects. We then present our methodology and results, and conclude with a discussion
and a short error analysis for the Arabic system that sheds light on potential sources of errors.

2 Related Work

Discriminating similar languages and dialects has been the topic of two previous iterations of the DSL
task (Zampieri et al., 2014; Zampieri et al., 2015). The previous competitions proved that despite very
good performance (over 95% accuracy), it is still a non-trivial task that is considerably more difficult
than identifying unrelated languages. Admittedly, even humans have a hard time identifying the correct
language in certain cases, as observed by Goutte et al. (2016). The previous shared-task reports contain
detailed information on the task, related work, and participating systems. Here we only highlight a few
relevant trends.

In terms of features, the majority of the groups in previous years used sequences of characters and
words. A notable exception is the use of word white-lists by Porta and Sancho (2014). Different learning
algorithms were used for this task, most commonly linear SVMs or maximum entropy models. Some
groups formulated a two-step classification model: first predicting the language group and then predicting
an individual language. For simplicity, we only trained a single multi-class classification model, although
we speculate that a two-step process could improve our results. For Arabic dialect identification (sub-task
2), one could first distinguish MSA from all the other dialects, and then identify the specific dialect.

Last year, Franco-Salvador et al. (2015) used vector embeddings of words and sentences, achieving
very good results, though not state-of-the-art. They trained unsupervised word vectors and fed them as
input to a classifier. In contrast, we build an end-to-end neural network over character sequences, and
train character embeddings along with other parameters of the network. Using character embeddings is
particularly appealing for this task given the importance of character n-gram features in previous work.
In light of the recent success of character-level neural networks in various language processing and
understanding tasks (Santos and Zadrozny, 2014; Zhang et al., 2015; Luong and Manning, 2016; Kim et
al., 2016), we were interested to see how far one can go on this task without any word-level information.

Finally, this year’s task offered a sub-task on Arabic dialect identification. It is unique in that the
texts are automatic transcriptions generated by a speech recognizer. Previous work on Arabic dialect
identification mostly used written texts (Zaidan and Callison-Burch, 2014; Malmasi et al., 2015) or
speech recordings, with access to the acoustic signal (Biadsy et al., 2009; Ali et al., 2016). For example,
Ali et al. (2016) exploited both acoustic and ASR-based features, finding that their combination works
best. Working with automatic transcriptions obscures many dialectal differences (e.g. in phonology) and
leads to inevitable errors. Still, we were interested to see how well a character-level neural network can
perform on this task, without access to acoustic features.

3 Methodology

We formulate the task as a multi-class classification problem, where each language (or dialect) is a
separate class. We do not consider two-step classification, although this was found useful in previous
work (Zampieri et al., 2015). Formally, given a collection of texts and associated labels, {t(i), l(i)},
we need to find a predictor f : t → l. Our predictor is a neural network over character sequences.
Let t := c = c1, · · · , cL denote a sequence of characters, where L is a maximum length that we set
empirically. Longer texts are truncated and shorter ones are padded with a special PAD symbol. Each
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character c in the alphabet is represented as a real-valued vector xc ∈ Rdemb . This character embedding
is learned during training.

Our neural network has the following structure:

• Input layer: mapping the character sequence c to a vector sequence x. The embedding layer is
followed by dropout.

• Convolutional layers: multiple parallel convolutional layers, mapping the vector sequence x to
a hidden sequence h. We use filters that slide over character vectors, similarly to Kim (2014)’s
CNN over words. A single filter k ∈ Rwdemb of width w creates a new feature fi ∈ R by:
fi = k · xi:i+w−1 + b, where xi:i+w−1 is a concatenation of xi, ...xi+w−1 and b ∈ R is a bias term.
Each convolution is followed by a Rectified Linear Unit (ReLU) non-linearity (Glorot et al., 2011).
The outputs of all the convolutional layers are concatenated.

• Pooling layer: a max-over-time pooling layer, mapping the vector sequence h to a single hidden
vector h representing the sequence. The size of h is Σjnjwj , where there are nj filters of width wj .

• Fully-connected layer: one hidden layer with a ReLU non-linearity and dropout, mapping h to the
final vector representation of the text, h′.

• Output layer: a softmax layer, mapping h′ to a probability distribution over labels l.

During training, each sequence is fed into this network to create label predictions. As errors are back-
propagated down the network, the weights at each layer are updated, including the embedding layer.
During testing, the learned weights are used in a forward step to compute a prediction over the labels.
We always take the best predicted label for evaluation.

3.1 Training details and submitted runs
We train the entire network jointly, including the embedding layer. We use the Adam optimizer (Kingma
and Ba, 2014) with the default original parameters to minimize the cross-entropy loss. Training is run
with shuffled mini-batches of size 16 and stopped once the loss on the dev set stops improving; we allow
a patience of 10 epochs. Our implementation is based on Keras (Chollet, 2015) with the TensorFlow
backend (Abadi et al., 2015).

Param Values
ρemb 0.2, 0.5
ρfc 0.2, 0.5
L 200, 400, 800
demb 25, 50, 100
dfc 100, 250
Table 1: Tuned hy-
perparameters.

We mostly experimented with the sub-task 2 dataset of Arabic dialects. Since
the official shared-task did not include a dedicated dev set, we randomly allo-
cated 90% of the training set for development. We tuned the following hyperpa-
rameters on this split, shown in Table 1 (chosen parameters in bold): embedding
layer dropout ρemb, fully-connected layer dropout ρfc, maximum text length L,
character embedding size demb, and fully-connected layer output size dfc. Note
that removing the fully-connected layer led to a small drop in performance.

For the convolutional layers, we experimented with different combinations of
filter widths and number of filters. We started with a single filter width and noticed that a width of 5
characters performs fairly well with enough filters (250). We then added multiple widths, similarly to
a recent character-CNN used in language modeling (Kim et al., 2016). Using multiple widths led to a
small improvement. Our best configuration was: {1∗50, 2∗50, 3∗100, 4∗100, 5∗100, 6∗100, 7∗100},
where w ∗ n indicates n filters of width w.

Since the shared-task did not provide a dev set for sub-task 2, we explored several settings in our three
submitted runs:

• Run 1 used 90% of the training set for training and 10% for development.

• Run 2 used 100% of the training for training, but stopped at the same epoch as Run 1.

• Run 3 used 10 different models, each trained on a different random 90%/10% train/dev split, with
a plurality vote among the 10 models to determine the final prediction.
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Test Set Track Run Accuracy F1 (micro) F1 (macro) F1 (weighted)
A closed Baseline 0.083
A closed run1 0.8042 0.8042 0.8017 0.8017
A closed run2 0.825 0.825 0.8249 0.8249
A closed run3 0.8307 0.8307 0.8299 0.8299
A closed Best 0.8938 0.8938
C closed Baseline 0.2279
C closed run1 0.4487 0.4487 0.4442 0.4449
C closed run2 0.4357 0.4357 0.4178 0.4181
C closed run3 0.4851 0.4851 0.4807 0.4834
C closed Best 0.5117 0.5132

Table 2: Results for our submitted runs. Best results out of our runs are in bold; best overall systems
shown in italics for reference. Refer to the text for a description of runs and baselines.

For the (larger) dataset of sub-task 1, we did not perform any tuning of hyperparameters and used the
same setting as in sub-task 2, except for a larger mini-batch size (64) to speed up training. This was
our Run 1, whereas in Run 2 we used more filter maps, following the setting in (Kim et al., 2016):
{1 ∗ 50, 2 ∗ 100, 3 ∗ 150, 4 ∗ 200, 5 ∗ 200, 6 ∗ 200, 7 ∗ 200}. Run 3 was the same as Run 2, but with more
hidden units (dfc = 500) and a higher dropout rate (ρfc = 0.7) in the fully-connected layer.

4 Results

Table 2 shows the results of our submitted runs, along with two baselines: a random baseline for sub-task
1, test set A (a balanced test set), and a majority baseline for sub-task 2, test set C (a slightly unbalanced
test set). We also report results of the best performing systems in the shared-task.

In sub-task 2, test set C, we notice a fairly large difference between our runs. Our best result, with Run
3, used plurality voting among 10 different models trained on 90% of the training data. We chose this
strategy in an effort to avoid overfitting. However, during development we obtained accuracy results of
around 57-60% on a separate train/dev split, so we suspect there was still overfitting of the training set.
With this run our team ranked 6th out of 18 teams according to the official evaluation.

For sub-task 1, test set A, larger models perform somewhat better, due to the larger training set. In
this case we only have a small drop of about 2% in comparison to our performance on the dev set (not
shown). Our system did not perform very well compared to other teams (we ranked 2nd to last), but this
may be expected as we did not tune our system for this dataset.

Figure 1 shows confusion matrices for our best runs. Clearly, the vast majority of the confusion in sub-
task 1 (test set A) comes from languages in the same group, whereas languages from different groups are
rarely confused. The Spanish varieties are the most difficult to distinguish, with F1 scores between 0.57
(Mexican Spanish) and 0.75 (Argentinian Spanish). The South Slavic languages are less confused, with
F1 scores of 0.75-0.83. French and Portuguese languages are easier to distinguish (F1 around 0.90), and
Malay and Indonesian are the least confused (F1 of 0.96-0.97).

Turning to sub-task 2 (test set C), we see much more confusion, as also reflected in the final results
(Table 2). Gulf is the most confusing dialect: true Gulf examples are often predicted as MSA, and true
Levantine and North African examples are wrongly predicted as Gulf relatively frequently. This is also
reflected in a low F1 score of 0.34 for Gulf. The other dialects have higher F1 scores ranging between
0.47 and 0.50, with MSA having an F1 of 0.60, making it the easiest variety to detect.

5 Discussion

In this section we focus on the Arabic dataset (sub-task 2, test set C) and consider some of our findings.
The first issue that should be stressed is the nature of the data. As the texts are automatically gener-
ated speech transcriptions, they contain mistakes that depend on the training data used for the speech
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Figure 1: Confusion matrices for our best runs on test sets A and C. Best viewed in color.

recognizer. This might have a negative effect on the ability to correctly recognize the dialect just from
the transcriptions. For comparison, previous work found that using acoustic features improves dialect
recognition in a similar setting (Ali et al., 2016). Secondly, the transcribed texts use a transliteration
system2 that was designed for written MSA and obscures many dialectal features that are important for
distinguishing Arabic dialects, especially phonological features.

The fact that MSA is confused with dialectal varieties at all may sound surprising at first. However, due
to the writing scheme many of the known differences between MSA and the dialects are not accessible.
In addition, MSA is often mixed with dialectal Arabic in many settings (e.g. news broadcasts), so it is
reasonable to find MSA features in dialectal speech.

Levantine and Gulf dialects are relatively close geographically and linguistically, so confusing one
with the other might be expected. The confusion between Gulf and North African dialects is more
surprising, although there are always parallel innovations in dialects that stem from a mutual ancestor, as
all Arabic dialects do.

Other factors that can play into similarities and differences are local foreign languages, religious ter-
minology, and genre and domain. However, these are aspects that are difficult to tease apart without a
more careful analysis, and they also depend on the data sources and the ASR system.

Error analysis We conclude this discussion with an analysis of several example errors made by our
systems, as shown in Figure 2. These are examples from a dev set that we kept held out during the
development of our system. In each case, we give the true and predicted labels, the text, and a rough
translation. Note that the translations are often questionable due to ASR mistakes and the lack of context.

In the first example, an MSA text is predicted as Levantine, possibly due to the word AllbnAnyp
“Lebanese", whose character sequence could be typical of Levantine texts. There are clear MSA features
like the dual forms hmA and -An, but these are ambigious with dialectal forms that are found in the
training data. Note also the Verb-Subject word order, typical of MSA – such a pattern requires syntactic
knowledge and cannot be easily detected with simple character (or even word) features.

The second error shows an example of a mixed text, containing both dialectal (>h HDrp “yes the
honorable", bdy “I want") and MSA features (hl syHdv “will it happen"). It is an example of mixing that
is common in spoken data and can confuse the model.

In the third example, the form Alm$kwk fyh “doubtful" has a morphological construction that is typical
of MSA. Such a feature is difficult to capture in a character model and might require morphological
knowledge.

In the fourth example, the words AlmAlky and AlhA$my are actually seen most commonly in MSA in
the training data, but they do not contain typical character-sequences. The phrase Al Al, which indicates

2http://www.qamus.org/transliteration.htm.
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True Predicted Text Translation
1 MSA Levantine AndlEt AlHrb AllbnAnyp EAm 1975 >Syb

bxybp >ml whmA yrwyAn kyf ynhArwn
wqthA

The Lebanon war erupted in 1975, he was dis-
appointed and they both tell how they deterio-
rated back then

2 MSA Egyptian >h HDrp AlEmyd AlAHtkAk bdy dm$q
AlEASmp AlsyAdyp AlEASmp AlsyAsyp fy
fy >kvr mn mrp wbEmlyp nwEyp kbyrp jdA hl
syHdv AlmnErj fy h*h AlmwAjhp

Yes, the honorable general, the friction, I want
Damascus the sovereign capitol the sovereign
capitol more than once and in a very large high-
quality operation, will the turn take place in this
confrontation

3 MSA Gulf >mA xrjt ElY tlfzywn Aldwlp fy Alywm Al-
tAly lvwrp wqlt lh HAfZ ElY tAryx >ql Al-
wzArp Alywm Thr AlbrlmAn mn AlEDwyAt
Alm$kwk fyh <dY msyrp Al<SlAH wbdA h*A
qbl SlAp AljmEp

But (I) went on the state television the following
day after the revolution and told him, keep the
history at least the ministry today, cleanse the
parliament from the doubtful memberships if(?)
the course of reform and this started before the
Friday prayer

4 MSA North
African

>wlA Al Al Alsyd AlmAlky ytmnY mn TArq
AlhA$my Alxrwj wlA yEwd

First, mister Al-Maliki wants Tariq Al-Hashimi
to exit and not return

5 Egyptian Gulf >nA bEmrnA ftrp mn HyAty snp Al>xyrp
mtEwd ElY wqf Altfrd AHtlAly tEtbr llm-
sjd gryb mn mjls AlwzrA’ wmjls Al$Eb
wAl$wrY wnqAbp AlmHAmyn wxlAfh fkAn
>y wAlAHtjAjyp byt>vr bhA Almsjd b$>n
Al>wDAE

I in my life, time in my life, last year, used to
stop being alone of occupation(?) that is consid-
ered for a mosque close to the cabinet and the
parliament and the council and the bar associa-
tion and behind it, and the protest, the mosque
influences it because of the situation

6 Gulf North
African

lxwAtm Sgyrp fy AlHjm lkn tHtAj lEnAyp
xASA $mAtp ksArp wHtY AlxSm ArtHnA
ElyhA bn$wf h*A Altqryr wnErf mn xlAlh
>kvr En tktlAt Alywm bfqr Aldm AlsyAsAt
mE Alzmyl lwrA

The rings/stamps are of small size but they need
special care malice(?) breaker(?) and even the
discount, we are happy with it, we see this re-
port and through it we know more about the
blocks/fights of today in lack of blood, the poli-
cies with the colleague are backwards

7 North
African

Gulf "$Ahd tglb wAjb |xr mr Ebr EddA mn brnAmjh
<HnA wyAhm lA ymnE xrwj bAlb$r ftzydh
whlA Em lxrwqAt AlHq Al$yx xAld Hqq mEy
lA yglq fyjb hdf AlnAtw bAlAxtyAr mn Altwqf
lA tqAs bqyt Endk nsmH lkl $y’ HtY tqrr trHb

See a must win last time through some of his
programs, we are with them, will not prevent
leaving with someone, and add more to it, and
are now the violations, the truth the Sheikh
Khalid interrogated me, he is not worried, and
the goal of NATO must be to choose to stop,
cannot be compared, still with you, I will per-
mit everything until deciding to welcome

Figure 2: Example errors made by our system on the Arabic data set (sub-task 2). Some translations are
questionable due to quality of transcription and lack of context.

some stuttering, is more common in some of the dialects than in MSA in the training data, but is about
as common in NOR and MSA.

In the fifth example, the word byt>vr “influences" is likely misrecognized, as in Egyptian it would
probably be byt>tr, but an Arabic language model with much MSA in it might push the ASR system
towards the sequence >vr, which in turn is more common in Gulf.

In the seventh example, the phrase <HnA wyAhm “we’re with them" might be more indicative of Gulf,
but it is rare in the training set in both North African and Gulf. bqyt “remained” should have been a good
clue for North African, and indeed it appears in training 5 times as North African and not at all as Gulf.

6 Conclusion

In this work, we explored character-level convolutional neural networks for discriminating between sim-
ilar languages and dialects. We demonstrated that such a model can perform quite well on Arabic dialect
identification, although it does not achieve state-of-the-art results. We also conducted a short analysis of
errors made by our system on the Arabic dataset, pointing to challenges that such a model is faced with.

A natural extension of this work is to combine word-level features in the neural network. White-lists of
words typical of certain dialects might also help, although in preliminary experiments we were not able
to obtain performance gains by adding such features. We are also curious to see how our model would
perform with access to the speech recordings, for example by running it on recognized phone sequences
or by directly incorporating acoustic features. This, however, would require a different preparation of the
dataset, which we hope would be made available in future DSL tasks.
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Abstract

In this paper we describe the Helsinki language identification method, HeLI, and the resources
we created for and used in the 3rd edition of the Discriminating between Similar Languages
(DSL) shared task, which was organized as part of the VarDial 2016 workshop. The shared task
comprised of a total of 8 tracks, of which we participated in 7. The shared task had a record
number of participants, with 17 teams providing results for the closed track of the test set A. Our
system reached the 2nd position in 4 tracks (A closed and open, B1 open and B2 open) and in
this paper we are focusing on the methods and data used for those tracks. We describe our word-
based backoff method in mathematical notation. We also describe how we selected the corpus
we used in the open tracks.

1 Introduction

The 3rd edition of the Discriminating between Similar Languages (DSL) shared task, (Malmasi et al.,
2016), was divided into two sub-tasks: ”Similar Languages and Language Varieties” and ”Arabic di-
alects”. Furthermore, the first sub-task was divided into three test sets: A, B1 and B2. Each of the test
sets for both tasks had a closed and an open track. On the closed track the participants were allowed to
use only the training data provided by the organizers, whereas on the open track the participants could
use any data source they had at their disposal.

The first sub-task had a language selection comparable to the 1st (Zampieri et al., 2014) and 2nd
(Zampieri et al., 2015b) editions of the shared task. The languages and varieties of the sub-task 1 are
listed in the Table 2. The differences from the previous year’s shared task were the inclusion of the
French language varieties and the Mexican Spanish, as well as the exclusion of Bulgarian, Macedonian,
Czech, and Slovak. The four latter languages were practically 100% correct in most of the submissions
to the 2nd edition of the shared task. On the other hand, discriminating between the two French varieties
could be expected to be more difficult (Zampieri, 2013). Also the extra category ”unknown language”
introduced in 2015 was left out from the 3rd edition repertoire. These changes resulted in a drop of
the best reported accuracy of any team (test set A) from the 95.54% of the 2nd edition closed track to
the 89.38% of the 3rd edition closed track. The second sub-task comprised of discriminating between
Modern Standard Arabic and four dialects: Egyptian, Gulf, Levantine, and North-African. The Arabic
dialects were included in the shared task for the first time.

For the 2015 edition of the task, we used the word-based backoff language identification method
first introduced in 2010 (Jauhiainen, 2010) and made several modifications to it in order to improve
the method for the task of discriminating similar languages and to cope with the unknown language
(Jauhiainen et al., 2015b). In the 3rd edition of the task, the unknown language was left out, which
meant that the original method was directly applicable. We also felt that the modifications we made in
2015 complicated the system and did not really improve the results that much, so we decided to use the
basic method out-of-the-box for the 3rd edition of the shared task. The word-based backoff method, now
named HeLI, is a general purpose language identification method which we have used for collecting text

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/
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material written in Uralic languages in the Finno-Ugric Languages and the Internet project (Jauhiainen
et al., 2015a) funded by the Kone foundation. We have also used the method as a language identifier part
when developing a method for language set identification in multilingual documents (Jauhiainen et al.,
2015c). The language identifier tool using the HeLI-method is available as open source from GitHub1.

2 Related Work

Automatic language identification has been researched for more than 50 years. The first article on the
subject was written by Mustonen (1965). For the history of automatic language identification (of textual
material), as well as an excellent overview of the subject, the reader is suggested to take a look at the
literature review chapter of Marco Lui’s doctoral thesis (Lui, 2014). Recent surveys and overviews by
Garg et al. (2014) and Shashirekha (2014) could also be of interest.

Automatic identification of Malay and Indonesian was studied by Ranaivo-Malançon (2006). Distin-
guishing between South-Slavic languages has been researched by Ljubešic et al. (2007), Tiedemann and
Ljubešic (2012), Ljubešic and Kranjcic (2014), and Ljubešic and Kranjcic (2015). Automatic identifica-
tion of Portuguese varieties was studied by Zampieri and Gebre (2012), whereas Zampieri et al. (2012),
Zampieri (2013), Zampieri et al. (2013), and Maier and Gómez-Rodrı́guez (2014) researched language
variety identification between Spanish dialects. Discriminating between French dialects was studied by
Zampieri et al. (2012) and Zampieri (2013). Arabic dialect identification was researched by Elfardy
and Diab (2013), Darwish et al. (2014), Elfardy et al. (2014), Sadat et al. (2014), Salloum et al. (2014),
Tillmann et al. (2014), Zaidan and Callison-Burch (2014), Al-Badrashiny et al. (2015), Malmasi et al.
(2015), and Ali et al. (2016).

The system description articles provided for the previous shared tasks are all relevant and references
to them can be found in (Zampieri et al., 2014) and (Zampieri et al., 2015b). Detailed analysis of the
previous shared task results was done by Goutte et al. (2016).

3 Methodology

The basic idea of the HeLI method was first introduced in (Jauhiainen, 2010). It was also described in
the proceedings of the previous task (Jauhiainen et al., 2015b). In this paper, we present the complete
description of the method for the first time. First we introduce the notation used in the description of the
method.

3.1 On notation 2

A corpus C consists of individual tokens u which may be words or characters. A corpus C is a finite
sequence of individual tokens, u1, ..., ul. The total count of all individual tokens u in the corpus C is
denoted by lC . A feature f is some countable characteristic of the corpus C. When referring to all
features F in a corpus C, we use CF and the count of all features is denoted by lCF . The count of a
feature f in the corpus C is referred to as c(C, f). An n-gram is a feature which consists of a sequence
of n individual tokens. An n-gram starting at position i in a corpus is denoted ui,...,i�1+n. If n = 1, u is
an individual token. When referring to all n-grams of length n in a corpus C, we use Cn and the count
of all such n-grams is denoted by lCn . The count of an n-gram u in a corpus C is referred to as c(C, u)
and is defined by Equation 1.

c(C, u) =
lC+1�nX

i=1

⇢
1 , if u = ui,...,i�1+n

0 , otherwise
(1)

The set of languages is G, and lG denotes the number of languages. A corpus C in language g is
denoted by Cg. A language model O based on Cg is denoted by O(Cg). The features given values by the
model O(Cg) are the domain dom(O(Cg)) of the model. In a language model, a value v for the feature
f is denoted by vCg(f). For each potential language g of a corpus C in an unknown language, a resulting
score Rg(C) is calculated. A corpus in an unknown language is also referred to as a mystery text.

1https://github.com/tosaja/HeLI
2We would like to thank Kimmo Koskenniemi for many valuable discussions and comments.
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3.2 HeLI method

The goal is to correctly guess the language g 2 G in which the monolingual mystery text M has been
written, when all languages in the set G are known to the language identifier. In the method, each
language g 2 G is represented by several different language models only one of which is used for every
word t found in the mystery text M . The language models for each language are: a model based on
words and one or more models based on character n-grams from one to nmax. Each model used is
selected by its applicability to the word t under scrutiny. The basic problem with word-based models is
that it is not really possible to have a model with all possible words. When we encounter an unknown
word in the mystery text M , we back off to using the n-grams of the size nmax. The problem with high
order n-grams is similar to the problem with words: there are simply too many of them to have statistics
for all. If we are unable to apply the n-grams of the size nmax, we back off to lower order n-grams. We
continue backing off until character unigrams, if needed.

A development set is used for finding the best values for the parameters of the method. The three
parameters are the maximum length of the used character n-grams (nmax), the maximum number of
features to be included in the language models (cut-off c), and the penalty value for those languages
where the features being used are absent (penalty p). The penalty value has a smoothing effect in that it
transfers some of the probability mass to unseen features in the language models.

3.3 Description of the method

The task is to select the most probable language g, given a mystery text M , as shown in Equation 2.

argmaxgP (g|M) (2)

P (g|M) can be calculated using the Bayes’ rule, as in Equation 3.

P (g|M) =
P (M |g)P (g)

P (M)
(3)

In Equation 3, P (M) is equal for the languages g 2 G and can be omitted. Also, we assume that
all languages have equal a priori probability, so that P (g) can be omitted as well, leaving us with the
Equation 4.

argmaxgP (g|M) = argmaxgP (M |g) (4)

We approximate the probability P (M |g) of the whole text through the probabilities of its words
P (t|g), which we assume to be independent as in Equation 5.

P (M |g) ⇡ P (t1|g)P (t2|g)...P (tlM |g) (5)

We use the relative frequencies of words and character n-grams in the models for language g for
estimating the probabilities P (t|g).

3.3.1 Creating the language models
The training data is lowercased and tokenized into words using non-alphabetic and non-ideographic char-
acters as delimiters. The relative frequencies of the words are calculated. Also the relative frequencies of
character n-grams from 1 to nmax are calculated inside the words, so that the preceding and the follow-
ing space-characters are included. The n-grams are overlapping, so that for example a word with three
characters includes three character trigrams. Word n-grams are not used in this method, so all subsequent
references to n-grams in this article refer to n-grams of characters.

The c most common n-grams of each length and the c most common words in the corpus of a language
are included in the language models for that language. We estimate the probabilities using relative fre-
quencies of the words and character n-grams in the language models, using only the relative frequencies
of the retained tokens. Then we transform those frequencies into scores using 10-based logarithms.
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The derived corpus containing only the word tokens retained in the language models is called C
0
.

dom(O(C
0
)) is the set of all words found in the models of all languages g 2 G. For each word t 2

dom(O(C
0
)), the values vC0

g
(t) for each language g are calculated, as in Equation 6

vC0
g
(t) =

8<: � log10

⇣
c(C

0
g ,t)

l
C

0
g

⌘
, if c(C

0
g, t) > 0

p , if c(C
0
g, t) = 0

(6)

where c(C
0
g, t) is the number of words t and lC0

g
is the total number of all words in language g. If c(C

0
g, t)

is zero, then vC
0
g
(t) gets the penalty value p.

The derived corpus containing only the n-grams retained in the language models is called C
0n. The

domain dom(O(C
0n)) is the set of all character n-grams of length n found in the models of all languages

g 2 G. The values vC0n
g

(u) are calculated similarly for all n-grams u 2 dom(O(C
0n)) for each language

g, as shown in Equation 7

vC0n
g

(u) =

8<: � log10

⇣
c(C

0n
g ,u)

l
C

0n
g

⌘
, if c(C

0n
g , u) > 0

p , if c(C
0n
g , u) = 0

(7)

where c(C
0n
g , u) is the number of n-grams u found in the derived corpus of the language g and lC0n

g
is the

total number of the n-grams of length n in the derived corpus of language g. These values are used when
scoring the words while identifying the language of a text.

3.3.2 Scoring n-grams in the mystery text
When using n-grams, the word t is split into overlapping n-grams of characters un

i , where i = 1, ..., lt�n,
of the length n. Each of the n-grams un

i is then scored separately for each language g in the same way as
the words.

If the n-gram un
i is found in dom(O(C

0n
g )), the values in the models are used. If the n-gram un

i is not
found in any of the models, it is simply discarded. We define the function dg(t, n) for counting n-grams
in t found in a model in Equation 8.

dg(t, n) =
lt�nX
i=1

⇢
1 , if un

i 2 dom(O(C 0n))
0 , otherwise

(8)

When all the n-grams of the size n in the word t have been processed, the word gets the value of the
average of the scored n-grams un

i for each language, as in Equation 9

vg(t, n) =

(
1

dg(t,n)

Plt�n
i=1 vC0n

g
(un

i ) , if dg(t, n) > 0
vg(t, n� 1) , otherwise

(9)

where dg(t, n) is the number of n-grams un
i found in the domain dom(O(C

0n
g )). If all of the n-grams of

the size n were discarded, dg(t, n) = 0, the language identifier backs off to using n-grams of the size
n � 1. If no values are found even for unigrams, a word gets the penalty value p for every language, as
in Equation 10.

vg(t, 0) = p (10)

3.3.3 Language identification
The characters in the mystery text are lowercased, after which the text is tokenized into words using
the non-alphabetic and non-ideographic characters as delimiters. After this, a score vg(t) is calculated
for each word t in the mystery text for each language g. If the word t is found in the set of words
dom(O(C

0
g)), the corresponding value vC0

g
(t) for each language g is assigned as the score vg(t), as

shown in Equation 11.
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vg(t) =

(
vC0

g
(t) , if t 2 dom(O(C

0
g))

vg(t, min(nmax, lt + 2)) , if t /2 dom(O(C
0
g))

(11)

If a word t is not found in the set of words dom(O(C
0
g)) and the length of the word lt is at least

nmax � 2, the language identifier backs off to using character n-grams of the length nmax. In case the
word t is shorter than nmax � 2 characters, n = lt + 2.

The whole mystery text M gets the score Rg(M) equal to the average of the scores of the words vg(t)
for each language g, as in Equation 12

Rg(M) =
PlT (M)

i=1 vg(ti)
lT (M)

(12)

where T (M) is the sequence of words and lT (M) is the number of words in the mystery text M . Since
we are using negative logarithms of probabilities, the language having the lowest score is returned as the
language with the maximum probability for the mystery text.

4 Data

Creation of the earlier DSL corpora has been described by Tan et al. (2014). The training data for the test
sets A and B consisted of 18,000 lines of text for each of 12 languages. The corresponding development
set had 2,000 lines of text for each language. The training data for the test set C had 7,619 lines for all
of the five varieties of the Arabic language and there was no separate development set available. The
training and the tests sets for Arabic were produced using automatic speech recognition software (Ali et
al., 2016). The amount of training data was different for each variety of Arabic as can be seen in Table 1.

Arabic variety Number of lines
Modern Standard Arabic 999
Egyptian Arabic 1,578
Gulf Arabic 1,672
Levantine Arabic 1,758
North-African Arabic 1,612

Table 1: The number of lines of training material available for the Arabic varieties.

Test set A consisted of excerpts of journalistic texts similar to the training data provided for the task
and the test sets B1 and B2 consisted of Bosnian, Croatian, Serbian, Brazilian Portuguese and European
Portuguese tweets. Both the test sets B1 and B2 were formed out of tweets so that several tweets from the
same user had been concatenated on one line, separated by a tab-character. The exact nature and format
of the B1 and B2 test sets was revealed only a few days before the results were due to be returned. Before
that the test set B had been characterized as an out-of-domain social media data. The test sets included
a lot of material almost unique to the format of tweets. Without any prior experience on automatically
handling tweets, it was very difficult to process them.

For the open tracks of test sets A, B1, and B2 we created a new corpus for each language. We collected
from the Common Crawl 3 corpus all the web pages from the respective domains as in Table 2. When
language models were created directly from the pages, the accuracy on the DSL development corpus was
49.86%, which was much lower than the 85.09% attained with the DSL training corpus. We used several
ad-hoc techniques to improve the quality of the corpus.

The shortest sensible sentence in the development corpus was 25 characters, so we first removed
all the lines shorter than that from our open track corpus. The accuracy rose to 51.08%. Then we
removed all lines that did not include one of the top 5 characters (in the DSL training data) for the
language in question. Furthermore, we only kept the lines which included at least one of the top-5
words with at least 2 characters of the respective language. With these adjustments, the accuracy rose to
62.42%. Moreover, we created lists of characters starting and ending lines in the DSL training corpus.

3http://commoncrawl.org/
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Domain ending Country Language Size, raw (tokens) Size, final (tokens)
.ba Bosnia and Herzegovina Bosnian 41,400,000 5,500,000
.hr Croatia Croatian 282,700,000 9,700,000
.rs Serbia Serbian 148,300,000 12,600,000
.my Malaysia Malay 239,700,000 8,100,000
.id Indonesia Indonesian 549,700,000 35,100,000
.br Brazil Portuguese 3,689,300,000 264,500,000
.pt Portugal Portuguese 307,000,000 13,400,000
.ar Argentina Spanish 909,900,000 27,500,000
.mx Mexico Spanish 1,092,400,000 51,000,000
.es Spain Spanish 2,865,900,000 46,200,000
.fr France French 4,878,600,000 240,800,000
.ca Canada French 7,414,500,000 13,600,000

Table 2: The languages and varieties of the sub-task 1 and the collected domains for the corpus used in
the open tracks.

We chose almost all of the characters from both categories and kept only the lines starting and ending
with those characters. We then sorted all the lines alphabetically and removed duplicates. Furthermore,
we made a character set out of the whole DSL training corpus (all languages in one) and removed all
lines that had characters which were not in the character set. After these changes we managed to get an
accuracy of 68.34%. Moreover, we used the language identifier service that we had set up for the SUKI
project web crawler, with almost 400 languages and dialects, and identified the language of each line. If
Canadian or French lines were in French, they were accepted and so on also for the other languages and
dialects. The accuracy rose to 69.19%. Subsequently, we instead used the language models created from
the DSL training data and kept only the lines which were identified as the proper language or dialect.
The accuracy rose to 74.66%. These accuracies were attained using language models with cut-off of
10,000 tokens. We did some optimizing and ended up with a cut-off of 75,000 tokens which gave us
an accuracy of 80.93%. Additionally, we created a very simple sentence detection program and divided
the corpora into sentences, keeping only complete sentences from each line with each sentence on its
own line. Furthermore, we again removed all lines shorter than 25 characters after which we identified
the lines using the project language identifier keeping only the lines identified with correct languages.
Moreover, we identified the lines again using the DSL models and kept the lines identified with the
corresponding dialect or language. The accuracy was now 83.15%. Subsequently, we again sorted the
lines alphabetically and removed duplicates and after some optimizing of the parameters (using 100,000
tokens in the language models) the accuracy was 84.90%. The sizes of each language in the final corpus
we created can be seen in the ”Size, final (Gb)” column of the Table 2. In hindsight, there would be more
straightforward ways to end up with the same corpus. By doing some of the before mentioned steps in
another order, some other steps could be omitted completely, but we did not have time to redo the corpora
creation process within the time constraints of the shared task.

Then we added the DSL training data to the corpora we created and the results on the development
improved. We also tried to add the relevant parts of the 2nd edition of the shared task corpus, but
including them did not improve the results on the development set. Instead, we finally added also the
development material to the corpus to create the final language models for the open tracks of the test sets
A, B1 and B2.

5 Results

In order to find the best possible parameters (nmax, c, and p), and language models for words (lowercased
or not), we applied a simple form of the greedy algorithm separately for each development set. The use
of capital letter words is not detailed in the description of the method. However, the language identifier
begins with a language model for words which includes capital letters and if it is not applicable it backs
off to using lowercased models for words and so on. The parameters for each run are included in Tables 3-
8. We have also included the best results and the name of the winning team in each category.
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5.1 Sub-task1
5.1.1 Test set A
For the test set A we only did one run for each of the closed and the open tracks. The results can be seen
in the Table 3. On the closed track we used all of the training and the development data to create the
language models.

Run Accuracy F1 (macro) nmax c p Cap. words Low. words
SUKI closed 0.8879 0.8877 6 120,000 6.6 no yes
tubasfs closed 0.8938 0.8938
SUKI open 0.8837 0.8835 7 180,000 8.2 yes yes
nrc open 0.8903 0.8889

Table 3: Results for test set A (closed training).

5.1.2 Test set B1
For the test set B1 we did three runs on both the closed and the open tracks.

Closed training After the first two runs with the basic HeLI method, for the third run we used the un-
known language detection thresholds we came up with in the 2015 edition of the shared task (Jauhiainen
et al., 2015b). We first identified each tweet separately and removed all tweets that were supposedly in
an unknown language. Then we identified the tweets that were left as one line. The results can be seen
in Table 4.

Run Accuracy F1 (macro) nmax c p Cap. words Low. words
SUKI run1 0.68 0.662 6 110,000 6.5 no yes
SUKI run2 0.676 0.6558 0 110,000 6.5 no yes
SUKI run3 0.688 0.6719 8 2,000,000 6.6 yes yes
GWU LT3 0.92 0.9194

Table 4: Results for test set B1 (closed training).

Open training For the first run we did not do any preprocessing. Before the second run, we used the
language identifier set up for our web crawler to remove those individual tweets that it detected to be
of non-relevant language. For the third run we also removed all the http- and https-addresses from the
tweets to be tested. The results can be seen in the Table 5.

Run Accuracy F1 (macro) nmax c p Cap. words Low. words
SUKI run1 0.714 0.6999 6 180,000 8.1 yes yes
SUKI run2 0.806 0.7963 8 2,000,000 6.6 yes yes
SUKI run3 0.822 0.815 8 2,000,000 6.6 yes yes
nrc 0.948 0.948

Table 5: Results for test set B1 (open training).

5.1.3 Test set B2
For the test set B2 we did two runs on both the closed and the open tracks. On the second run of
both tracks, our language identifier occasionally returned an unknown language as a result of our pre-
processing that had emptied some of the lines completely. In order to comply with the way our results
were handled by the shared task organizers, we used the ’pt-PT’ which was the language identified for
the majority of the lines with the unknown language in the first runs. The correct way to handle this
problem would have been to put the exact answers from the first runs as the unknown language, but there
was no time for this. The effects on the results should anyway be only fractions of a percent.

Closed training For the first run we did not do any preprocessing, but for the second run we used the
unknown language detection in the same way as in the B1 closed track run 3. From the results in Table 6,
it can be seen that this actually lowered the identification accuracy.
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Run Accuracy F1 (macro) nmax c p Cap. words Low. words
SUKI run1 0.642 0.6229 6 110,000 6.5 no yes
SUKI run2 0.614 0.5991 6 110,000 6.5 no yes
GWU LT3 0.878 0.8773

Table 6: Results for test set B2 (closed training).

Open training The results for the B2 open track can be seen in Table 7. For the first run we did not
do any preprocessing. For the second run we used the language identifier set up for our web crawler to
remove those individual tweets that it detected to be of non-relevant language. We also removed all the
http- and https-addresses from the tweets to be tested.

Run Accuracy F1 (macro) nmax c p Cap. words Low. words
SUKI run1 0.75 0.7476 6 180,000 8.1 yes yes
SUKI run2 0.796 0.7905 8 2,000,000 6.6 yes yes
nrc 0.9 0.9

Table 7: Results for test set B2 (open training).

5.2 Sub-task2
For the sub-task 2 we made only one run on the closed track. The character n-grams in the language
models created for the test set C also included capital letters due to the nature of the corpus, unlike in the
regular HeLI method where the character n-grams are created from lowercased words. The results can
be seen in Table 8.

Run Accuracy F1 (macro) nmax c p Cap. words Low. words
SUKI run1 0.4883 0.4797 8 5,000 4.6 yes no
MAZA 0.5117 0.5132

Table 8: Results for test set C (closed training).

The best accuracy on the closed track was 51.17% and that of the open track 52.18%. Our system
came 7th on the closed track with 48.83% accuracy.

6 Discussion

Seventeen teams provided results for the closed track of test set A, which is quite a large increase over
the 9 teams of the previous year. We were surprised to achieve the second place in this track, considering
that we did not really try to improve the system from the last year’s shared task, where we were in
the 4th place. Instead, we made it simpler than last year, leaving out the extra discriminating features
as well as the first stage of language group identification. As of this writing, we do not have much
information on the nature of the language identification methods the other teams used, so we can only
compare our method with the methods used in the previous task. The winner of the 2015 shared task used
Support Vector Machines (SVMs), which heavily rely on finding the discriminating features (Malmasi
and Dras, 2015). SVMs were also used by the NRC (Goutte and Leger, 2015) and MMS (Zampieri et al.,
2015a) teams, which shared the second place last year. The language identification method we propose is
generative in nature. It does not rely on finding discriminating features between languages. The language
models for each language can be built without any knowledge of the other languages to be included in the
repertoire of the language identifiers. This makes adding more languages to the language identifier very
easy, there is no need to change the already existing models or to compare the new language with the
already existing ones. It is possible that the generative nature gives our method more robustness in the
case that the development and test data are not from exactly the same source. We suspect that the reason
that we did not fare so well with the test sets B1 and B2 is mostly our inability to handle the format of
the tweets well enough. It would have been interesting to see how our method would have succeeded in
an out-of-domain test without the preprocessing challenges.
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Marcos Zampieri, Liling Tan, Nikola Ljubešić, and Jörg Tiedemann. 2014. A report on the dsl shared task 2014.
In Proceedings of the First Workshop on Applying NLP Tools to Similar Languages, Varieties and Dialects
(VarDial), pages 58–67, Dublin, Ireland.

Marcos Zampieri, Binyam Gebrekidan Gebre, Hernani Costa, and Josef van Genabith. 2015a. Comparing ap-
proaches to the identification of similar languages. In Proceedings of the Joint Workshop on Language Technol-
ogy for Closely Related Languages, Varieties and Dialects (LT4VarDial), pages 66–72, Hissar, Bulgaria.
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Abstract

This paper presents the system built by ASIREM team for the Discriminating between Similar
Languages (DSL) Shared task 2016. It describes the system which uses character-based and
word-based n-grams separately. ASIREM participated in both sub-tasks (sub-task 1 and sub-
task 2) and in both open and closed tracks. For the sub-task 1 which deals with Discriminating
between similar languages and national language varieties, the system achieved an accuracy of
87.79% on the closed track, ending up ninth (the best results being 89.38%). In sub-task 2,
which deals with Arabic dialect identification, the system achieved its best performance using
character-based n-grams (49.67% accuracy), ranking fourth in the closed track (the best result
being 51.16%), and an accuracy of 53.18%, ranking first in the open track.

1 Introduction

Automatic Language Identification (ALI) is the task of identifying the natural language of a given text
or speech by a machine. It is a necessary task to build any language-dependent system. ALI is a well-
established Natural Language Processing (NLP) task for many languages which are well represented
on the Web. Nowadays, the challenge, however, is the identification of languages which are not well-
represented on the Web, also called under-resourced languages, as well as the discrimination between
similar languages (DSL) and language varieties (DLV).

The DSL Shared task 2016 consists of two sub-tasks; sub-task 1 and sub-task 2. Sub-task 1 (dis-
criminating between similar languages and national language varieties) deals with twelve languages and
language varieties grouped by similarity into 5 groups (Bosnian (bs), Croatian (hr), and Serbian (sr);
Malay (my) and Indonesian (id); Portuguese: Brazil (pt-br) and Portugal (pt-pt); Spanish: Argentina
(es-ar), Mexico (es-mx), and Spain (es-es); French: France (fr-fr) and Canada (fr-ca)). Sub-task 2 deals
with Arabic dialect identification (Malmasi et al., 2016) including five Arabic varieties, namely Egyp-
tian (EGY), Gulf (GLF), Levantine (LAV), North-African (NOR), and Modern Standard Arabic (MSA).
We participated in both sub-tasks and we submitted four runs for both closed and open tracks (two for
each). We trained a linear Support Vector Machines (SVM) classifier using both character-based and
word-based n-grams as features.

The paper is organized as follows: in Section 2, we briefly describe some related work done for DSL
and DLV tasks for both Arabic and other languages. In Section 3, we describe our system and the
different runs we submitted. Then we present our results for each run in Section 4. We conclude by
discussing the results and providing some suggestions to improve the current system.

2 Related Work

Discriminating between Similar Languages (DSL) and Discriminating between Language Varieties
(DLV) are one of the serious bottlenecks, among others, of current automatic language identification
tools. They are an even bigger challenge for under-resourced languages. DLV is a special case of DSL

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.

163



where the languages to distinguish are very close. These tasks have recently attracted the intention of
the research community, resulting in recurring competitions such as the DSL Shared Task (Goutte et
al., 2016). DSL can be simply defined as a specification or a sub-task of Automatic Language Identi-
fication (ALI) (Tiedemann and Ljubešić, 2012). Many of the standard methods used for the ALI have
been applied to the DSL and DLV tasks for some languages. Goutte et al. (2016) give a comprehensive
bibliography of the recently published papers dealing with these tasks. Discriminating between Arabic
varieties is also an active research area although limited work has been done, so far, to distinguish be-
tween written Arabic varieties. The main reason is the lack of annotated data (Benajiba and Diab, 2010).
Zaidan (2012) in his PhD distinguished between four Arabic varieties (Modern Standard Arabic (MSA),
Egyptian, Gulf and Levantine dialects) using character and word n-gram models. Elfardy and Diab
(2013) identified MSA from Egyptian at a sentence level, Tillmann et al. (2014) proposed an approach
to improve classifying Egyptian and MSA at a sentence level, and Saâdane (2015) in her PhD distin-
guished between Maghrebi Arabic (Algerian, Moroccan and Tunisian dialects) using morpho-syntactic
information. Furthermore, Malmasi et al. (2015) used a parallel corpus to distinguish between six Arabic
varieties, namely MSA, Egyptian, Tunisian, Syrian, Jordanian and Palestinian.

Distinguishing between spoken Arabic varieties is also an active research area as there are sufficient
phone and TV program recordings which are easy to transcribed. “The problem is somewhat mitigated in
the speech domain, since dialectal data exists in the form of phone conversations and television program
recordings, but, in general, dialectal Arabic data sets are hard to come by” (Zaidan and Callison-Burch,
2014). Akbacak et al. (2009), Akbacak et al. (2011), Lei and Hansen (2011), Boril et al. (2012), and
Zhang et al. (2013) are some examples of work done to distinguish between spoken Arabic varieties.
Similarly to Goutte and Léger (2015), we experimented with both character-based and word-based n-
grams as features. However, we used only one prediction step instead of two for both sub-tasks. Com-
pared to the system proposed by Malmasi and Dras (2015), we used the same set of features with only
one SVM classifier instead of an ensemble of SVM classifiers.

3 Methodology and Data

We used a supervised machine learning approach where we trained a linear SVM classifier (LinearSVC)
as implemented in the Scikit-learn package1. In sub-task 1, we submitted two runs (run1 and run2).
We experimented with different character-based and word-based n-grams and different combinations as
features, and we reported only the best scoring features for each run. In run1: we used character-based
4-grams as features using TF-IDF weighting scheme. In run2: we used word-based unigrams. In both
runs, we trained only on the released training dataset (Tan et al., 2014), and we used the development set
for evaluating the system and selecting the best performing features. Word-based unigrams scored better
than word based bigrams and trigrams and character-based 4-grams outperformed the rest of n-grams.

In sub-task 2 (Arabic dialects identification), we also submitted two runs for the closed track (run1
and run2) and two others for the open track (run3 and run4). In run1 and run3, we used a combination
of character-based 5-grams and 6-grams as features using TF-IDF. In run2 and run4, we used word-
based unigrams also weighted by TF-IDF. In all cases, we did not introduce any data pre-processing or
Named Entity (NE) filtering. For sub-task 2, the released training data (Ali et al., 2016) consisted of
ASR transcriptions of conversational speech in five Arabic varieties which are Egyptian (EGY), Gulf
(GLF), Levantine (LAV), North-African (NOR), and Modern Standard Arabic (MSA). We noticed that
the released training data contained many inconsistencies such as incomplete sentences, the use of differ-
ent labels for the same sentence (chunk of text) and many speech segmentation errors. We did not have
enough time to properly deal with these issues. All we did was clean the data by removing duplicate sen-
tences having different labels. For training and evaluation, we trained our system on 80% of the released
training dataset and we used the remaining data (20%) as a development set because the released data
for this sub-task did not include a development set. Likewise, we evaluated the system and selected the
best performing features, namely Word-based unigrams and the combination of character-based 5-grams
and 6-grams.

1For more information see: http://scikit-learn.org/stable/.
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In run3 and run4 (open track) we trained on a new dataset containing 18,000 documents (609,316
words in total) collected, manually by native speakers, from social media (real world data). The doc-
uments were originally written by users in Arabic script and we transliterated them using the Buck-
walter Arabic transliteration scheme. This dataset contains 2,000 documents for each of the eight most
popular high level2 Arabic varieties (Algerian (ALG), Egyptian (EGY), Gulf (GLF), Levantine (LAV),
Mesopotamian (KUI), Moroccan (MOR), Tunisian (TUN) dialects and MSA) plus Arabicized Berber3.
The dataset was built as part of a Master’s thesis project in Language Technology (Adouane, 2016), and
is freely available for research from the first author.

4 Results

In sub-task 1, in both run1 and run2, we tested our system on test set A (closed track). Results are shown
in Table 1.

Run Baseline Features Accuracy F1 (micro) F1 (macro) F1 (weighted)
run1 0.083 char 4-grams 0.8779 0.8779 0.8778 0.8778
run2 0.083 word unigrams 0.8717 0.8717 0.8714 0.8714

Table 1: Results for test set A (closed training).

The results show that Character-based 4-grams model (run1) scores slightly better than the word-
based unigram model (run2), giving 0.8779 and 0.8717 accuracy respectively. Both models outperform
the random baseline. Figure 1 shows the confusion matrix of the system as described in run1.

Figure 1: The confusion matrix of the system as in run1 (Table 1).

2We grouped local and regional varieties in one high level group.
3Berber or Tamazight is an Afro-Asiatic language widely spoken in North Africa and completely different from Arabic. It

has 13 varieties and each has formal and informal forms. It has its unique script called Tifinagh but for convenience Latin and
Arabic scripts are also used. Using Arabic script to transliterate Berber has existed since the beginning of the Islamic Era, see
(Souag, 2004) for details.
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The system is confused mostly between Spanish of Mexico and between Spanish of Argentina and
Spanish of Spain. There is also confusion between Bosnian, Croatian and Serbian. Portuguese of Brazil
is also confused with Portuguese of Portugal. Likewise, French of France is confused with French
of Canada. Some confusions are also found between Indonesian and Malay. More or less, there is a
confusion between all languages of the same group. The confusion is expected because those languages
or language varieties are very similar.

As mentioned above, we participated in both closed and open track in sub-task 2 where we tested our
system on the test set C and submitted two runs for each track. Table 2 and Table 3 show the evaluation
results for the closed and open track respectively.

Run Baseline Features Accuracy F1 (micro) F1 (macro) F1 (weighted)
run1 0.2279 char 5+6-grams 0.4968 0.4968 0.4914 0.4946
run2 0.2279 word unigrams 0.4721 0.4721 0.4667 0.4711

Table 2: Results for test set C (closed training).

Run Baseline Features Accuracy F1 (micro) F1 (macro) F1 (weighted)
run3 0.2279 char 5+6-grams 0.5318 0.5318 0.5255 0.5274
run4 0.2279 word unigrams 0.4948 0.4948 0.4882 0.4912

Table 3: Results for test set C (open training).

The reported baseline in both tables is the majority class baseline because the samples in test set C
were slightly unbalanced. It is clear that the combination of the character-based 5 and 6 grams scores
better than the word-based unigram model in both closed and open tracks. The classification results
outperformed the set baseline. The use of extra training dataset has improved the performance of the
classifier compared to the use of the only provided training dataset.

Figure 2: The confusion matrix of the system as in run1 (Table 2).
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Figure 3: The confusion matrix of the system as in run3 (Table 3).

As shown in Figure 2 and Figure 3, the system misclassified all Arabic varieties with each other
with different confusion degrees. Gulf Arabic is the most variety for which most mistakes are made,
while MSA is the one that is most accurately recognized. Comparing between Figure 2 and Figure
3 shows that using extra training data has reduced the classification confusion in most cases, except
for Levantine Arabic which is more confused with Gulf Arabic. This causes the number of correctly
classified Levantine instances to decrease. It is also noticeable that there are more instances of all Arabic
dialects confused with MSA. The results are expected as all these Arabic varieties use the same script
with considerable vocabulary overlap and lots of false friends. Moreover, in the closed training, the used
training dataset is very small.

5 Discussion

We have described our four submissions to the DSL Shared Task 2016 and presented the obtained results.
We participated with the same system with no data preprocessing in both sub-task 1 and sub-task 2.
Distinguishing between Arabic varieties (sub-task 2) is obviously more challenging than distinguishing
between the languages included in sub-task 1. The main reason is of course related to the difference in
linguistic properties between Arabic (all varieties included) and other languages. But most importantly, it
is related to the quality of the data used in both training and evaluation. As mentioned above, the provided
training data has many issues. Training the system on a larger manually collected dataset from social
media domain (originally written texts in Arabic script) did not have a great effect on the performance
of the system, especially that the test data (set C) consists of ASR transcripts which have many speech
segmentation issues. It is worth mentioning also that we manually transliterated the new training dataset
from Arabic script into Latin script (general replacement by mapping between letters using TextEdit)
without any checking. There are some freely available scripts to do the transliteration automatically, but
we preferred not to use them because of many encoding problems. The use of TF-IDF helped to get
rid of most frequent (non-informative) words but only those seen in the training data which was very
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small in our case. Still we believe that the proposed system is very simple. There are many possible
improvements which can be done, for instance combining character and word-based n-grams, the use
of dialectal lexicons as extra resources, the filtering of Named Entities (NE) because they are dialect
or region specific. Another possible improvement is the removal of all MSA stop-words because MSA
vocabulary is used in all other Arabic varieties. However, before that, we need to improve the quality of
the training/evaluation data to allow the system to learn better language models.
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Abstract

This article describes the systems submitted by the Citius Ixa Imaxin team to the Discriminating
Similar Languages Shared Task 2016. The systems are based on two different strategies: classi-
fication with ranked dictionaries and Naive Bayes classifiers. The results of the evaluation show
that ranking dictionaries are more sound and stable across different domains while basic bayesian
models perform reasonably well on in-domain datasets, but their performance drops when they
are applied on out-of-domain texts.

1 Introduction

McNamee (2005) argued that language detection is a solved problem since the performance of most sys-
tems approaches 100% accuracy. However, this can be true only if we assume that the systems are tested
on relatively long and well written texts. In recent experiments, the accuracy of the language detection
starts to decrease much faster with respect to relatively longer texts having at least 400 characters (Tromp
and Pechenizkiy, 2011). In consequence, language detection is not a solved problem if we consider noisy
short texts such as those written in social networks. Apart from the size and the written quality of input
texts, it is also necessary to take into account another important factor that can hurt the performance of
language detectors, namely language proximity and variety detection. Closely related languages or lan-
guage varieties are more difficult to identify and separate than languages belonging to different linguistic
families.

DSL Shared Task 2016 (Malmasi et al., 2016; Goutte et al., 2016) is aimed to compare language
identification systems on the specific task of discriminating between similar languages or varieties. This
is the third edition of the shared taks, which is divided into two sub-tasks.

First, the sub-task 1 is focused on discriminating between similar languages and national language
varieties, including five different groups of related languages or language varieties:

• Bosnian, Croatian, and Serbian

• Malay and Indonesian

• Portuguese varieties: Brazil and Portugal

• Spanish varieties: Argentina, Mexico, and Spain

• French varieties: France and Canada

The objective of sub-task 2 is the identification of Arabic varieties. As Arabic is mostly written us-
ing the modern standard, the sub-task is focused on conversational speech which is divided into many
different diatopical varieties. For this purpose, the DSL organizers provided a dataset containing auto-
matic speech recognition transcripts five Arabic varieties: Egyptian, Gulf, Levantine, North-African, and
Modern Standard Arabic (Malmasi et al., 2015).

∗This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http:
//creativecommons.org/licenses/by/4.0/
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Our team, Citius Ixa Imaxin, participated in all DSL sub-tasks with the following objective: to com-
pare two very basic methods for language detection and observe how they behave when they are applied
on the difficult task of discriminating between similar languages or varieties. On the one hand, we de-
scribe and evaluate a ranking approach based on small dictionaries built according to the Zipf’s law, i.e.
the frequency of any word is inversely proportional to its rank in the frequency table. On the other hand,
we also describe and evaluate a Naive Bayes system relying on word unigrams.

2 Related Work

Two types of models have been used for language detection in general: those made of n-grams of char-
acters (Beesley, 1988; Dunning, 1994) and those based on word unigrams or dictionaries (Grefenstette,
1995; Rehurek and Kolkus, 2009). In the latter approaches, models are dictionaries built with words
ranked by their frequency in a reference corpus, and their ranking is used to compute their “relevance”
in the input text. In Cavnar and Trenkle (1994), they construct a language model by making use of the
ranking of the most frequent character n-grams for each language during the training phase (n-gram pro-
files). So, even if this is an approach based on character n-grams, it also uses the ranking strategy which
is characteristic of the dictionary-based approach.

According to Rehurek (2009), very simple dictionary-based methods are better suited to work on
close varieties than other more complex methods for language identification. In order to verify such a
hypothesis, in the DSL shared task we will compare a dictionary-based approach with a another standard
strategy based on bayesian classification.

Two former editions of DSL shared task took place in the two previous years (Zampieri et al., 2015;
Zampieri et al., 2014). One of the best systems in the two previous editions makes classification in two
steps: it first makes a prediction about the language group and then it selects a specific language from
that language group (Goutte et al., 2014; ?). In 2014 edition, it achieved the best performance in the
closed submission task, while in 2015, it was the first system in the open task. At the last edition, the
winner system in the closed submission track relies on an ensemble of SVM classifiers using features
such as character n-grams from one to six n-grams (Malmasi and Dras, 2015). Notice that the two winner
systems rely on complex strategies since the first one requires several steps to perform classification and
the second one needs to work with several classifiers. By contrast, we propose very basic classifiers
using just word unigrams (tokens) as features. One of our aims is to observe whether baseline strategies
are able to be competitive in the DSL tasks.

Another related research direction has been on language identification on Twitter, giving rise to the
Tweet-LID shared task (Zubiaga et al., 2014; Zubiaga et al., 2015). This competition aimed at recogniz-
ing the language of tweets written in English and in languages spoken on the Iberian peninsula such as
Basque, Catalan, Spanish, Galician and Portuguese. Notice that some of these languages, namely Gali-
cian and Portuguese, are so close that they could be considered as two varieties of the same language.

3 Methodology and Data

In this section, we describe two basic strategies for language identification: a dictionary-based approach
and a bayesian classifier, which also participated at TweetLID 2014 Shared Task (Gamallo et al., 2014).

3.1 Quelingua: A Dictionary-Based Approach

Quelingua1 has been implemented using a dictionary-based method and a ranking algorithm. It is based
on the observation that for each language, there is a set of words that make up a large portion of any text
and their presence is to be expected as word distribution follows Zipf’s law.

For each word w found in a corpus of a particular language, and for the N most frequent words in that
corpus, we define its inverse ranking (IR) as follows:

IR(w) = N − (rank(w)− 1) (1)

1Freely available at: https://github.com/gamallo/QueLingua

171



0 1000 2000 3000 4000 5000
0,62

0,64

0,66

0,68

0,7

0,72

0,74

Figure 1: Growth curve of F1-Score (y axis) as a function of the dictionary size (x axis)

where rank(w) is the rank of w in the dictionary of N most frequent words. For instance, if the dictio-
nary contains 1000 words, the IR for the most frequent word (ranking 1) is 1000. Specifying the size N
of the dictionary is a critical issue of the method. The final weight of a specific language lang given a
text is computed in equation 2, where K is the size of the input text:

weight(lang, text) =
K∑

i=1

IR(wordi) (2)

This is computed for all available languages, and that with the highest weight is selected as the detected
language for the input text.

In order to give more coverage to the system, we added a suffix module containing the most frequent
suffixes of the target languages. For instance, “-ção” is associated to Portuguese, “-ak” to Basque, “-
ción” to Spanish and Galician, etc. This information can be automatically extracted or manually added
to the module. The IR of any word that is not in the dictionary but has a suffix found in the suffix module
is computed as the average IR, i.e.: N/2. However, for the DSL task, the suffix module has not been used
because we did not find any relevant suffixes allowing to discriminate between similar varieties. This
module is useful for distinguish between different languages within very short texts, but it is not suited
to deal with similar varieties.

We performed some preliminary experiments focused on determining the best size of the dictionary
(i.e. of the language model). Figure 1 depicts the growth curve of F1-Score as a function of the size
of the dictionary for one of the varieties (es-ES). It shows that the peak is achieved with a size of 1000
words. We obtained similar results for all language varieties. So, for all tracks of the DSL shared task,
Quelingua was trained with a dictionary of this size.

3.2 A Naive Bayes Classifier

To compare our dictionary-based system with a state-of-the-art approach, we implemented a Naive Bayes
(NB) classifier based on the system we previously created for a sentiment analysis task, and described
in Gamallo (2013). According to Winkelmolen and Mascardi (2011; Vatanen et al. (2010), language
detection based on NB algorithms performs well on short texts. In Vatanen (2010), a NB classifier built
with character n-gram models clearly outperformed the ranking method by Cavnar and Trenkle (1994)
when the tests were performed on noisy short texts.

Our NB classifier was trained with two different models: a model based on character n-grams and
another one based on word unigrams (bag of words). The smoothing technique used by our classifiers
for unseen features (n-grams or words) is a version of Good-Turing estimation (Gale, 1995).

We made preliminary experiments on similar languages with both character n-grams and word uni-
grams. Concerning character-based models, the highest scores were reached using short n-grams. This
was also predicted by Winkelmolen and Mascardi (2011; Vatanen et al. (2010), who claimed that NB
classifiers for language detection perform better using short n-grams, with n < 4 . However, in our pre-
liminary experiments the best results were achieved using word unigrams, which outperformed the best
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character-based models. This is in accordance with Rehurek (2009), who tried to prove that word-based
methods are more reliable than character-based models for language discrimination between similar lan-
guages/varieties. Therefore, for the tracks of DSL, we will only use word unigrams to train the bayesian
classifiers.

4 Experiments

4.1 Training and Test Dataset
For the sub-task 1, the training corpus is a new version of the DSL corpus collection (DSLCC) (Tan et al.,
2014). The corpus contains 20,000 instances per country, including excerpt extracted from journalistic
texts. In total, the corpus contains 8.6M tokens. For the sub-task 2, the training corpus on Arabic
varieties consists on over 7.5K automatic speech recognition transcripts for five varieties (?). In total,
331K tokens. These two corpora were used in the closed submission tracks, that is, in those tracks
requiring systems to be trained with the corpus collection of the third edition. In order to participate in
the open tracks, we also trained our two systems including the corpus released in the second edition of
the DSL corpus collection (Zampieri et al., 2015). Given that this collection does not contain any data
for Arabic dialects, we have not participated at the open submission track of sub-task 2.

4.2 Preprocessing
Before building the language models, we used a Named Entity Recognition system inspired by that
described in Garcia and Gamallo (2015) in order to remove all proper names from the input texts. Even if
proper names may help the system find the correct variety in many cases, we reckon that they are useful
just because of extra-linguistic or cultural reasons. Proper names can prevent the classifier correctly
identifying a specific national variety when the topic of the target text is a person or a location of a
country with a different language variety. For this reason, we got rid of named entities before building
the language models.

Test Set Track Method Accuracy F1 (micro) F1 (macro) F1 (weighted)
A - Random baseline - - - 0.083
A closed Quelingua 0.7756 0.7756 0.771 0.771
A closed NB 0.8525 0.8525 0.8502 0.8502
A open Quelingua 0.7759 0.7759 0.7707 0.7707
A open NB 0.871 0.871 0.8694 0.8694
B1/B2 - Random baseline - - - 0.20
B1 closed Quelingua 0.708 0.708 0.4454 0.7127
B1 closed NB 0.082 0.082 0.049 0.1175
B1 open Quelingua 0.664 0.664 0.3962 0.6339
B1 open NB 0.094 0.094 0.054 0.1296
B2 closed Quelingua 0.686 0.686 0.4988 0.6983
B2 closed NB 0.282 0.282 0.1244 0.2987
B2 open Quelingua 0.692 0.692 0.4345 0.6952
B2 open NB 0.288 0.288 0.1318 0.3164
C - Majority class baseline - - - 0.2279
C closed Quelingua 0.387 0.387 0.3795 0.3817
C closed NB 0.3032 0.3032 0.2667 0.2664

Table 1: Results for all runs of Quelingua and NB classifiers.

4.3 Results
Table 1 shows the results obtained by our two classifiers, Quelingua (dictionary-based) and NB (naive
bayes). Four test sets were used for evaluation. Tests A, B1 and B2 belong to the sub-task 1 (5 language
groups of similar varieties) while test C is used for sub-task 2 (Arabic varieties). In sub-task 1, test A
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Run Accuracy F1 (micro) F1 (macro) F1 (weighted)
Quelingua 0.7756 0.7756 0.771 0.771
NB 0.8525 0.8525 0.8502 0.8502

Table 2: Results for test set A (closed training).

Run Accuracy F1 (micro) F1 (macro) F1 (weighted)
Quelingua 0.7759 0.7759 0.7707 0.7707
NB 0.871 0.871 0.8694 0.8694

Table 3: Results for test set A (open training).

Run Accuracy F1 (micro) F1 (macro) F1 (weighted)
Quelingua 0.708 0.708 0.4454 0.7127
NB 0.082 0.082 0.049 0.1175

Table 4: Results for test set B1 (closed training).

Run Accuracy F1 (micro) F1 (macro) F1 (weighted)
Quelingua 0.664 0.664 0.3962 0.6339
NB 0.094 0.094 0.054 0.1296

Table 5: Results for test set B1 (open training).

Run Accuracy F1 (micro) F1 (macro) F1 (weighted)
Quelingua 0.686 0.686 0.4988 0.6983
NB 0.282 0.282 0.1244 0.2987

Table 6: Results for test set B2 (closed training).

Run Accuracy F1 (micro) F1 (macro) F1 (weighted)
Quelingua 0.692 0.692 0.4345 0.6952
NB 0.288 0.288 0.1318 0.3164

Table 7: Results for test set B2 (open training).

Run Accuracy F1 (micro) F1 (macro) F1 (weighted)
Quelingua 0.387 0.387 0.3795 0.3817
NB 0.3032 0.3032 0.2667 0.2664

Table 8: Results for test set C (closed training).
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contains newspaper texts. It is thus considered as an in-domain experiment as both training and test
datasets belong to the same domain. By contrast tests B (B1 and B2) consist of social media data. As the
training corpus is very different from the test dataset, it can be considered as an out-of-domain test. Test
set C of sub-task 2 contains automatic speech recognition translations from Arabic varieties. Even if test
C belongs to the same genre (spoken language) than the training dataset, it is likely that its content will
belong to new and/or different domains than the training corpus.

Concerning the baselines depicted in the table (1), it is important to point out that test set A had 12
classes (i.e. different varieties) while test sets B1 and B2 had only 5 classes. The samples were evenly
distributed across the classes and so a random baseline is used. The samples in test set C were slightly
unbalanced, so a majority class baseline of 22.79% is used.

As it was stated above, closed submissions use only the training corpus provided by the DSL orga-
nizers, while open submissions also use the corpus provided by the previous version of the DSL shared
task.

The results of Table 1 show that the best in-domain system is NB, while Quelingua is more stable
and performs better accross different domains and genres. Considering the in-domain task (test A), NB
scores are not very far from the best systems. For instance, it is less than 2 points far from the top
system (0.869 vs 0.888) in the open submission. A similar system achieved the best score in the open
submission of Tweet-LID shared task 2014 (Gamallo et al., 2014). Nevertheless, the performance of
NB drops dramatically in out-of-domain tests (B1 and B2). The dictionary-based approach (Quelingua)
achieve similar results in both in-domain and out-domain tests. It is the eighth best system (out of 14)
in both B1 and B2 tests (closed submission). Such a result is acceptable if we consider that the system
is very basic and simple: its models only make use of the 1k most frequent words per variety. It also
outperforms NB in test C, even if the results are quite poor: position 16 out 18 systems and 13 points
less than the best one: 0.381 vs 0.513. The poor results are likely due to the fact that we used the same
preprocessing than that performed for the sub-task 1. However, the transcription of spoken language
contains many metacharacters that could have been misinterpreted by our system.

To help readers to understand on which languages or groups of languages the two approaches per-
formed better, we also include seven new tables with the confusion matrix for each test. Tables 2 and 3
for test A, tables 4, 5, 6, and 7 for tests B, and Table 8 for test C.

4.4 Efficiency

In terms of memory use, Quelingua loads a light dictionary of 136Kb (1000 words per language in sub-
task 1), while the NB system requires loading much larger language models o(31Mb in sub-task 1, closed
submission). Concerning speed, classification based on NB models is much slower than classification
with the ranking method of Quelingua. More precisely, Quelingua is about 10 times faster than NB.

5 Discussion

We compared two very basic strategies for similar language/variety detection. We observed that Naive
Bayes classifiers perform better on in-domain datasets than dictionary-based strategy, while the latter
one is more stable across different domains and performs reasonably well on out-of-domain tests.

Besides the fact of performing reasonably well across different domains and genres, another benefit
of the dictionary-based model is its small, transparent, and easy to handle ranked lexicon, which can be
easily corrected and updated by human experts.

However, we must clarify that our Naive Bayes classifier is a class of model that can be quite sensitive
to specific hyper-parameters (e.g. the kind of smoothing and the type of features - characters vs words).
So, our work should be seen as just a comparison between a dictionary-based strategy and a particular
parameterization of a Naive Bayes classifier.

In future work, we will measure the performance effects of using a manually corrected ranked vocab-
ulary, since the dictionaries used in the described experiments were not corrected by humans. We will
also analyze the growth curve of the F1-score obtained by the NB system over the corpus size. Besides,
it will be interesting to compare these approaches with contextual-based strategies such as Markov Mod-
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els, which were the best systems according to other evaluations (Padrò and Padrò, 2004). Finally, it will
be very useful to perform a sound qualitative error analysis of the language varieties we know well: Por-
tuguese, Spanish, and French. We have observed that many of the instances in the training dataset were
annotated as belonging to a particular variety even if they did not contain any clear linguistic feature.
In many cases, only cultural and extra-linguistic elements (e.g. a localized topic and named entities)
could be used to discriminate between the related varieties. Further deeper analyses in this direction are
required.
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Abstract

We describe the systems entered by the National Research Council in the 2016 shared task on
discriminating similar languages. Like previous years, we relied on character ngram features,
and a combination of discriminative and generative statistical classifiers. We mostly investigated
the influence of the amount of data on the performance, in the open task, and compared the two-
stage approach (predicting language/group, then variant) to a flat approach. Results suggest that
ngrams are still state-of-the-art for language and variant identification, that additional data has a
small but decisive impact, and that the two-stage approach performs slightly better, everything
else being kept equal, than the flat approach.

1 Introduction

We describe the systems submitted by the National Research Council Canada to the 2016 shared task on
discriminating similar languages.

Discriminating similar languages and language variants is useful for several purposes. As the typical
linguistic processing pipeline is tailored to a specific language and variant, it is important to have a
reliable prediction of the language a text is written in, in order to use the appropriate linguistic tools.
It may also be used for filtering data in order to build these specialized linguistic processing tools. In
education, and language learning in particular, it may also be useful to identify precisely the variant
familiar to a learner so that feedback can be tailored to the vocabulary or linguistic constructions they
are familiar with. Finally, in security, it is highly relevant to identify the regional variant of the language
used by a writer or poster.

Shared tasks on discriminating similar languages were organized in 2014 (Zampieri et al., 2014) and
2015 (Zampieri et al., 2015). This year’s task continues in the same track, removing some of the easy
languages (Czech and Slovak; Macedonian and Bulgarian), providing additional material for some of
the harder variants (Serbo-Croat-Bosnian; Indonesian and Malay; Portuguese; Spanish), and adding new
groups or variants (Mexican Spanish; French from Canada and France).

Like previous years, we relied on character ngram features, and a mixture of discriminative and gen-
erative statistical classifiers. Due to lack of time, we decided to eschew a full optimization of the feature
sets and model combination, despite the fact that it provided excellent results in previous years (Goutte
et al., 2014; Malmasi and Dras, 2015). Instead, we focused on two issues: the influence of the amount
of data on the performance (open versus closed data), and the difference between a two-stage approach
(predicting language/group, then variant) and a flat approach predicting the variant directly. To be clear,
the ”Advances” in the title of this paper do not relate to the performance and model we used this year,
which are mostly similar to successful models of prior years. The intent is to advance our understanding
of how these models works and what configurations are more effective.

An overview of the results of this shared task is presented in the shared task report (Malmasi et al.,
2016). It provides a wider context for interpreting the results reported here, which we only compare to
a few top systems. The shared task report also provides references to related work. The reader may also

c©2016, The Crown in Right of Canada.
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lang DSLCC v1.0 DSLCC v2.1 DSL 2016 crawl Total (open)
bs 20,000 20,000 20,000 - 60,000
hr 20,000 20,000 20,000 - 60,000
sr 20,000 20,000 20,000 - 60,000

es-AR 20,000 20,000 20,000 - 60,000
es-ES 20,000 20,000 20,000 - 60,000
es-MX - 20,000 20,000∗ - 40,000∗

fr-CA - - 20,000 40,000 60,000
fr-FR - - 20,000 - 20,000

id 20,000 20,000 20,000 - 60,000
my 20,000 20,000 20,000 - 60,000

pt-BR 20,000 20,000 20,000 - 60,000
pt-PT 20,000 20,000 20,000 - 60,000

Table 1: Statistics on the training data used for training our systems. (∗: 2016 data was actually identical
to DSLCC v2.1 data)

find a lot of references to related work (within and outside the shared tasks) in Section 2 of (Goutte et
al., 2016).

In the following section, we describe the data we worked with, the features we extracted from the data,
and the models we trained on these features. Section 3 summarizes our results on the shared task test set
and compared them to a few key systems from other participants. Finally, we discuss those results and
their significance in Section 4.

2 Data and Methods

We now describe the data we used for our two runs, the features we extracted from the data, and the
models we trained on those features.

2.1 Data

In order to evaluate the impact of using additional data on the performance of the discriminative perfor-
mance, we built “closed” systems on the 2016 training data only, and “open” systems using additional
data.

The closed systems use the data provided for the 2016 evaluation only. This consisted of 20k sentences
from the news domain for each of the twelve language variant, for a total of 240k sentences (column
DSL 2016 in Table 1). We joined the train and dev portions of the training data as we evaluate the
performance using ten fold cross-validation rather than using a single development set.

The open systems used data from previous DSL shared tasks (DSLCC v1.0 and DSLCC v2.1, (Tan et
al., 2014)), plus additional text crawled from the web site of the Québec journal La Presse. For each of
the variants used in previous years, this results in 60k sentences per variant (20k per corpus). Mexican
Spanish was not included in previous years, but the DSLCC v2.1 corpus released last year contained
20k sentences for that variant, for use in the “unshared” task that (unfortunately) received little attention.
We did not realize before training our system that the 20k sentences provided for es-MX this year were
actually identical to the material provided last year for that variant, which means that our material for
the es-MX variant is actually the same 20k sentences duplicated. For fr-CA, we added 40k sentences
from the web crawl of La Presse. We checked that the added material did not overlap with the material
provided by the DSL organizers (for training or testing). For French, our training material was therefore
unbalanced, with only 20k sentences for fr-FR versus 60k for fr-CA.

Due to lack of time, we did not take part in the Arabic dialect sub-task, despite its great interest.

179



2.2 Features
Character ngram counts have been popular and effective features since at least (Cavnar and Trenkle,
1994), and produced top results at previous evaluations (Goutte et al., 2014; Malmasi and Dras, 2015;
Goutte and Leger, 2015). We therefore relied again on character ngrams. This year, however, we only
used 6grams. The reasons for this choice are multiple:

• Optimizing the size and combination of ngram features produces small performance improvements.
However this optimization also requires significant effort and time, which we did not have this year.

• In our experience from previous shared tasks, 6grams were almost always the best feature set. When
they were not, they were very close.

• Our main focus this year was not on maximizing performance of a single system, but on investigat-
ing the influence of training data size and the difference between a flat and two-stage model.

Using character 6grams therefore ensures that we build systems with reasonable (if not top) performance,
while removing the variability in the choice (or optimization) of the features. It allows us to evaluate the
impact of the data size and model architecture, everything else being kept equal. In addition, as we had
a limited number of hours to spend on the shared task, we avoided the effort associated with feature
engineering and optimization.

2.3 Models
Having decided on the feature set and training data, we tried two competing approaches.

2.3.1 run1

In the 2014 and 2015 evaluations (Goutte et al., 2014; Goutte and Leger, 2015) , we used a two stage
approach, where we

1. train a level-1 classifier to predict the language group, and

2. train a level-2 classifier to predict the variant within each group.

This approach is actually not too costly. On the one hand, the lower level classifiers are often binary
classifiers trained on smaller amounts of data. On the other hand, the top level classifier focuses on a
simpler task, with bigger differences between groups, so a simple multiclass probabilistic classifier can
be trained efficiently with almost perfect performance.

Our run1 implements this two-stage approach again. The top-level classifier is a probabilistic clas-
sifier (Gaussier et al., 2002) similar to Naı̈ve Bayes, trained in a single pass over the data, making it
suitable for large-scale training. Using ten fold cross-validation, we estimate that the error rate of that
first stage on the open task is below 0.051% (335 errors out of 660k examples), i.e. roughly one mistake
per 2000 examples.

The level-2 classifiers are Support Vector Machines (SVM) trained using SVMlight (Joachims, 1998).
For the three groups with only two variants (French, Portuguese and Indonesian/Malay), we trained a
single binary SVM classifier in each group, taking one variant as the positive class, and the other variant
as the negative class. For the two groups with three variants (Spanish and Serbo-Croat-Bosnian), we
trained three SVM classifiers in one-versus-all configuration: each variant is taken as the positive class,
in turn, with the other two as the negative class. The outputs of the three classifiers are calibrated to
make them comparable (Bennett, 2003). At prediction time, we pick the class with the highest calibrated
classifier output. Although training SVM models can be slow for large datasets, we restrict ourselves to
linear kernels, and we only use the examples within a group to estimate the model, which is a maximum
of 180k examples. Once the SVM classifiers and calibration layers have been estimated, prediction is
just a few dot-products away, and therefore extremely fast. In previous years, we also validated that
this combination of discriminative approach and calibration provides slightly better performance than
modeling the problem directly with a multiclass probabilistic classifier.
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Run A B1 B2 Overall (CV)
run1 89.03 94.80 90.00 89.29 92.50
run2 88.77 94.20 89.00 88.98 92.63
SUKI 88.37 82.20 79.60 87.79
Citius 87.10 66.40 69.20 85.62

Table 2: Predictive accuracy (in %) for the 2016 open track runs, for our two runs and two runner-ups, on
the three official test sets and overall. Rightmost column gives cross-validation estimate, for comparison.

2.3.2 run2

In the 2015 evaluation (Zampieri et al., 2015), the best performing system in the closed task (Malmasi
and Dras, 2015) used a “flat” approach, treating the entire problem as a single, multiclass classification,
with excellent results, only slightly below the best overall performance on the open task for test set A
and best overall for test set B.

We attempt to test this flat approach on our chosen feature set, as our run2. Note that the best
approach in (Malmasi and Dras, 2015) uses an ensemble of classifiers trained on different feature spaces
(words, word bigrams, character bigrams, 4grams and 6grams). As we focus on a single feature set, we
did not reproduce the ensemble part of that approach. The key difference between run1 and run2 is
really the two-stage vs. flat approach.

We use again Support Vector Machines trained using SVMlight in one-versus-all fashion. For each
of the 12 variants, a binary classifier is trained using one variant as the positive class and the rest as
negative examples. The output of each of the 12 classifiers is then calibrated into a proper probability
(Bennett, 2003). At prediction time, a sentence is sent through each calibrated classifier, producing a
proper probability. The prediction is the class with highest probability. Note that despite its conceptual
simplicity, this approach is more costly than the two-stage approach, as it requires training 12 binary
classifier on 660k examples each (for the open track; 240k for the closed track). In addition, class
imbalance is more severe for this model.

3 Results

We made four submissions for each of the three test sets (A, B1 and B2): two models on the open and
two models on the closed tracks. The performance of each model was also estimated on the full training
set (train+dev partitions of the official data) using a stratified ten fold cross-validation.

When the test data was received, we simply processed test set A as it was provided, as it seemed to
match the training data fairly well. For the twitter data (test sets B1 and B2), we did light preprocessing
by removing markers for accounts and hashtags (@ and #), as well as URLs. For example the tweet:

RT @xxmarioo: savage #KimExposedTaylorParty https://t.co/7FpfbmqziQ

is turned, before being sent to the classifiers, into:

RT xxmarioo: savage KimExposedTaylorParty

Official results on the three test sets were obtained from the organizers. From these results, we compute
an overall score which is the micro-averaged accuracy over classes and test sets. The two ’B’ test sets
contain only 500 exemples vs. 12,000 for test set ’A’, so the overall score is a weighted average of
the provided accuracies, with eights 12/13, 1/26 and 1/26 for A, B1 and B2, respectively. Note that,
in a single-label multiclass evaluation like this one, micro-averaged accuracy, precision, recall and (as
a consequence) F -scores are identical. They differ slightly from the weighted F1 used as the official
ranking metric, but differences are small, probably due to the fact that classes are balanced in the test
data.

Table 2 shows the results for the open track, while Table 3 shows the results for the closed track.
As a naı̈ve baseline, we propose to use a “group-perfect random” baseline, i.e. a classifier that would
correctly identify the language group (a very easy task) and would perform randomly on the variants

181



Run A B1 B2 Overall (CV)
run1 88.59 91.40 87.80 88.67 89.26
run2 88.12 90.80 86.60 88.16 88.87
tubasfs 89.38 86.20 82.20 88.98
GWU 88.70 92.00 87.80 88.79

Table 3: Predictive accuracy (in %) for the 2016 closed track runs, on the three official test sets and
overall. Rightmost column gives cross-validation estimate, for comparison.

sr-hr-bs español français id-my portugês
sr-hr-bs 2994 3 1 1 1
español 1 2990 3 1 5
français 0 0 1996 0 4
id-my 1 0 2 1997 0
portugês 0 1 0 0 1999

Table 4: Language group confusion on test set A, run1: reference in rows, predicted in columns.

within a group. The accuracy of this baseline is #groups
#variants which is 41.67% for test set A and 40% for

test sets B1 and B2, resulting in an overall score of 41.54%.
According to the official ranking,1 our run1 results yield the top performance in the open track,

closely followed by our run2 results and the two runner-up systems (SUKI and Citius Ixa Imaxin).
Another participant submitted only for the twitter data (B1 and B2) and is not included in Table 2.

On the closed track, our results are slightly below the top two systems overall (tubasfs and GWU), with
slight variations across the three test sets. Our run1 yield top results on test set B2 and close on test set
B1 (the difference amounts to 3 tweets out of 500), but was outperfomed on the larger test set A. Note
that tubasfs, GWU and our run1 are within 0.3% of each other, which may not be highly significant,
either practically or statistically. A more precise assessment of the significance of the differences ill
require access to the individual predictions.

Table 4 shows the confusion table between language groups for run1 on test set A (other runs and
conditions are similar). Overall, there are 16 to 24 language group mistakes on test set A, depending on
the track, i.e. below 0.2% error rate. Although still very low, this is quite significantly above the cross-
validation estimate of 0.05%. The reasons for this will require further investigation. Most mistakes are,
as expected, between Spanish, Portuguese and/or French, but a few are surprising (e.g., two Indonesian
sentences predicted as French). On test sets B, the only mistake observed on either run or condition is a
Portuguese user predicted as Bosnian. Overall this suggests that the first stage group classifier has little
impact on performance, as it costs us at most 0.2% in error rate.

Looking at the language variant confusion in Table 5 shows that errors are not uniformly distributed.
There are more confusions between Serbian and Croatian in the news data, and about as many confusions
between Bosnian and Serbian in the twitter data. The confusion between Croatian and Bosnian is con-
sistently smaller than for the other two pairs. In Spanish, errors appear unbalanced, with many Mexican
sentences incorrectly assigned to the other two variants. This is likely due to a combination of the smaller
size of the Mexican data, and the fact that we duplicated the data by mistake, which underestimates the
unbalance between the classes.

4 Discussion

In light of these results and considering the questions we were targetting, we can reach the following
conclusions.

• Data size has a small but consistent impact on performance. Keeping the models equal, the differ-
ence in performance brought by training on the open data was 0.72% on average. As this involves

1Available from http://ttg.uni-saarland.de/vardial2016/dsl2016.html.

182



set: A B1+B2
sr hr bs sr hr bs

sr 692 198 109 179 8 13
hr 112 880 6 13 195 2
bs 85 24 888 8 0 192

set: A
es- -ar -es -mx
-ar 945 32 19
-es 81 878 35
-mx 175 152 673

set: A
fr- -ca -fr
-ca 937 63
-fr 77 919

set: A
id my

id 990 7
my 14 986

set: A B1+B2
pt- -br -pt -br -pt
-br 956 44 189 11
-pt 59 940 21 179

Table 5: Language variant confusion for run1: reference in rows, predicted in columns.

training on three times more data, whether this is worth it in practice is debatable, but it clearly
brought our run1 above the best closed data result.

• The two-stage approach of predicting the group performs slightly but consistently better than the
“flat” approach of predicting the variant directly. Keeping the data equal, the difference in perfor-
mance between run1 and run2 was 0.41%, on average, in favour of the former. Again, this may
not be a significant difference in practice, but given the advantage of the two stage approach in terms
of training time, we think that this provides a convincing argument in favour of that approach. A
side conclusion is that this suggests that the gain observed last year in the winning system (Malmasi
and Dras, 2015) may be due to the ensemble combination, which could also be applied to the two
stage approach.

• Our systems performed rather well on the twitter data, which seemed to be a challenge for several
participants. Although that data was expected to be of lower quality than the journalistic material
(language variety, frequent code switching and inventive character sequences), we also had a lot
more material: segments in test set A had up to 88 words, whereas segments in test sets B1 and B2
had up to 6400. This was clearly helpful by providing better ngram statistics. It also helped that
English was not among the candidate languages/variants as a lot of tweet material is clearly English.
It would be interesting to check performance on single tweets.

• Previous work on twitter suggested that removing hashtags and account names altogether may yield
a small performance gain (Lui and Baldwin, 2014). In this work, we decided to remove the # and @
characters alone, with the motivation that the hashtag or account text itself may point to the correct
variant. A systematic evaluation of the different strategies is left to future work, although based
on results from Lui and Baldwin (2014), we conjecture that it is unlikely to make a significant
difference.

• The cross-validation estimates computed on the joint train+dev data yield optimistic estimates, es-
pecially on the open data. Although differences are expected, it is unusually large, and may suggest
a domain mismatch between the test data and the training material. Another factor is that classes
in the training data were imbalanced (fewer fr-FR and es-MX examples), whereas the test set is
balanced. As a consequence, the fr-MX class is underpredicted compared to other Spanish variants.
We did not observe the same effect on French, so this is still up for investigation.

• Our experience this year suggests that focusing on 6grams and removing the system combination
(or ensemble) step makes it possible to set up competitive systems in very short time. The top
performance this year was 89.3% accuracy, which is lower than last year, but still competitive (and
on different test sets).
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tures. In Claire Nédellec and Céline Rouveirol, editors, Proceedings of ECML-98, 10th European Conference
on Machine Learning, volume 1398 of Lecture Notes in Computer Science, pages 137–142. Springer.

Marco Lui and Timothy Baldwin. 2014. Accurate language identification of twitter messages. In Proceedings of
the 5th Workshop on Language Analysis for Social Media (LASM), pages 17–25, Gothenburg, Sweden, April.
Association for Computational Linguistics.

Shervin Malmasi and Mark Dras. 2015. Language identification using classifier ensembles. In Proceedings of the
Joint Workshop on Language Technology for Closely Related Languages, Varieties and Dialects (LT4VarDial),
pages 35–43, Hissar, Bulgaria.
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Abstract

In this paper, we describe a system (CGLI) for discriminating similar languages, varieties and
dialects using convolutional neural networks (CNNs) and long short-term memory (LSTM) neu-
ral networks. We have participated in the Arabic dialect identification sub-task of DSL 2016
shared task for distinguishing different Arabic language texts under closed submission track.
Our proposed approach is language independent and works for discriminating any given set of
languages, varieties and dialects. We have obtained 43.29% weighted-F1 accuracy in this sub-
task using CNN approach using default network parameters.

1 Introduction

Discriminating between similar languages, language varieties is a well-known research problem in nat-
ural language processing (NLP). In this paper we describe about Arabic dialect identification. Arabic
dialect classification is a challenging problem for Arabic language processing, and useful in several
NLP applications such as machine translation, natural language generation and information retrieval and
speaker identification (Zaidan and Callison-Burch, 2011).

Modern Standard Arabic (MSA) language is the standardized and literary variety of Arabic that is
standardized, regulated, and taught in schools, used in written communication and formal speeches.
The regional dialects, used primarily for day-to-day activities present mostly in spoken communication
when compared to the MSA. The Arabic has more dialectal varieties, in which Egyptian, Gulf, Iraqi,
Levantine, and Maghrebi are spoken in different regions of the Arabic population (Zaidan and Callison-
Burch, 2011). Most of the linguistic resources developed and widely used in Arabic NLP are based on
MSA.

Though the language identification task is relatively considered to be solved problem in official texts,
there will be further level of problems with the noisy text which can be introduced when compiling
languages texts from the heterogeneous sources. The identification of varieties from the same language
differs from the language identification task in terms of difficulty due to the lexical, syntactic and seman-
tic variations of the words in the language. In addition, since all Arabic varieties use the same character
set, and much of the vocabulary is shared among different varieties, it is not straightforward to discrimi-
nate dialects from each other (Zaidan and Callison-Burch, 2011). Several other researchers attempted the
language varsities and dialects identification problems. Zampieri and Gebre (2012) investigated varieties
of Portuguese using different word and character n-gram features. Zaidan and Callison-Burch (2011)
proposed multi-dialect Arabic classification using various word and character level features.

In order to improve the language, variety and dialect identification further, Zampieri et al. (2014),
Zampieri et al. (2015b) and Zampieri et al. (2015a) have been organizing the Discriminating between
Similar Languages (DSL) shared task. The aim of the task is to encourage researchers to propose and
submit systems using state of the art approaches to discriminate several groups of similar languages
and varieties. Goutte et al. (2014) achieved 95.7% accuracy which is best among all the submissions
in 2014 shared task. In their system, authors employed two-step classification approach to predict first

This work is licensed under a Creative Commons Attribution 4.0 International Licence.
Licence details: https://creativecommons.org/licenses/by/4.0/
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the language group of the text and subsequently the language using SVM classifier with word and char-
acter level n-gram features. Goutte and Leger (2015) and Malmasi and Dras (2015) achieved 95.65%
and 95.54% state of the art accuracies under open and closed tracks respectively in 2015 DSL shared
task. Goutte et al. (2016) presents a comprehensive evaluation of state of-the-art language identification
systems trained to recognize similar languages and language varieties using the results of the first two
DSL shared tasks. Their experimental results suggest that humans also find it difficult discriminating
between similar languages and language varieties. This year, DSL 2016 shared task proposed two sub-
tasks: first sub-task is about discriminating between similar languages and national language varieties.
Second sub-task is about Arabic dialect identification which is introduced first time in DSL 2016 shared
task. We have participated in the sub-task2 of dialect identification on Egyptian, Gulf, Levantine, and
North-African, and Modern Standard Arabic (MSA) Arabic dialects. We describe about dataset used for
dialect classification in section 4.

In classifying Arabic dialects, Elfardy and Diab (2013), Malmasi and Dras (2014), Zaidan and
Callison-Burch (2014), Darwish et al. (2014) and Malmasi et al. (2015) employed supervised and sem-
supervised learning methods with and without ensembles and meta classifiers with various levels of
word, character and morphological features. Most of these approaches are sensitive to the topic bias in
the language and use expensive set of features and limited to short texts. Moreover, generating these
features can be a tedious and complex process. In this paper, we propose deep learning based super-
vised techniques for Arabic dialect identification without the need for expensive feature engineering.
Inspired by the advances in sentence classification (Kim, 2014) and sequence classification (Hochreiter
and Schmidhuber, 1997) using distributional word representations, we use convolutional neural networks
(CNN) and long short-term memory (LSTM)-based deep neural network approaches for Arabic dialect
identification.

The rest of the paper is organized as follows: in section 2, we describe related work on Arabic dialect
classification. In section 3, we introduce two deep learning based supervised classification techniques
and describe about the proposed methodology. We give a brief overview about the dataset used in the
shared task in section 4, and also we present experimental results on dialect classification. In section
5, we discuss about results and analyse various types of errors in dialect classification and conclude the
paper. Additional analysis and comparison with the other submitted systems are available in the 2016
shared task overview (Malmasi et al., 2016)

2 Related Work

In recent years, a very few researchers have attempted the task of automatic Arabic dialect identifica-
tion. Zaidan and Callison-Burch (2011) developed an informal monolingual Arabic Online Commentary
(AOC) annotated dataset with high dialectal content. Authors in this work applied language modelling
approach and performed dialect classification tasks on 4 dialects (MSA and three dialects) and two di-
alects (Egyptian Arabic and MSA) and reported 69.4% and 80.9% accuracies respectively. Several other
researchers (Elfardy and Diab, 2013; Malmasi and Dras, 2014; Zaidan and Callison-Burch, 2014; Dar-
wish et al., 2014) also used the same AOC and Egyptian-MSA datasets and employed different categories
of supervised classifiers such as Naive Bayes, SVM, and ensembles with various rich lexical features such
as word and character level n-grams, morphological features and reported the improved results.

Malmasi et al. (2015) presented a number of Arabic dialect classification experiments namely multi-
dialect classification, pairwise binary dialect classification and meta multi-dialect classification using
the Multidialectal Parallel Corpus of Arabic (MPCA) dataset. Authors achieved 74% accuracy on a 6-
dialect classification and 94% accuracy using pairwise binary dialect classification within the corpus but
reported poorer results (76%) between Palestinian and Jordanian closely related dialects. Authors also
reported that a meta-classifier can yield better accuracies for multi-class dialect identification and shown
that models trained with the MPCA corpus generalize well to other corpus such as AOC dataset. They
demonstrated that character n-gram features uniquely contributed for significant improvement in accu-
racy in intra-corpus and cross-corpus settings. In contrast, Zaidan and Callison-Burch (2011; Elfardy and
Diab (2013; Zaidan and Callison-Burch (2014) shown that word unigram features are the best features
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for Arabic dialect classification. Our proposed approach do not leverage rich lexical, syntactic features,
instead learns abstract representation of features through deep neural networks and distributional rep-
resentations of words from the training data. Proposed approach handles n-gram features with varying
context window-sizes sliding over input words at sentence level.

Habash et al. (2008) composed annotation guidelines for identifying Arabic dialect content in the
Arabic text content, by focusing on code switching. Authors also reported annotation results on a small
data set (1,600 Arabic sentences) with sentence and word-level dialect annotations.

Biadsy et al. (2009; Lei and Hansen (2011) performed Arabic dialect identification task in the speech
domain at the speaker level and not at the sentence level. Biadsy et al. (2009) applied phone recognition
and language modeling approach on larger (170 hours of speech) data and performed four-way clas-
sification task and reported 78.5% accuracy rate. Lei and Hansen (2011) performed three-way dialect
classification using Gaussian mixture models and achieved an accuracy rate of 71.7% using about 10
hours of speech data for training. In our proposed approach, we use ASR textual transcripts and employ
deep-neural networks based supervised sentence and sequence classification approaches for performing
multi-dialect identification task.

In a more recent work, Franco-Salvador et al. (2015) employed word embeddings based continuous
Skip-gram model approach (Mikolov et al., 2013a; Mikolov et al., 2013b) to generate distributed repre-
sentations of words and sentences on HispaBlogs1 dataset, a new collection of Spanish blogs from five
different countries: Argentina, Chile, Mexico, Peru and Spain. For classifying intra-group languages,
authors used averaged word embedding sentence vector representations and reported classification ac-
curacies of 92.7% on original text and 90.8% accuracy after masking named entities in the text. In this
approach, authors utilizes sentence vectors generated from averaged word embeddings and uses logistic
regression or Support Vector Machines (SVMs) for detecting dialects where as in our proposed approach,
we build the task of dialect identification using end to end deep neural representation by learning abstract
features and feature combinations through multiple layers. Our results are not directly comparable with
this work as we use different Arabic dialect dataset.

3 Methodology

Deep neural networks, with or without word embeddings, have recently shown significant improvements
over traditional machine learning–based approaches when applied to various sentence- and document-
level classification tasks.

Kim (2014) have shown that CNNs outperform traditional machine learning–based approaches on
several tasks, such as sentiment classification, question type classification, and subjectivity classification,
using simple static word embeddings and tuning of hyper-parameters. Zhang et al. (2015) proposed
character level CNN for text classification. Lai et al. (2015; Visin et al. (2015) proposed recurrent CNN
while Johnson and Zhang (2015) proposed semi-supervised CNN for solving text classification task.
Palangi et al. (2016) proposed sentence embedding using LSTM network for information retrieval task.
Zhou et al. (2016) proposed attention-based bidirectional lstm Networks for relation classification task.
RNNs model text sequences effectively by capturing long-range dependencies among the words. LSTM-
based approaches based on RNNs effectively capture the sequences in the sentences when compared to
the CNN and SVM-based approaches. In subsequent sub sections, we describe our proposed CNN and
LSTM based approaches for multi-class dialect classification.

3.1 CNN-based Dialect Classification

Collobert et al. (2011) adapted the original CNN proposed by LeCun and Bengio (1995) for modelling
natural language sentences. Following Kim (2014), we present a variant of the CNN architecture with
four layer types: an input layer, a convolution layer, a max pooling layer, and a fully connected softmax
layer. Each dialect in the input layer is represented as a sentence (dialect) comprised of distributional
word embeddings. Let vi ∈ Rk be the k-dimensional word vector corresponding to the ith word in the

1https://github.com/autoritas/RD-Lab/ tree/master/data/HispaBlogs
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AlnfT AlxAm Sfqp jydp jdA llkwyt ElY AlmdY AlmtwsT wAlbEyd

Figure 1: Illustration of convolutional neural networks with an example dialect

sentence. Then a dialect S of length ` is represented as the concatenation of its word vectors:

S = v1 ⊕ v2 ⊕ · · · ⊕ v`. (1)

In the convolution layer, for a given word sequence within a dialect, a convolutional word filter P
is defined. Then, the filter P is applied to each word in the dialect to produce a new set of features.
We use a non-linear activation function such as rectified linear unit (ReLU) for the convolution process
and max-over-time pooling (Collobert et al., 2011; Kim, 2014) at pooling layer to deal with the variable
dialect size. After a series of convolutions with different filters with different heights, the most important
features are generated. Then, this feature representation, Z, is passed to a fully connected penultimate
layer and outputs a distribution over different labels:

y = softmax(W · Z + b), (2)

where y denotes a distribution over different dialect labels, W is the weight vector learned from the
input word embeddings from the training corpus, and b is the bias term.

3.2 LSTM-based Dialect Classification

In case of CNN, concatenating words with various window sizes, works as n-gram models but do not
capture long-distance word dependencies with shorter window sizes. A larger window size can be used,
but this may lead to data sparsity problem. In order to encode long-distance word dependencies, we use
long short-term memory networks, which are a special kind of RNN capable of learning long-distance
dependencies. LSTMs were introduced by Hochreiter and Schmidhuber (1997) in order to mitigate the
vanishing gradient problem (Gers et al., 2000; Gers, 2001; Graves, 2013; Pascanu et al., 2013).

The model illustrated in Figure 2 is composed of a single LSTM layer followed by an average pooling
and a softmax regression layer. Each dialect is represented as a sentence (S) in the input layer. Thus,
from an input sequence, Si,j , the memory cells in the LSTM layer produce a representation sequence
hi, hi+1, . . . , hj . Finally, this representation is fed to a softmax layer to predict the dialect classes for
unseen input dialects.
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Figure 2: Illustration of LSTM networks with an example dialect

3.3 Experimental Setup
We modeled dialect classification as a sentence classification task. We tokenized the corpus with white
space tokenizer. We performed multi-class 5-way classification on the given arabic data set containing 5
language dialects. We used Kim’s (2014) Theano implementation of CNN 2 for training the CNN model
and a variant of the standard Theano implementation3 for training the LSTM network. We initialized and
used the randomly generated embeddings in both the CNN and LSTM models in the range [−0.25, 0.25].
We used 80% of the training set for training and 20% of the data for validation set and performed 5-fold
cross validation in CNN. In LSTM, we used 80% of the given training set for building the model and rest
20% of the data is used as development set. We updated input embedding vectors during the training.
In the CNN approach, we used a stochastic gradient descent–based optimization method for minimizing
the cross entropy loss during the training with the Rectified Linear Unit (ReLU) non-linear activation
function. We used default window filter sizes set at [3, 4, 5]. In the case of LSTM, model was trained
using an adaptive learning rate optimizer-adadelta (Zeiler, 2012) over shuffled mini-batches with the
sigmoid activation function at input, output and forget gates and tanh non-linear activation function at
cell state. Post competition we performed experiments without and with average pooling using LSTM
networks and reported the results as shown in tables 5 and 6.

Hyper Parameters. We used hyper-parameters such as drop-out for avoiding over-fitting), and batch
size and learning rates on 20% of the cross-validation/development set. We varied batch sizes, drop-out
rate, embedding sizes, and learning rate on development set. We obtained the best CNN performance
with learning rate decay 0.95, batch size 50, drop-out 0.5, and embedding size 300 and ran 20 epochs on
cross validated dataset. For LSTM, we got the best results on development set with learning rate 0.001,
drop-out 0.5, and embedding size 300, batch-size of 32 and at 12 epochs. We used same settings similar
to the development set but varied drop-out rate over [0.5,0.6,0.7] and obtained best results on test set
using drop-out 0.7. We obtained best results on test set with drop-out 0.5 using average pooling.

Pre-compiled Embeddings. We used the gensim (ehek and Sojka, 2010) word2vec program to com-
pile embeddings from the given training corpus. We compiled 300-dimensional embedding vectors for
the words that appear at least 3 times in the Arabic dialect corpus, and for rest of the vocabulary, embed-
ding vectors are assigned uniform distribution in the range of [−0.25, 0.25]. We used these pre-compiled
embeddings in LSTM and reported run2 results in the test set.

4 Datasets and Results

In this section we describe about DSL 2016 shared task data sets and the experimental results.
2https://github.com/yoonkim/CNN_sentence
3http://deeplearning.net/tutorial/lstm.html
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egy glf lav msa nor Total

Train 1578 1671 1758 999 1612 7618
Test 315 256 344 274 351 1540
Total 1893 1927 2102 1273 1963 9158

Table 1: The distribution of training and test data sets

4.1 Datasets

In 2016, for the first time the DSL shared task included a sub-task on Arabic dialects for 5 dialects:
Egyptian, Gulf, Levantine, North-African, and Modern Standard Arabic (MSA) As dialects are mostly
used in conversational speech, DSL 2016 shared task supplied training and test datasets (Malmasi et
al., 2016) containing ASR transcripts. Test set contains uniform distribution of dialects related to ASR
texts. The distribution of training and test splits are shown in table 1. The samples in test set are slightly
unbalanced.

4.2 Results

We evaluated the given test set using both LSTM and CNN and presented the results as shown in table
2. DSL shared task results are evaluated using weighted-F1 measure for ranking of various participating
systems. Due to the imbalance of classes in the test set, majority baseline is used in this Arabic di-
alect classification task. We have obtained run1 results (0.1779 F1-weighted) with LSTM-based dialect
classification model using random embedding weights at the input layer. Run2 results (0.1944 F1) are
obtained using LSTM-model with pre-compiled word embeddings. Though run2 results are better than
run1 but LSTM-model poorly performed when compared to the base line results (0.2279 weighted-F1)
on the test set. We have obtained fairly comparable results on experimental held-out development set
without pre-compiled embeddings as shown in table 3. We identified that the poor results on test set
are due to the bug in the code of LSTM-results compilation. Post competition, we fixed the bug and
re-evaluated results on test set as shown in tables 5 and 6. We observe that LSTM without using pool-
ing before the softmax layer, performed slightly better (0.4231 F1-weighted) than using average pooling
(0.4172 F1-weighted). LSTM without pooling classified ’egy’, ’msa’ and ’nor’ dialects more accurately
than the LSTM with average pooling. LSTM with average pooling performed better than the LSTM
without pooling in classifying ’glf’ and ’lav’ dialect classes. Run 3 results are obtained using CNN
classification model without using pre-compiled embeddings. We observe that the CNN performance
(0.4329 F1-weighted) is better than the LSTM performance (0.4231 F1-weighted). The performance of
different dialect classes accuracy using CNN is visualized in the confusion matrix as shown in figure
3. We also present the 5-fold cross validation results as shown in the table 4. CNN in cross validation
setting outperformed LSTM-results on development set in four dialect classes (egy,lav,msa,nor) where
as LSTM performed better in case of ’glf’ dialect classification. It took 24 hours to perform 5-fold cross
validation using CNN on a single CPU, 8-GB RAM, Intel, i7-processor machine. We have also tried
building model using CNN and LSTM on sub-task1 but took 10 days of time to train on entire training
set and unable to test it on the test set and produce results in-time. The limitation of CNN and LSTM is
that they need more time to train on on CPU machines and this can be avoided by using GPU machines.

Test Set Track Run Accuracy F1 (micro) F1 (macro) F1 (weighted)
run1 C closed 0.1961 0.1961 0.1715 0.1779
run2 C closed 0.2162 0.2162 0.1876 0.1944
run3 C closed 0.4377 0.4377 0.4364 0.4329
baseline - - - - - 0.2279

Table 2: Results for test set C for all runs (closed training).
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Figure 3: Run3 confusion matrix using CNN multi-class classification

Precision Recall f1-score
egy 0.5694 0.5484 0.5587
glf 0.4444 0.5562 0.4940
lav 0.4704 0.4389 0.4541
msa 0.5922 0.6731 0.6301
nor 0.5444 0.4171 0.4723

Table 3: LSTM experimental results (run1) on development set without embeddings after 12 epochs of
training.

5 Discussion and Conclusion

We can assess the degree of confusion between various dialect classes from the confusion matrix of
CNN classification model as shown in figure 3. MSA and Egypt are the dialects that are more accurately
identified when compared to the other dialects. North-african and Laventine have the highest degree
of confusion, mostly with Egypt and gulf Arabic dialects. This might be due to the geographically in
close contact with these languages. We also observe significant amount of confusion between gulf and
the Egyptian and leventine dialects. In our experiments, we observed that CNN performed better than
the LSTM for Arabic dialect classification. There are number of potential directions to improve the
dialect classification accuracy. One possible future work might be to compile the common vocabulary
among most confusing dialect classes and for these vocabulary compile the word embeddings from large,
unlabeled dialect corpora using neural networks, and encode both syntactic and semantic properties of
words. Studies have found the learned word vectors to capture linguistic regularities and to collapse
similar words into groups (Mikolov et al., 2013b).

As our proposed CNN model is built using default network parameters, tuning of hyper-parameters can
significantly improve the dialect classification accuracy and this will be considered as our future work.
Learning word embeddings from the larger dialect corpus and using them in the input layer of CNN and
LSTM networks can also improve the dialect classification accuracy. Since Arabic language dialects are
morphologically rich and pose various syntactic and semantic challenges at word level, experimenting
with character level CNNs and bi-directional LSTMs can be more useful for accurate classification of
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Precision Recall f1-score
egy 0.5582 0.6363 0.5947
glf 0.4716 0.4629 0.4672
lav 0.6153 0.4861 0.5432
msa 0.6597 0.7356 0.6956
nor 0.5750 0.6174 0.5954

Table 4: CNN Average 5-fold cross-validation results (run3) without embeddings after 20 epochs

Precision Recall f1-score
egy 0.4444 0.4190 0.4314
glf 0.3172 0.2305 0.2670
lav 0.4179 0.4215 0.4197
msa 0.4605 0.6606 0.5427
nor 0.4637 0.4188 0.4401
F1 (macro) - - 0.4202
F1 (weighted) - - 0.4232

Table 5: LSTM experimental results on test set
without pooling

Precision Recall f1-score
egy 0.4353 0.3523 0.3895
glf 0.2678 0.3516 0.3040
lav 0.4059 0.4389 0.4218
msa 0.5301 0.5146 0.5222
nor 0.4662 0.4131 0.4381
F1 (macro) - - 0.4151
F1 (weighted) - - 0.4172

Table 6: LSTM experimental results on test set with
average pooling

various Arbaic dialects. As our proposed approach do not rely much on language specific analysis on the
corpus, it can be easily adapted to more similar languages, varieties and classification tasks.
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Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch. The Journal of Machine Learning Research, 12:2493–2537.

Kareem Darwish, Hassan Sajjad, and Hamdy Mubarak. 2014. Verifiably effective arabic dialect identification. In
EMNLP, pages 1465–1468.

Heba Elfardy and Mona T Diab. 2013. Sentence level dialect identification in arabic. In ACL (2), pages 456–461.

Marc Franco-Salvador, Paolo Rosso, and Francisco Rangel. 2015. Distributed representations of words and
documents for discriminating similar languages. In Proceedings of the Joint Workshop on Language Technology
for Closely Related Languages, Varieties and Dialects (LT4VarDial), pages 11–16, Hissar, Bulgaria.

Felix A. Gers, Jürgen Schmidhuber, and Fred Cummins. 2000. Learning to forget: Continual prediction with
LSTM. Neural Computation, 12(10):2451–2471.

Felix Gers. 2001. Long Short-term Memory in Recurrent Neural Networks. Ph.D. thesis, Universität Hannover.

Cyril Goutte and Serge Leger. 2015. Experiments in discriminating similar languages. In Proceedings of the Joint
Workshop on Language Technology for Closely Related Languages, Varieties and Dialects (LT4VarDial), pages
78–84, Hissar, Bulgaria.
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Abstract

The DSL 2016 shared task continued previous evaluations from 2014 and 2015 that facilitated the
study of automated language and dialect identification. This paper describes results for this year’s
shared task and from several related experiments conducted at the Johns Hopkins University Hu-
man Language Technology Center of Excellence (JHU HLTCOE). Previously the HLTCOE has
explored the use of compression-inspired language modeling for language and dialect identifi-
cation, using news, Wikipedia, blog, and Twitter corpora. The technique we have relied upon
is based on prediction by partial matching (PPM), a state of the art text compression technique.
Due to the close relationship between adaptive compression and language modeling, such com-
pression techniques can also be applied to multi-way text classification problems, and previous
studies have examined tasks such as authorship attribution, email spam detection, and topical
classification. We applied our approach to the multi-class decision that considered each dialect
or language as a possibility for the given shared task input line. Results for testset A were in
accord with our expectations, however results for testsets B and C were notably worse.

1 Introduction

Automated language identification (LID) can be defined as the task of predicting the dominant language
being used by the author of a text. Often the decision task is formulated as selecting one language from a
fixed inventory of languages, although it is not uncommon to extend the problem to indicating “none of
the above” when it is believed that the text is not written in one of the listed languages. For comparatively
large input texts (i.e., texts longer than a sentence or two), choosing between only a few languages, or
when it is diverse languages that are being considered, high levels of accuracy can be achieved (i.e., over
99%).

The Discriminating between Similar Languages (DSL) shared task was started in 2014 and it is now in
its third year. The DSL’16 task (Malmasi et al., 2016) is focused on distinguishing between highly related
languages, which is a more challenging problem than the general case. Examples include distinguishing
between mutually-intelligible variants of a regional language (e.g., Bosnian, Croatian, and Serbian vari-
ants of Serbo-Croatian) or among dialects of imperial languages (e.g., between African, European, and
South American Portuguese).

A variety of approaches have been used for language identification since the increased availability
of multilingual corpora in the early 1990s. These include vector comparisons (e.g., cosine similarity)
(Damashek, 1995), language modeling (Dunning, 1994; Grefenstette, 1995), and supervised machine
learning (Baldwin and Lui, 2010; Zampieri, 2013).

In recent years, there has been increased interest in LID due to the the growth of international (i.e.,
multilingual) social media platforms. Such user-generated texts tend to be short, less grammatical, and
contain highly variable spellings and the frequent use of abbreviations, shorthands, emoticons, and other
confounding phenomena which can complicate language identification.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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In this paper we discuss the use of compression-inspired language models for predicting the language
of texts. In Section 2 we describe classification using the prediction by partial matching algorithm. In
Section 3 we report experiments on language identification. In Section 4 we discuss our participation in
the DSL’16 challenge and briefly summarize results. Section 5 briefly mentions a few related studies.

2 Prediction by Partial Matching

Prediction by Partial Matching (PPM) is a data compression algorithm developed in the early 1980s when
RAM, external storage, and network bandwidth were considerably less abundant than is the case today.

2.1 Overview

Cleary and Witten described the algorithm (1984) and presented two methods for smoothing probabil-
ity estimates (termed Methods A and B). A few years later Moffat investigated engineering improve-
ments to the algorithm and introduced a set of parameter estimation enhancements collectively known as
Method C (or PPM-C).

PPM is based on a variable-order Markov language model that contains a parameter N which is the
maximal order. When used to compress data files, observations from previously seen data are used
to estimate the likelihood of observing a symbol1 in a given context. Generally longer contexts are
used when available, starting with the maximal order N . However, the method backs off to use shorter
contexts when a symbol has not been observed in a longer context. Crucially, a context-dependent
penalty2 is applied when backing off is required.

As an example, seeing a ‘z’, ’t’, or ’c’ is not uncommon following a left-context of “[space] q u i” in
English. But an ’h’ would be very unlikely. To represent ‘h’ after “q u i” it will be necessary to back-off
using the estimates from shorter contexts such as “u i”. If an ’h’ has never been observed after “u i” then
the process continues, with an additional penalty, and further recursive backoff for ’h’ after a context of
a single symbol (‘i’).

The A/B/C/D variants of PPM differ in how they model backoff, or “escape” probabilities. The later
variants of PPM (e.g., PPM-C or PPM-D) are considered to achieve more compact codes than the earlier
versions.

2.2 Compression-inspired Classification

Adaptive compression is concerned with representing symbols in a minimal number of bits, based on a
model trained from a given history (or dataset). This approach can be turned on its head in the follow-
ing way. Given several models M1, M2, ...,Mn, each trained from different datasets, and a input text
fragment T , choose the model that will encode T in the fewest number of bits. This type of analysis is
commonly used with traditional Markov language models (e.g., Dunning (1994)).

PPM and related compression techniques have been applied to a variety of classification tasks. Frank
et al. (2000) used PPM for topical text classification tasks using the Reuters 21578 dataset; their results
were not at the level of the state of the art.

The earliest use of entropy-based compression techniques for language identification can probably be
attributed to Teahan (2000). He examined several large texts in six Western European languages; his
illustration of the method was simplistic, but clear. In the same study he conducts additional experiments
in authorship attribution and topic identification.

Between 2005 and 2007, the NIST Text REtrieval Conference (TREC) ran an evaluation of email spam
detection. Methods based on compression-inspired language models such as PPM and Dynamic Markov
Compression (DMC) were among the top performing approaches (Bratko et al., 2006; Cormack, 2008).

One explanation for why compression-based methods succeed for authorship attribution, language
identification, and spam detection, is that decisions can be informed based on short contexts (e.g., char-
acter n-grams of lengths 3 to 7). Tasks like topic classification would appear to be a less good fit.

1This could be a byte, an UTF-8 character, or a even a word if the stream was at the word level.
2This penalty is sometimes called the escape probability.
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Figure 1: F1 score by language for 47-way LID classification. Data are single sentences. Both training
and test exemplars were drawn from ”high quality” corpora (e.g., Europarl, EMILLE, Leipzig, and other
national corpora).

3 LID Experiments

In these experiments we use PPM-A, a decision that was undertaken based on the fact our existing
software (Bergsma et al., 2012) relies on hash-tables to store frequency counts. Refactoring the source
code to use suffix trees would make it easier to adopt the parameter estimate techniques in PPM-C, but
we did not have time before this year’s evaluation to consider such a change.

3.1 Initial Testing

For some very preliminary experiments, we begain by assembling a 47-language collection from extant
corpora, including well-known sources such as Europarl (v5), the Leipzig corpus, the EMILLE corpus,
and other available national corpora. Using 90k sentences for training, and 10k sentences for testing, we
attempted the 47-way classification task using PPM-A with order n = 4, attaining a macro-averaged F1

score of 99.4%. This seemed promising. Furthermore, the majority of the mistakes were in Bosnian,
Croatian, and English data, and much of the error was due to mis-labelled data. The per-language F1

scores are shown in Figure 1.
The use of Wikipedia text was considered for training and experimentation in a greater number of

languages. However, there are a great many instances of code switching or ”English pollution”, where
articles in a given language’s Wikipedia contain much text written in other languages, especially English.
For these and other pragmatic reasons, we encourage caution when using Wikipedia corpora for language
identification training or testing.

3.2 DSL ’15

To prepare for the DSL’16 shared task, we experimented with the shared task data from 2015 (DSLCC
version 2.0, test set A). We sought to investigate the effects of the PPM maximal order, the use of case
normalization, the directionality of scoring text, additional text normalizations, and the use of outside
data.

In the sections below we report our findings using the accuracy scores reported by the evaluate.py
script released with the 2015 data. Because the compression-based classifier does not require tuning
hyper-parameters, both the task1-train and task1-dev files were used to build a model and scoring was
done against the task1-test file.

As we were not concerned with confusions between dissimilar languages (e.g., we were not worried
about confusing Argentine Spanish for Indonesian or Serbian), we did not rely on hierarchical decision
making (e.g., predicting language family first, and then a specific language or dialect).
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3.2.1 Maximal order
Maximal orders of n = 4 or n = 5 often seem to work well. To consider a wider range of possibilities,
we looked at values of n from 3 to 6. In this first trial, no normalization of case, punctuation, etc... was
performed. Each input line was scored in two ways, either from left-to-right (LTR) or from right-to-left
(RTL). Results are shown in Table 1.

Order LTR RTL
3 90.96 90.99
4 92.87 92.78
5 93.11 93.03
6 92.93 92.79

Table 1: Comparison of PPM order and direction of processing.

Using a maximal order of n = 5 achieved the overall best result, and n = 3 was notably worse.

3.2.2 Case normalization
Next transformation of the input texts to lower-case was examined. Results are shown in Table 2. Some-
what surprisingly, a slight decline in performance occurs when case information is removed. An order
of n = 5 is still the best choice.

Order LTR RTL
3 89.75 89.96
4 92.85 92.85
5 92.96 92.89
6 92.80 92.67

Table 2: Comparison of PPM order and case-folding. Performance drops without case information.

3.2.3 Digit conflation and bidirectionality
Arguably Roman digits should not be very indicative of language. Therefore we explored mapping the
digits [1− 9] to the digit 1 (chosen as a representative). Also, rather than score the input text in only one
direction, we also considered bidirectional scoring. To produce a bidirectional score the forward (i.e.,
LTR) and backward (i.e., RTL) probabilities were combined. The bidirectional probability was computed
as follows:

pbi =
√

pltr × prtl (1)

Table 3 shows a very slight adjustment from conflating digits compared to the results in Table 1
when scoring in only one direction. However, combining evidence from both directions seems to help
materially.

A score of 93.34 would have been ranked 7th if it were an official submission in 2015 according to
Table 5 in Zampieri et al. (2015).

Order LTR RTL Both
3 91.01 91.01 91.06
4 92.92 92.82 93.04
5 93.13 93.16 93.34
6 92.99 92.79 93.15

Table 3: Use of case preservation, digit conflation, and combination of directionality. Our best results
for the DSL’15 dataset.
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3.2.4 External Data
Generally with supervised learning using greater amounts of data to build models leads to higher levels
of performance. Therefore we tried one additional experiment where 20k sentences were added to the
training set. We used 20k sentences from Wikipedia text for Bosian, Croatian, Serbian, Indonesian,
and Malaysian. We used newspaper sources for Iberian Spanish (EFE), Brazilian Portuguese (Folha),
and European Portuguese (Publico). No data were added for Czech, Slovakian, Bulgarian, Macedonian,
Argentine Spanish, or the unknown category “xx”.

The results in Table 4 were disappointing; an average of about 1.3 points in accuracy were lost. One
possible conjecture could be that the test data are drawn from a similar distribution as the training data.
Were that to be the case, then adding external data that is not i.i.d. to the training and test data could be
expected to be more harmful than helpful.

Order LTR RTL Both
3 88.54 88.41 88.55
4 91.25 90.91 91.15
5 92.07 01.67 92.06
6 91.70 91.54 92.00

Table 4: Augmenting training data using external corpora – compare results to Table 3. The use of
additional data degrades performance.

4 Participation in DSL’16

As a result of the trials reported in Section 3 we anticipated that our best results would be obtained using
an order of n = 5, preserving case, conflating digits, and scoring text bidirectionally. As use of external
corpora had not improved in our earlier results, we did not submit any “open” results, restricting models
to using the provided training data.

We spent approximately one day working with the DSL’15 data in preparation for the current evalua-
tion. About 3 hours was spent working on the DSL’16 task and preparing submissions.

4.1 Submitted Runs
Table 5 describes the characteristics of the submitted runs. The B1 and B2 partitions were treated iden-
tically to each other.

Task Run Conditions
A 1 - closed PPMA (5), bidirectional, case preserved, digit-folding
A 2 - closed PPMA (5), bidirectional, lower-cased, all non-letter, non-whitespace characters deleted
B 1 - closed PPMA (5), bidirectional, case preserved, digit-folding
B 2 - closed PPMA (5), bidirectional, lower-cased, all non-letter, non-whitespace characters deleted
C 1 - closed PPMA (4), bidirectional, no text normalization
C 2 - closed PPMA (5), bidirectional, no text normalization
C 3 - closed PPMA (6), bidirectional, no text normalization

Table 5: Characteristics of submitted runs.

Results for each run are given in Table 6 below.

4.2 Discussion
4.2.1 Test Set A
The Task 1 (Test Set A) data (Tan et al., 2014) was fairly similar to the DSL’15 task, and our submission
was ranked around what we would expect. The accuracy of our hltcoe-closed-A-run1 (A1) submission
was 0.8772 and ranked 10th out of 17 teams. The maximum reported accuracy was 0.8938, and the
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Test Set Track Run Accuracy F1 (micro) F1 (macro)
A closed run1 0.8772 0.8772 0.8769
A closed run2 0.8727 0.8727 0.8729
B1 closed run1 0.5300 0.5300 0.5101
B1 closed run2 0.5460 0.5460 0.4934
B2 closed run1 0.5100 0.5100 0.4965
B2 closed run2 0.5540 0.5540 0.5132
C closed run1 0.4123 0.4123 0.4111
C closed run2 0.3870 0.3870 0.3803
C closed run3 0.3909 0.3909 0.3858

Table 6: Results for all hltcoe runs.

lowest score was 0.8253. With twelve classes, a purely random baseline would have an accuracy of only
0.083; however, most languages or dialects only have one or two other confusable classes, so it is natural
to expect performance above 0.33 or 0.50.

From Table 6 we can compare the effectiveness of our two Task-1 submissions. Run 1 (case preserved,
minimal normalization) was marginally more effective than Run 2 which employed more aggressive text
normalization. The confusion matrix3 for Run 1 is given below in Table 7 and graphially in Figure 2.
Bosnian and Mexican Spanish proved to be the most challenging classes.

bs es-ar es-es es-mx fr-ca fr-fr hr id my pt-br pt-pt sr
bs 749 0 0 0 0 0 132 0 0 0 0 119
es-ar 0 869 58 71 0 0 1 0 0 1 0 0
es-es 0 56 813 126 0 3 0 0 0 0 2 0
es-mx 0 111 178 711 0 0 0 0 0 0 0 0
fr-ca 0 0 0 0 875 125 0 0 0 0 0 0
fr-fr 0 0 0 0 17 981 0 0 1 1 0 0
hr 137 1 0 0 0 0 852 0 0 0 0 10
id 0 0 0 0 0 0 0 984 15 0 0 1
my 0 0 0 0 0 0 0 40 960 0 0 0
pt-br 0 0 0 0 0 0 0 0 0 947 53 0
pt-pt 0 0 0 0 0 0 0 0 0 84 916 0
sr 116 0 0 0 0 1 13 0 0 0 0 870

Table 7: Confusion maxtrix for hltcoe run 1 (test set A – closed training).

4.2.2 Social Media data

As the DSL’15 data had been single sentences from journalistic texts, we had expected the DSL’16
social media data to be single tweets with one message per line. We were preparing submissions just
hours before the deadline, and it came as quite a surprise upon unpacking the test-set zip file to find that
the data contained multiple tweets per line, and that a given user’s tweets could be in multiple languages.
Due to time limitations it wasn’t feasible for us to do anything other than treat the input like the data
in Test Set A and simply ignore this phenomena. Thus, the input line was treated as one, possibly long
message.

Additionally, we did not remove any hashtags, URLs, or other potentially English-looking twitter
phenomena. Together these two factors contributed to our very low ranking on this test set (i.e., last of
14 systems).

3Note the ISO 639-1 digraph for Malaysian is ms, however, the released data was mistakenly labeled as my, the code for
Burmese. The my label was retained for consistency with other papers.
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Figure 2: Graphical depiction of the confusion matrix for hltcoe run 1 (test set A – closed training).

4.2.3 Task 2 / Test Set C dataset
It also came as a last-minute surprise to find that the dialectal Arabic dataset was phonetically encoded
and not expressed in native orthography. We had previously worked with written dialect identification
using the test sets produced by Zaidan and Callison-Burch (2011; 2014). Working with automatically
produced phonetic representations is undoubtably a more challenging task, but not one that we were
prepared for. In hindsight, it would have been worthwhile to examine the training data beforehand. Our
runs were ranked 15th of 18 systems.

5 Related Work

Use of character-level n-grams for LID is not new. Cavnar and Trenkle (1994) developed the TextCat
system, which has served as a publicly available LID baseline for over two decades.

Information-theoretic and compression-based techniques have been used for LID for some time. Be-
sides Teahan’s early work (2000), such approaches were “rediscovered” by Benedetto et al. (2002),
generating some controversy in the computational linguistics community (Goodman, 2002).

Bobicev submitted results to the DSL’15 shared task using the PPM-C variant (2015). Our results
appear similar to her published results on the 2015 task; we suspect that her use of PPM-C vs. our use
of PPM-A is probably responsible for her higher score (94.14 vs. 93.34) on that dataset.

Other recent work in language detection includes: (Baldwin and Lui, 2010; Gottron and Lipka, 2010;
Lui and Baldwin, 2011; Tromp and Pechenizkiy, 2011; Bergsma et al., 2012; Carter et al., 2013; Brown,
2014).

6 Conclusions

We think compression-inspired classification is a reasonable technique for tasks such as language and
dialect identification which are highly informed from short character n-grams. Use of PPM-A with
a maximal order of n = 5 was most effective and notably better than a value of n = 3. Scoring
texts bidirectionally consistently improved performance. Our middle of the pack ranking in the Task-1
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evaluation was on par with our expectations given our post-hoc testing with the DSL’15 dataset. In future
work we would like to determine whether different methods for estimating escape probabilities, such as
PPM-C, can yield superior results.
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Abstract

This paper describes an Arabic dialect identification system which we developed for the Dis-
criminating Similar Languages (DSL) 2016 shared task. We classified Arabic dialects by using
Waikato Environment for Knowledge Analysis (WEKA) data analytic tool which contains many
alternative filters and classifiers for machine learning. We experimented with several classifiers
and the best accuracy was achieved using the Sequential Minimal Optimization (SMO) algorithm
for training and testing process set to three different feature-sets for each testing process. Our
approach achieved an accuracy equal to 42.85% which is considerably worse in comparison to
the evaluation scores on the training set of 80-90% and with training set 60:40 percentage split
which achieved accuracy around 50%. We observed that Buckwalter transcripts from the Saar-
land Automatic Speech Recognition (ASR) system are given without short vowels, though the
Buckwalter system has notation for these. We elaborate such observations, describe our methods
and analyse the training dataset.

1 Introduction

Language Identification or Dialect Identification is the task of identifying the language or dialect of a
written text. The task of Arabic dialect identification may require both computer scientists and Arabic
linguistics experts. The Arabic language is one of the worlds major languages, and there is a common
standard written form used worldwide, Modern Standard Arabic (MSA). MSA is based on the text of the
Quran, the holy book of Islam; and MSA is taught in Arab schools, and promoted by Arab civil as well
as religious authorities and governments. There are many dialects spoken around the Arab World; Arabic
dialectologists have studied hundreds of local variations, but generally agree these cluster into five main
regional dialects: Iraqi Dialect (IRQ), Levantine Dialect (LAV), Egyptian Dialect (EGY), North Africa
Dialect (NOR), and Gulf Dialect (GLF) which is a subclass of Peninsular Arabic. Studies in Arabic
dialectology focus on phonetic variation (Alorifi, 2008; Biadsy et al., 2009; Horesh and Cotter, 2016;
Sadat et al., 2014). Horesh and Cotter (Horesh and Cotter, 2016) confirmed that past and current research
is focussed on phonetic and phonological variation between Arabic dialects: all examples that they
presented are of phoneme variation, and they did not mention any work on text, or corpus-based research,
or of lexical or morpho-syntactic or grammar variation. However, Arabic spoken dialect does include
local words, phrases, and even local variant morphology and grammar. With the spread of informal
writing, for example on social networks and in local-dialect blogs, news and other online sources, Arabs
are starting to write in their dialects. Because of the dominance of the MSA standard, there are no
official writing standards for Arabic dialects, so spelling, morphology, lexis and grammar can be subject
to individual transcription choice: it is up to a dialect speaker to decide how to write down their text.
Dialect speakers have been taught from school to write down everything in MSA, so they may well
normalise or translate into MSA rather than phonetically transcribe words and utterances. Pronunciation
of vowels in words constitute one of the key differences between Arabic dialects; but in written MSA,
most vowels are omitted, leaving few clues to distinguish the source dialect.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/
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All this makes it challenging to collect an Arabic dialects texts corpus. Previous DSL shared tasks
(Zampieri et al., 2015) were based on officially recognised and differentiated languages (Bosnian v
Croatian v Serbian, Malay v Indonesian etc.) with readily-available published sources: Each example is
a short text excerpt of 20100 tokens, sampled from journalistic texts . Local and national Arabic news
sources and other journalistic text may include some local words but are still permeated and dominated
by MSA, so a DSL Arabic dialects journalisic text data-set would be contaminated with MSA/dialect
code-switching, and blocks of MSA. The DSL organisers tried instead to gather dialect data more di-
rectly from dialect speakers, and tried to avoid the problem of translation into MSA by using Automatic
Speech Recognition rather than human scribes. However, these texts were often much shorter than 20-
100 words, sometimes only 1 or 2 word utterances; and these short utterances could be common to two or
more dialects, with no further indicators for differentiation. Arabic linguistics experts in our team found
clear evidence of MSA in numerous dialect texts, possibly introduced by the ASR transcription method;
and numerous short utterance instances which had no linguistic evidence of a specific Arabic dialect.

The DSL shared task (Malmasi et al., 2016) was to identify Arabic dialects in texts in five classes:
EGY, GLF, LAV, NOR, and MSA; in utterance/phrase level identification which is more challenging
than document dialect identification, since short texts have fewer identifying features. Arabic dialects
classification is becoming important due to the increasing use of Arabic dialect in social media, and the
importance of identification of the dialect before machine translation takes place, or search and retrieval
of data (Lu and Mohamed, 2011). Furthermore, identifying the dialect may improve the Part-Of-Speech
tagging: for example, the MADAMIRA toolkit identifies the dialect (MSA or EGY) prior to the POS
tagging (Pasha et al., 2014). The task of Sentiment Analysis of texts, classifying the text as positive or
negative sentiment, is also dialect-specific, as some diagnostic words (especially negation) differ from
one dialect to another.

In this paper we describe our method for defining features and choosing the best combination of
classifier and feature-set for this task. We show the results of different variants of SMO with different
feature-tokenizers. Finally, we conclude the paper by discuss the limitations that affected our results.

2 Related Work

There have been many studies about Arabic dialect Identification. One of these studies presented by
Zaidan and Callison-Burch (Zaidan and Callison-Burch, 2014). The authors focused on three Arabic
dialects: Levantine, Gulf, and Egyptian and they created a large data set called the Arabic Online Com-
mentary Dataset (AOCD) contained words in all dialects from readers’ comments on the three online
Arabic newspapers. They obtained 1.24M words from Al-Ghad newspaper (from Jordan to cover Lev-
antine dialect), 18.8M form Al-Riyadh newspaper (from Saudi Arabia to cover Gulf dialect), and 32.1M
form Al-Youm Al-Sabe newspaper (from Egypt to cover Egyptian dialect). They classify dialect using
Nave Bayes and used wordGram and charcterNGram as features and trained the classifier using unigram,
bigram, and trigram models for word, and unigram, trigram, and 5-gram for character model. Based on
the dataset they used in training process they found that a unigram word model achieved best accuracy
when examine the classifier using 10-fold cross validation (Zaidan and Callison-Burch, 2014). Another
study built a system called LAHGA proposed to classify EGY dialect, LEV dialect, and MAG dialect (Lu
and Mohamed, 2011). The authors used Tweets as a dataset for training and testing processes. Then be-
gin manually identifying features by reading thousands of tweets and extracting features. They used three
different classifiers, which are Nave Bayes classifier, Logistic Regression classifier, and Support Vector
Machine classifier. The testing phase was divided into manual testing and cross-validation. During the
manual testing process, they removed all noise and chosen 90 tweets, 30 from each dialect, whereas in a
10-flod cross-validation there is not any human intervention. The LAHGA performance shows 90% on
a manual test and 75% on cross-validation.

Another research study to classify Arabic dialects used a sentence-level approach to classify whether
the sentence was MSA or Egyptian dialect (Elfardy and Diab, 2013). They based the study on a super-
vised approach using Nave Bayes classifier which was trained on labelled sentences with two types of
features: Core Features to indicate if the given sentence is dialectal or non-dialectal. Meta Features to
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estimate whether the sentence is informal or not. The system accuracy was about 85.5%.

3 Data

The data for the shared task provided from the DSL Corpus Collection (Ali et al., 2016) is a dataset
containing ASR transcripts of utterances by Arabic dialect speakers; there was no guarantee that each
utterance was unique to a dialect. The task is performed at the utterance-level and they provided us with
two sets. The first set is for training and contains 7,619 utterances labelled and divided unevenly between
5 classes that cover four Arabic dialects (EGY, GLF, LAV, NOR), and MSA (it is not clear how MSA
speakers were procured as MSA is not a spoken dialect). Table 1 shows the number of utterances for
each class. The second set is for testing, consisting of 1,540 unlabelled utterances. The utterance length
ranged from one word to 3305 words with an average of 40 words/utterance and standard deviation =
60. The number of utterances with word count less than 10 words is 1761 = 23.1%. Figure 1 shows the
utterances distribution over utterance length.

Classes Number of utterances
EGY 1578
GLF 1672
LAV 1758
NOR 1612
MSA 999

Table 1: The number of utterances for each class.

Figure 1: The sentences distribution over sentence length.

4 Method

At the beginning we tried to choose the best classifier for the Arabic Dialects Identification (ADI) task
from a set of classifiers provided by WEKA (Hall et al., 2009) by measuring the performance of several
classifiers on testing with the training dataset, 10-fold cross-validation, and by percentage split which
divides the training set into 60% for training and 40% for testing. Table 2 reports results for a range
of classifiers that we tried, using the WEKA StringToWordVector filter with WordTokenizer to extract
words as features from utterance-strings. SMO was the best performing classifier. Table 3 shows the
results of SMO using CharacterNGram Tokenizer with Max=3 and Min=1. Word Tokenizer method,
also known as bag of words, is a filter that converts the utterances into a set of attributes that represents
the occurrence of words (delimited by space, comma, etc) from the training set. It is designed to keep
the n (which we set to 1000) top words per class. NGramWord Tokenizer is similar to Word Tokenizer
with the exception that ability to also include word-sequences with the max and min number of words;
while CharacterNGram Tokenizer counts 1-2- and/or 3-character n-grams in the utterance-string.
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The second column in table 2 shows the results on the same (dialect-labelled) data as those used to
train classifier. Third column represents the results on 10-fold cross-validation. The fourth column shows
the results on a randomly selected 40% of original training data for test of classifiers trained on the other
60%. After running the experiments in Table 2, we realised that 10-fold cross-validation is very time-
consuming (at least 10 times the duration of evaluation on training set or 60:40 percentage split) but
produces the same classifier ranking, so we did not repeat the 10-fold cross-validation for table 3.

Classifier Evaluate on training set 10-fold cross-validation 60% train, 40% test
NaiveBayes 47.09 45.01 43.93

SMO 89.29 52.82 50.13
J48 72.28 43.26 41.5

ZeroR 23.07 23.07 22.41
JRip 35.67 32.76 32.51

Table 2: The accuracy of different classifiers (WordTokenizer).

Classifier Evaluate on training set 60% train, 40% test
SMO 94.46 53.08
J48 88.36 37.53

REPTree 53.71 35.56
JRip 41.62 36.35

Table 3: The accuracy of different classifiers (CharacterNGramTokenizer).

Looking at table 2, we noticed that by using SMO we got 6803 utterances correctly classified and 816
utterances misclassified. To improve the identification results we output the misclassified utterances and
converted the text from Buckwalter to normal readable Arabic script because looking at the Buckwalter
texts is difficult even if you know the Buckwalter transliteration system (Buckwalter, 2002). Then, we
asked our Arabic linguistic experts to examine some of the texts which were misclassified, and try to find
features which might correctly predict the dialect. Figure 2 shows example of misclassified utterances.
The example shows the instance 4 is actually labelled class 2:GLF but the classifier made an error and
predicted class 3:NOR.

Figure 2: Example of misclassified sentences.

The Arabic linguistics experts analysed the shortcomings in the misclassified utterances from the train-
ing data. They found that numerous texts are too short to say anything about their dialect origins, for
example: $Ark is a short one-word text which appears unchanged labelled as different dialects. Some
of the utterance seem to be entirely MSA despite having dialect labels, possibly due to the Automatic
Speech Recognition method used; and a lot of the utterance have at least some MSA in them. Some
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utterances that have recognisable dialect words often have words -which are shared between two or more
dialects. They even found some utterances labelled as one dialect but evidently containing words not
from that dialect; for example in utterance (254) labelled as LAV in the training set contains a non-LAV
lexical item, see figure 3.

Figure 3: Example of mislabelled sentences.

This analysis led us to conclude that it is impossible in principle for WEKA to classify all instances
correctly. There is a proportion of texts that cannot be classified, and this sets a ceiling on accuracy that
it is possible to achieve approximate to 90-91%.

4.1 Sequential Minimal Optimization (SMO)
SMO is the WEKA implementation of the Support Vector Machines classifier (SVM) which have been
developed for numeric prediction and classifying data by constructing N-dimensional hyper plane to
separate data optimally into two categories (Ayodele, 2010). SMV works to find a hypothesis h that
reduces the limit between the true error in h will make it on unseen test data and the error on the training
data (Joachims, 1998). SMV achieved best performance in text classification task due to the ability of
SVM to remove the need for feature selection which means SVM eliminate a high-dimensional feature
spaces resulting from the frequent of occurrence of word wi in text. In addition, SVM automatically find
good parameter settings (ibid).

4.2 Term Frequency (TF)
Term Frequency represent the frequency of particular word in text (Gebre et al., 2013). Based in our task
we found some words usually frequent in one dialect more than other dialects. So we used the weight of
TF to indicate the importance of a word in text.

4.3 Inverse Document Frequency (IDF)
Invers Document Frequency tried to scale the weight of frequent words if it appear in different texts
(more than one dialects) that is mean a word which appear in many dialect we cannot used as feature
(Gebre et al., 2013).

4.4 Features
The first experiments to choose the best classifier to identify Arabic dialects showed that SMO is the
best machine learning classifier algorithm, but we may increase accuracy by adjusting parameters and
features taken into account.

The WordTokenizer setting assumes features are words or character-strings between spaces while
the CharacterNGramTokenizer assumes features are 1/2/3-character sequences. We used the WEKA
StringToWordVector filter with WordTokeniser which splits the text into words between delimiters: (full-
stop, comma, semi-colon, colon, parenthesis, question, quotation and exclamation mark). After that, we
decided to use SMO, but we suggested trying character n-Grams as units, instead of words as units. We
used CharacterNGramTokenizer to splits a string into an n-gram with min and max gram. We tried to set
Max and Min both to 1 gives a model based on single characters; max and min both to 2 is a char-bigram
model; max and min both to 3 gives us a trigram model; max and min to 4 gives a 4-gram model, table 4
shows the results of different gram values when evaluating with the training set and a 60:40 percentage
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split of the training set. Table 4 suggests that 4-gram model may be inappropriate as the training data is
not sufficiently large.

Features Evaluate on training set 60% train, 40% test
Character UniGram 43.23 41.11
Character BiGram 78.08 52.4
Character TriGram 94.62 49.87

Character FourGram 85.01 50.39

Table 4: The accuracy of SMO classifier with CharcterNGram.

In addition, to improve performance we tried to replace the dimensions of the feature vector with
their IDF and TF weight which is a standard method from Information Retrieval (Robertson, 2004). We
supposed the models were very similar: (3-1) has all the trigrams of (3-3) and also some bigrams and
unigrams but these probably are common to all or most dialects and so do not help in discrimination.
However, the Task rules stated that we were restricted to trying our three best classifiers, so at this stage
we had to choose three ”Best” results. Sometimes the training set score is high, but the 60:40 percentage
split score is low; and sometimes the 60:40 percentage split score is high but the Training set score is
poor. So, we decided to use 60:40 percentage split as our guide to choose the best combination, because
using the training set for training as well as evaluation may over-fit to the training set. Figure 4 below
shows the chart that summarises the above four tables for different combinations of TF/IDF and WC
values with SMO classifier.

Figure 4: Summary of different combinations of TF/IDF and WC values with SMO classifier.

5 Results

We finally evaluated our system using the supplied separate test data set and submitted three different
results using SMO classifier with three different features-sets:

Run1: is obtained by using CharacterNGram, Max=3, Min=3, IDF=True, TF=True, WC=True. We
got accuracy around 42%.

Run2: is obtained by using WordTokenizer, IDF=True, TF=True, WC=True, we removed ’ delimiter
because it is used as a letter in Buckwalter transcription. The performance of this model equals to 37%.

Run3: is obtained by using NGramTokenizer, Max=3, Min=1, IDF=True, TF=True, WC=True, also
we removed ’ delimiter as in Run2. We got accuracy equals to 38%. Table 5 shows the results of the
three runs.
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Run Accuracy F1 (weighted)
1 42.86 43.49
2 37.92 38.41
3 38.25 38.71

Table 5: The results of the three classifiers.

6 Conclusion

We built systems that classify Arabic dialects in shared task by using WEKA data analytic tool and SMO
machine learning algorithm after testing variants of SMO with different tokenizers, IDF, TF, WC values,
and comparing results tested on training set (around 80-90% correct) as against using 60% to train and
separate 40% for test (around 50% correct). By testing our system on the testing data set we got an
average accuracy of 42.85%. We think that we got a low accuracy due to ASR transcription because the
most of the misclassified instances are not readily classifiable even by three human Arabic Linguistic
experts, which provides strong evidence that a Machine Learning classifier can do no better. Clearly if
the training data contains inappropriately-transcribed text and mislabelled instances, this will reduce the
ceiling of accuracy that any classifier can achieve. We think that we might combine WordTokenizer and
CharacterNGram in the future to improve the results.
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Abstract

In this study conducted on the occasion of the Discriminating between Similar Languages shared
task, I introduce an additional decision factor focusing on the token and subtoken level. The
motivation behind this submission is to test whether a morphologically-informed criterion can
add linguistically relevant information to global categorization and thus improve performance.
The contributions of this paper are (1) a description of the unsupervised, low-resource method;
(2) an evaluation and analysis of its raw performance; and (3) an assessment of its impact within
a model comprising common indicators used in language identification. I present and discuss
the systems used in the task A, a 12-way language identification task comprising varieties of
five main language groups. Additionally I introduce a new off-the-shelf Naive Bayes classifier
using a contrastive word and subword n-gram model (“Bayesline”) which outperforms the best
submissions.

1 Introduction

Language identification is the task of predicting the language(s) that a given document is written in. It
can be seen as a text categorization task in which documents are assigned to pre-existing categories.
This research field has found renewed interest in the 1990s due to advances in statistical approaches and
it has been active ever since, particularly since the methods developed have also been deemed relevant
for text categorization, native language identification, authorship attribution, text-based geolocation, and
dialectal studies (Lui and Cook, 2013).

As of 2014 and the first Discriminating between Similar Languages (DSL) shared task (Zampieri et
al., 2014), a unified dataset (Tan et al., 2014) comprising news texts of closely-related language varieties
has been used to test and benchmark systems. A second shared task took place in 2015 (Zampieri et al.,
2015), an analysis of recent developments can be found in Goutte el al. (2016). The documents to be
classified are quite short and may even be difficult to distinguish for humans, thus adding to the difficulty
and the interest of the task.

The present study was conducted on the occasion of the third DSL shared task (Malmasi et al., 2016).
It focuses on submissions to task A, a 12-way language identification task comprising varieties of five
main language groups: Bosnian (bs), Croatian (hr), and Serbian (sr); Argentine (es-AR), Mexican (es-
MX), and Peninsular Spanish (es-ES); Québec French (fr-CA) and Metropolitan French (fr-FR); Malay
(Bahasa Melayu, my) and Indonesian (Bahasa Indonesia, id); Brazilian Portuguese (pt-BR) and Euro-
pean Portuguese (pt-PT). Not all varieties are to be considered equally since differences may stem from
extra-linguistic factors. It is for instance assumed that Malay and Indonesian derive from a millenium-
old lingua franca, so that shorter texts have been considered to be a problem for language identification
(Bali, 2006). Besides, the Bosnian/Serbian language pair seems to be difficult to tell apart whereas Croa-
tian distinguishes itself from the two other varieties mostly because of political motives (Ljubešić et al.,
2007; Tiedemann and Ljubešić, 2012).

This work is licenced under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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The contributions of this paper are (1) a description of an unsupervised, low-resource method compris-
ing morphological features; (2) an evaluation and analysis of its raw performance; and (3) an assessment
of its impact in a model comprising common indicators used in language identification. In addition, I
will demonstrate that an off-the-shelf method working on the subtoken level can outperform the best
submissions in the shared task. The remainder of this paper is organized as follows: in section 2 the
method is presented, a evaluation follows in section 3, the systems used for the shared task is described
and a new baseline for task A is proposed in section 4.

2 Method

2.1 General principles

Statistical indicators such as character- and token-based language models have proven to be efficient on
short text samples, especially character n-gram frequency profiles from length 1 to 5 (Cavnar and Trenkle,
1994). In the context of the shared task, a simple approach using n-gram features and discriminative
classification achieved competitive results (Purver, 2014). Although features relying on the output of
instruments may yield useful information such as POS-features used for Spanish (Zampieri et al., 2013),
the diversity of the languages to classify as well as the prevalence of statistical methods call for low-
resource methods that can be trained and applied easily.

Morphological features are not prominent in the literature, although the indirect word stemming per-
formed by character n-grams is highlighted (Cavnar and Trenkle, 1994), and morphological ending fre-
quency mentioned as future work topic (Bali, 2006). The motivation behind this submission was to test
whether a morphologically-informed criterion can add linguistically relevant information to the global
decision and thus improve performance. This article protocols an attempt at developing an unsuper-
vised morphological model for each language present in the shared task. In order for this to be used in
competition, it has to be learned from the training data (“closed” submission track).

The method is based on segmentation and affix analysis. The original idea behind this simple yet
efficient principle seems to go back to Harris’ letter successor variety which grounds on transitional
probabilities to detect morpheme boundaries (Harris, 1955). The principle has proven valuable to con-
struct stem dictionaries for document classification (Hafer and Weiss, 1974), it has been used in the past
by spell-checkers (Peterson, 1980; Jones and Silverman, 1985), as it is linguistically relevant and com-
putationally efficient. Relevant information is stored in a trie (Fredkin, 1960), a data structure allowing
for prefix search and its reverse opposite in order to look for sublexicons, which greatly extends lexical
coverage. Forward (prefix) and backward (suffix) tries are used in a similar fashion, albeit with different
constraints. This approach does not necessarily perform evenly across languages; it has for example
led to considerable progress in morphologically-rich languages such as Arabic (Ben Hamadou, 1986) or
Basque (Agirre et al., 1992).

Similar approaches have been used successfully to segment words into morphemes in an unsupervised
way and for several languages. A more recent implementation has been the RePortS algorithm which
gained attention in the context of the PASCAL challenge (Keshava and Pitler, 2006; Dasgupta and Ng,
2007; Demberg, 2007) by outperforming most of the other systems. The present approach makes similar
assumptions as the work cited and adapts the base algorithm to the task at hand, that is the identification
of in- and out-of-vocabulary words and ultimately language identification. I have used this method in
previous work to overcome data sparsity in the case of retro-digitized East German corpora, an under-
resourced variety of written German, as I showed that it could trump full-fledged morphological analysis
to predict whether a given token is to be considered as part of the language or as an error (Barbaresi,
2016a). The present experiment consists of testing if an unsupervised morphological analysis of surface
forms can be useful in the context of similar language discrimination.

2.2 Current implementation

In order to build the corresponding models, a dictionary is built by observing unigrams in the training
data for each language, then prefix and suffix trees are constructed using this dictionary. An affix candi-
date list is constituted by decomposing the tokens in the training data and the residues are added to the
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list if they are under a fixed length. The 5% most frequent affixes are stored and used in the identification
phase, as relative corpus frequency is an efficient model construction principle (Dasgupta and Ng, 2007).
Parameter tuning, that is the determination of the best result for the shared task settings, is performed
empirically, in a one-against-all way with the concurrent languages. Token and affix length as well as
frequency-based thresholds and blacklists have been tested. In the end, only token and affix length con-
straints have been used, as blacklisting in the higher or lower frequency range did not lead to noticeable
improvements.

The identification algorithm aims at the decomposition into possibly known parts. It consists of two
main phases: first a prefix/suffix search over respective trees in order to look for the longest possible
known subwords, and secondly sanity checks to see if the rest could itself be an affix or a word out of
the dictionary. If αβ is a concatenation absent of the dictionary and if α and β are both identified as
longest affix and in-vocabulary words, then αβ is considered to be part of the target language. If one of
the components is a word and if the other one is in the affix dictionary, then the token is also considered
valid. The segmentation can be repeated twice if necessary, it can thus identify up to 4 components.
It is performed both forward and backward since tests showed small improvements in cross-language
efficiency.

For example, the token cantalapiedra in the Spanish corpus is not necessarily in the dictionary, but
it can be decomposed into canta+lapiedra and ultimately into canta+la+piedra. The method can be
robust: especialemente for instance can be considered to be a spelling error, but it can still be decomposed
into especial+e+mente and qualifies as a word if the remaining e is in the affix list of the corresponding
variety; in this particular context this is not the case, and the token is not considered to be a valid word. In
the Malay/Indonesian corpus, the token abdul rahman is probably a Twitter username, and its parts abdul
and rahman are both in the dictionary. If punctuation signs are added to the affix list, then this token is
correctly analyzed as part of the target language. On the opposite side, the token mempertanyakan (to put
into question, to doubt) is only present in the Indonesian corpus, and the affix memper- is more frequent
in this corpus. The model for Malay decomposes the word as mempe+r+tanyakan, because the word
mempe is seen once in the training data (which stems from a spelling error: mempe ngerusikan should be
spelled mempengerusikan and analyzed as mem+pengerusi+kan). Since r is in the affix list it concludes
that mempertanyakan is a valid word. The right decomposition would have been memper+tanyakan or
even memper+tanya+kan. This composite could easily be a valid Malay word but it is more frequent in
Indonesian. Since memper- does not occur as a token, it is not decomposed correctly. Additionally, the
model does not presently yield information about such frequency effects.

The models are indeed restricted to concatenative morphology, and the fact that a stem has to be in the
dictionary is a strong limitation impeding performance (Demberg, 2007), in particular recall. However, it
has been kept here as it prevents the models from overgenerating because of differences in the languages
examined.

3 Evaluation

After empirical testing, the smallest possible token length for learning and searching is fixed to 5 char-
acters, there is no upper bound on token length, and the maximum affix length is set to 2 to provide a
safer setting overall, although affix lengths of 3 or 4 occasionally lead to better results. Despite the pos-
sibility of populating a blacklist out of common tokens present in the lower and higher frequency ranges,
experiments have not been conclusive, so that no blacklisting has been used for the task.

3.1 Raw performance

Table 1 describes the results of morphological training. The coverage displayed is the total percent-
age of words considered to be in-dictionary by the model, for the target language and for the concurrent
language(s) respectively. For Southeastern-European languages, I find a lower lexical overlap than Tiede-
mann and Ljubešić (2012). The Spanish varieties have the smallest coverage spread. The assumption
that Malay and Indonesian feature more than 90% lexical similarity (Bali, 2006) is only partially con-
firmed: it seems that Indonesian has more to do with Malay than vice versa and the news samples used
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Trad. assumed Languages Coverage Benchmark (precision)
lang. type Target Concurrent Target Other Baseline Method Bayesline

Fusional
bs hr,sr 0.88 0.84 0.70 0.71 0.81
hr bs,sr 0.90 0.79 0.87 0.87 0.83
sr bs,hr 0.90 0.76 0.92 0.92 0.86

Fusional
es-AR es-ES,es-MX 0.96 0.89 0.85 0.86 0.79
es-ES es-AR,es-MX 0.95 0.92 0.69 0.69 0.58
es-MX es-AR,es-ES 0.93 0.92 0.66 0.65 0.78

Fusional
fr-CA fr-FR 0.97 0.87 0.92 0.92 0.95
fr-FR fr-CA 0.94 0.92 0.84 0.85 0.85

Agglutinative
id my 0.95 0.85 0.98 0.97 0.98
my id 0.96 0.78 0.99 0.98 0.99

Fusional
pt-BR pt-PT 0.95 0.89 0.89 0.91 0.93
pt-PT pt-BR 0.95 0.89 0.92 0.93 0.93

Table 1: Results of morphological induction on training set in terms of coverage and precision of classi-
fication on the development set. The unigram baseline and unigram Bayesline (Tan et al. 2014) are given
for comparison.

for the tests seem to be relatively easy to tell apart, since they feature the largest coverage spread. This
distinction within the Bahasa complex and the rest is reflected as being traditionally assumed in lan-
guage typology. However, finer differences do exist between fusional/inflectional languages (Dryer and
Haspelmath, 2013)1, and the results of the morphological induction phase constitute further evidence of
subtle differences, among other things on the morpholexical level.

Concerning the benchmark, the method is compared to a unigram baseline in terms of raw precision:
for each instance, potential candidates (alphabetic tokens of 5 characters and more) are analyzed and
classified as in- or out-of-vocabulary. The number of in-vocabulary tokens is divided by the number of
candidates, and the instance is classified according to the model which yields the highest proportion of
recognized tokens. This proportion has to be strictly superior to all others, which means that this indicator
(as all unigram models) can be undecided due to coverage problems, especially in short instances. Thus,
I used precision as a benchmark in order to judge cases where the indicator actually predicts something,
in other words the positive predictive value.

The precision displayed has been calculated accordingly on the development set, by using the highest
score per instance and taking language families in isolation, i.e. by reducing the 12-way classification
to a 2- or 3-way one. The method mostly achives equal or better results than the unigram baseline,
which proves that the concept is working, and that it might lead to better predictions for unseen samples.
A “Bayesline” is used as implemented for the previous DSL editions (Tan et al., 2014), it grounds on
unigrams for the sake of comparison and integrates a Naive Bayes classifier2, whereas the baseline and
my method yield “raw” results at this point. In line with expectations, the Bayesline generally achieves
better results. There are interesting discrepancies though: Argentine Spanish and Serbian seem to stand
out in a morpholexical perspective, meaning that the method could add relevant information to a global
system.

3.2 Impact in a composite system

The morphological criterion is not meant to be used by itself, but rather as a part of a combination of
features which are learned and weighted by statistical learning techniques as usually done in the literature
(Goutte et al., 2016). Since the criterion does not systematically lead to an unequivocal result, it will be
treated as a sparse feature by the models. The question is now to determine both the impact and the

1http://wals.info/chapter/26
2CountVectorizer(analyzer=’word’, ngram range=(1,1)), followed by a multinomial Naive Bayes clas-

sifier
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Language Morphology Char 4-grams Word bigrams
LM RF LM RF LM RF

bs *** ** . * *** *
hr . * * *** *
sr *** * *** * * .
es-AR *** * . . ** .
es-ES ** . ** *** *
es-MX *** ** * * *** .
fr-CA * ** *** ** *** .
fr-FR *** *** * *** .
id *** *** * ** *** .
my *** ** *** * ** .
pt-BR *** ** *** * *** .
pt-PT *** ** *** ** *** .

Table 2: Results of relevance tests on development set
Linear model (LM) significance levels: 0 “***” 0.001 “**” 0.01 “*” 0.05 “.” 0.1 “ ” 1
Random Forest (RF) relative feature importances: > 80% “***” > 60% “**” > 40% “*” > 20% “.”

potential for generalization of the morphological criterion presented in this article, all the more since the
closed training sets are restricted in size.

To test for variable significance, two distinct classification models are applied. The first one consists of
a regression analysis using a linear model, from a family of models commonly used to classify data and
select variables (Friedman et al., 2009), and previously used for classification of web documents in web
corpus construction (Barbaresi, 2015). The second one resides in random forests (Breiman, 2001). It has
been shown that in spite of their variability they can be used for interpretation, with respect to variable
importance, and also for feature selection in terms of model efficiency (Genuer et al., 2010). Previous
editions of the shared task have highlighted that higher-order character n-grams and lower-order word
n-grams allow for an efficient combination of accuracy and efficiency (Goutte et al., 2014; Malmasi and
Dras, 2015). Following from these results, character 4-grams and word bigrams are taken as a reference
for relevance tests.

Table 2 shows that word bigrams are the most relevant indicator according to the linear model, the
morphological criterion is used the most by the random forests. Overall, the most relevant feature is the
morphological criterion, although it is not equally important across all languages (especially for 3-way
concurrencies) and although the overall model is well-balanced. In fact, nearly all if not all the features
tend to be used even after feature selection by both methods, which means that the criterion introduced
here qualifies as relevant input from a statistical point of view and may be used as a sparse feature to
discriminate similar languages.

4 Shared task systems

The systems described in this section have been submitted as team XAC (Cross-Academies). An addi-
tional Bayesline is introduced, used as a system component. It only became apparent after the release of
the gold dataset that it actually performs better on it than all other features and, most importantly, better
than the other competing systems.

After significance tests conducted as described above, a combination of features has been used to set
up a classification system for the DSL shared task. The instances in the data are tokenized using the
SoMaJo tokenizer (Proisl and Uhrig, 2016), which achieves state-of-the-art accuracies on both web and
CMC data for German. As it is rule-based, it is deemed efficient enough for the languages of the shared
task. The features used comprise instance statistics such as length or number of capital letters and most
importantly the following series of continuous variables yielded by models trained for each language
variety: the normalized morphological criterion (feature scaling by standardization); character and word
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n-grams language models perplexities on lowercase tokenized text, respectively character 5-grams with
Kneser-Ney smoothing (Kneser and Ney, 1995) as computed by OpenGrm (Roark et al., 2012); and
word 2-, 3-, and 4-grams with modified Kneser-Ney smoothing as computed by KenLM (Heafield, 2011;
Heafield et al., 2013); the online learning toolkit Vowpal Wabbit (Langford et al., 2007; Langford et
al., 2009), which achieved the best performance when used separately on the development set; and
probabilities given by the Bayesline proposed below (as a Naive Bayes classifier yields probabilities for
each category). It was not clear in the development data that this new Bayesline would perform better
when applied alone on the gold set, the combination appeared to lead to the best overall performance.

Classification is performed using existing implementations by the scikit-learn toolkit (Pedregosa et al.,
2011). Random forests (Breiman, 2001) were used in the two first runs because of encouraging results
on the development set, but they were outperformed by a gradient boosting classifier (Friedman, 2001)
on the test set as shown in Table 3 (run 3), probably because of the robustness of this method, which
is known to perform well with heterogeneous features. The baseline is calculated according to the DSL
Bayesline (Tan et al., 2014) as described above, with an adapted setting to focus on character 4-grams.3

The best run was ranked 8th out of 17 teams on the task A in closed training, i.e. without using external
resources or past DSL data, with an accuracy of 0.879; the baseline of the first edition was 0.859 and the
best ranked submission reached an accuracy of 0.893. The confusion matrix on Figure 1 hints at a lower
classification accuracy concerning the three-way concurrencies, Spanish in particular. I hypothesize
that statistical models reach their limits here, especially concerning the Mexican Spanish, which is both
heavily influenced by other varieties and not homogeneous enough, so that frequency information cannot
be used reliably. Finally, the results on the gold set are not in line with the development set, where cross-
validated accuracies around 0.92 have been observed. The systems used may have been too complex or
not well-weighted.
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Figure 1: Confusion matrix for test set A (closed training)

In view of this I would like to introduce a refined version of the Bayesline (Tan et al., 2014) in the
form of a similar off-the-shelf Naive Bayes classifier using a contrastive subword n-gram model4, which

3CountVectorizer(analyzer=’char’, ngram range=(4,4))
4TfidfVectorizer(analyzer=’char’, ngram range=(2,7), strip accents=None,

lowercase=True) followed by MultinomialNB(alpha=0.005), adapted from https://web.archive.org/web/2016-
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outperforms the best teams for task A (with an accuracy of 0.902), even without taking the development
data into consideration (accuracy of 0.898). This shows that meaningful word and subword features can
give a boost to existing systems, even if they are based on simple extraction methods and/or used alone.

Run Accuracy F1 (micro) F1 (macro) F1 (weighted)
Reference Bayesline 0.859 0.859 0.858 0.858
run 1 0.861 0.861 0.860 0.860
run 2 0.870 0.870 0.869 0.869
run 3 0.879 0.879 0.879 0.879
Proposed Bayesline 0.902 0.902 0.902 0.902

Table 3: Results for test set A (closed training). Bayeslines inspired by Tan et al. (2014)

Finally, I wish to bring to the reader’s attention that I tried to gather web texts for an open submis-
sion using existing techniques (Barbaresi, 2013; Barbaresi, 2016b) and focusing on top-level domains.
Although the quality of corpora did not seem to be a problem apart from the Bosnian domain (.ba), the
variation contained in web texts was not a good match for the news texts of the shared task. As observed
in previous editions, performance decreased as further texts were included, so that no open submission
was made.

5 Conclusion

I have presented a method to build an unsupervised morphological model for all the languages of the
shared task. The resulting segmentation analysis is not the most efficient feature in itself, but I have
shown that this criterion qualifies as relevant input from a statistical point of view and may be used as
a sparse feature to discriminate similar languages. A reasonable hypothesis is that it adds new linguis-
tically motivated information, dealing with the morpho-lexical logic of the languages to be classified,
also yielding insights on linguistic typology. Unevenly distributed characteristics across the languages
account for noise which is filtered accordingly by the models.

Meaningful subword features could well give a boost to existing systems, even if they are based on
simple extraction methods. In fact, an off-the-shelf Naive Bayes classifier using a contrastive word and
subword n-gram model outperforms the best submission for classification across 12 languages, which
casts the best possible light on this topic. In this respect, future work includes a refinement of feature
extraction processes on this level, especially concerning frequency, whose role in linguistically relevant
units is more difficult to assess, probably because more training data is needed than for character n-grams.

The efficiency of the proposed Bayesline as well as the difficulty to reach higher scores in open training
could be explained by artificial regularities in the test data. The results for the Malay/Indonesian pair
are striking, this clear distinction does not reflect the known commonalities between these varieties.
This seems to be an artifact of the data which feature standard language of a different nature than the
continuum “on the field”, that is between both countries and within Indonesia. The conflict between
in-vitro and real-world language identification has already been emphasized in the past (Baldwin and
Lui, 2010), it calls for the inclusion of web texts into the existing task reference.
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Cyril Goutte, Serge Léger, and Marine Carpuat. 2014. The NRC system for discriminating similar languages. In
Proceedings of the 1st Workshop on Applying NLP Tools to Similar Languages, Varieties and Dialects, pages
139–145.
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Abstract

The paper describes the QCRI submissions to the shared task of automatic Arabic dialect clas-
sification into 5 Arabic variants, namely Egyptian, Gulf, Levantine, North-African (Maghrebi),
and Modern Standard Arabic (MSA). The relatively small training set is automatically generated
from an ASR system. To avoid over-fitting on such small data, we selected and designed features
that capture the morphological essence of the different dialects. We submitted four runs to the
Arabic sub-task. For all runs, we used a combined feature vector of character bigrams, trigrams,
4-grams, and 5-grams. We tried several machine-learning algorithms, namely Logistic Regres-
sion, Naive Bayes, Neural Networks, and Support Vector Machines (SVM) with linear and string
kernels. Our submitted runs used SVM with a linear kernel. In the closed submission, we got the
best accuracy of 0.5136 and the third best weighted F1 score, with a difference of less than 0.002
from the best system.

1 Introduction

The Arabic language has various dialects and variants that exist in a continuous spectrum. They are a
result of an interweave between the Arabic language that spread throughout the Middle East and North
Africa and the indigenous languages in different countries. With the passage of time and the juxtaposition
of cultures, dialects and variants of Arabic evolved and mutated. Among the varieties of Arabic, so-called
Modern Standard Arabic (MSA) is the lingua franca of the Arab world, and it typically used in written
and formal communications. On the other hand, Arabic dialects, such as Egyptian and Levantine, are
usually spoken and used in informal communications, especially on social networks such as Twitter and
Facebook.

Automatically identifying the dialect of a piece of text or of a spoken utterance can be beneficial for a
variety of practical applications. For instance, it can aid Machine Translation (MT) systems in choosing
the most appropriate model for translation.

In this paper we describe our dialect identification system that we used for Arabic dialect identification
(sub-task 2) in the 2016 DSL shared task (Malmasi et al., 2016). We submitted a total of 4 runs to the
shared task; 2 closed runs and 2 open runs. For closed runs, participants are only allowed to use the
provided training set. For open runs, external resources are allowed. We tried several combinations of
features such as bag-of-words features based-on words or character n-grams where terms are weighed
by term frequency (tf) or term frequency and inverse document frequency (tf-idf). We also experimented
with several machine learning classifiers including logistic regression, naive Bayes, neural networks, and
Support Vector Machines (SVM) with different kernels. Our best run used an SVM classifier with a
linear kernel trained on character n-gram features. Our best run achieved an accuracy of 0.5136 and an
F-measure 0.5112. Compared to the systems that participated in the shared task, our system obtained the
best accuracy and the third highest weighted F1 score, with a difference of less than 0.002 from the best
system.
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2 Related Work

Arabic dialect identification work could be divided into two main streams, namely: (1) the creation of di-
alectal Arabic resources , and (2) the development of approaches and techniques for dialect identification.
Here we present the most pertinent related work.

One of the early attempts to build Dialectal Arabic annotated resources was done by the COLABA
project (Diab et al., 2010). The project harvested blogs about social issues, religion, and politics in
four Arabic dialects, namely Egyptian, Iraqi, Levantine (Syrian, Lebanese, Palestinian, and Jordanian)
and to a lesser extent Maghrebi. The blogs data was collected via a set of identified URLs as well as
40 dialectal queries from 25 annotators. The project attempted to tackle the non-standard orthography
issues of Arabic dialects by defining a phonological scheme which they referred to as CCO. They used
lexical features to select the most dialectal content based on the percentage of non-MSA words in the
document being identified. They didn’t mention any statistics about the data they collected. They used
Information Retrieval (IR) for extrinsic evaluation.

The AOC dataset (Zaidan and Callison-Burch, 2011; Zaidan and Callison-Burch, 2014) was created
from the content and comments of three newspapers namely Al-Ghad, Al-Riyadh and Al-Youm Al-
Sabe’, which originate from Jordan, Saudi Arabia, and Egypt respectively. The authors assumed that
readers commenting on the different newspapers would use MSA or the dialect of the country of the
newspaper. Thus, they considered all the dialectal comments extracted from Al-Ghad as Levantine, from
Al-Riyadh as Gulf, and from Al-Youm Al-Sabe’ as Egyptian. Out of 3.1 million sentences in AOC, they
manually annotated about 108K sentences using crowdsourcing. They considered dialect classification
as a language identification task. They built language models for MSA and each of the three dialects and
used them to score text segments. The segment would be assigned a label corresponding to the language
model with the lowest perplexity. They achieved an accuracy of 69.4%.

Mubarak and Darwish (2014) used user geographical information to build a multi-dialectal corpus
from Twitter. Out of 175M tweets collected using Twitter API, they managed to annotate about 6.5M
tweets with their dialects. Also, they conducted some analysis on the vocabulary distribution of different
Arabic variants. Using the AOC dataset (Zaidan and Callison-Burch, 2011) and MSA corpus composed
of 10 years worth of Aljazeera articles (about 114M tokens), they extracted about 45,000 n-grams (uni-,
bi-, and tri-) and then manually label them as either MSA, Egyptian, Levantine, Gulf, Iraqi, or Maghrebi.
They found that MSA words compose more than 50% of the words in the dialectal text and about 2500
n-gram are truly dialectal.

By showing that many of the most frequent discriminating words for Egyptian Arabic are in fact MSA
words, Darwish et al. (2014) argued that Arabic dialect identification system built on the AOC dataset is
biased towards the topics in the newspapers from which the corpus was built. Therefore, they discussed
the need to identify lexical and linguistic features such as morphological patterns, word concatenations,
and verb negation constructs to distinguish between dialectal Arabic and MSA. For evaluation, they used
the Egyptian part of the LDC2012T09 corpus. They achieved an accuracy of 94.6% using lexical lists of
dialectal words and verbs.

A new Multidialectal Parallel Corpus of Arabic (MPCA) released by Bouamor et al. (2014) was used
by Malmasi et al. (2015) to train an SVM classifier to distinguish between MSA, Egyptian, Syrian, Jorda-
nian, Palestinian and Tunisian. The classifier was a meta-classifier that was trained over the probabilities
of an ensemble of classifiers that have been trained over different sets of word-level and character-level
n-grams. They achieved an accuracy of 74%.

3 Dataset and Methodology

This section analyzes the dataset provided by the shared task and discusses the methodologies and ap-
proaches for both preparing the data and for developing our Arabic dialect identification system.

3.1 Dialectal Arabic Dataset
The DSL organizers provided a training dataset that is composed of Automatic Speech Recognition
(ASR) transcripts (Ali et al., 2016), where utterances (or sentences) are labeled as Egyptian (EGY), Gulf
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(GLF), Levantine (LAV), North-African (NOR), or Modern Standard Arabic (MSA). Each sentence is
provided in a separate line in the following tab-delimited format:

sentence <tab> target-dialect-label

The Arabic sentences are transliterated into the Buckwalter encoding scheme. The training set has
7,619 sentences with a total of 315,829 words, of which 55,992 are unique. The average sentence length
is 41 words. Table 1 shows the distribution of sentences, words, and unique words for the different
variants. The numbers show that Egyptian has the longest sentences with an average of 53.8 words per
sentence.

count LAV GLF NOR EGY MSA Total
sentences 1,758 1,672 1,612 1,578 999 7,619

words 66,219 64,081 51,593 84,949 48,987 315,829
unique words 19,198 17,842 20,271 20,836 13,607 55,992

Table 1: The distribution of sentences, words, and unique words for the different Arabic variants.

As expected, the frequent words are mostly stopwords with the words fy (in), mn (from), and mA
(what) being the most frequent words across dialects. We retained stopwords as they are important for
identifying dialects.

The data used in this shared task is different from data mentioned in the literature in that it is composed
of ASR transcripts, and dialects are more common in conversational speech. Since the data was not
manually revised (as part of the challenge), we found the following drawbacks in the data:

• The sentences are often quite incoherent and many sentences make no sense.

• Some lines have identical sentences, but with different dialect labels. Consider the following exam-
ple (line 16 through line 19 in the dataset file):

16 $Ark Q EGY
17 $Ark Q GLF
18 $Ark Q LAV
19 $Ark Q NOR

Such problems complicate the dialect identification task. Furthermore, the nature and the distribution
of the words and phrases in such data is different than the one extracted from sources such as blogs,
forums, and tweets. Therefore, using such data to train a classifier (without taking into consideration the
aforementioned issues) may yield a classifier that does not capture real patterns for a generalized dialect
identifier.

Data Preparation: To perform offline experiments before submitting the official shared task runs, we
split the provided training data into an 80/20 train/dev partitions, which would allow us to measure
the effectiveness of different classification schemes. However, we used the entire set for training when
submitting the final runs.

For some runs, we excluded sentences that are shorter than a certain threshold of words. We tried
several threshold between 1 and 5. Furthermore, we also considered removing words with document
frequency less than and/or greater than certain thresholds.

3.2 Methodology

We experimented with several supervised learning algorithms to perform a five-way classification among
the five dialect classes. Apart from Multinomial Naive Bayes, we also trained a one-vs-rest logistic re-
gression model and multi-class SVM with linear or string kernels. For SVM optimization, we used
Stochastic Gradient Descent (SGD) over multiple passes on the dataset. We also trained a two layer
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neural network model over the dataset and evaluated its performance. With each of these learning algo-
rithms, we tried several features including word level features and character level features. The shared
task allowed for closed runs, in which we were allowed to use the provided training set exclusively, and
open runs, in which we were allowed to use external resources. For the open runs, we augmented the
shared task training data with the AOC data. Following is the description of the features that we used to
train these models.

3.2.1 Word level features
Given that words are small units of semantic meaning, experimenting with word level features was the
natural choice. We used words as follows:

Unigrams: As a baseline, we used word unigrams as features. We experimented with using raw word
counts in a given sentence, term frequencies (tf), and term frequency and inverse document frequency
(tf-idf) vectors.

N-grams: To capture contextual information, we experimented with bigrams and trigrams from the
dataset. We collected all bigrams and trigrams and treated each one of them as a term. Our feature
vector was then the tf-idf vector over these bigrams or trigrams. This may help capture word ordering
differences among different dialects. Moreover, several n-grams only occur in certain dialects, which
helps us create a more discriminating feature vector over the sentences in the dataset.

N-gram combinations: Finally, after noticing that all three of the previously computed features, uni-
grams, bigrams and trigrams provides its own advantage over the dataset, we decided to experiment with
different combinations of these features, such as unigrams with bigrams, bigrams with trigrams, all three
n-grams, etc. This resulted in a very high-dimensional feature vector.

3.2.2 Character level features
These features are more fine-grained than word level features, which would enable our models to learn
morphological and utterance based features. Working with more fine-grained features was also shown to
be useful in other natural language processing tasks such as machine translation (Sennrich et al., 2016).
Character-based models have also been used in literature to convert Egyptian dialect to MSA in order
to aid machine translation of Egyptian dialect (Sajjad et al., 2013; Durrani et al., 2014). Hence, this
motivates the use of character level features for this task.

Character N-grams: Similar to word level features, we experimented with character-level bigrams,
trigrams, 4-grams and 5-grams. The motivation behind this was drawn from word examples from dif-
ferent dialects that only differ in a few characters. The average word length in the dataset for the closed
task is around 4.5 characters. Thus, we decided not to try values of n that are higher than 5.

Character N-gram combinations: Again, similar to word level features, we noticed that each of the
n-gram features provided additional discriminating information for our classifiers, and hence we experi-
mented with several combinations.

4 Results

As mentioned in section 3.1, we split the provided training set into training and dev splits. We report here
our results on the dev split and on the official shared task runs. Tables 2 and 3 report on the accuracy of
different experimental conditions with various learning algorithms and features on the dev set. The last
column of Table 3 shows the performance of our best system. Our best system was trained on character
bigrams, trigrams, 4-grams and 5-grams together. For this system, we also ignored all sentences of 3
words or less during training, as this has been shown to improve performance. As explained in section
3.1, shorter sentences in the corpus are not very discriminatory in this particular dataset. Hence, keeping
them in the training corpus leads to sub-optimal performance. The linear SVM gave us the best results.

Table 4 shows the performance of our best model in the shared task. The baseline is based on the
majority class, and our model performs significantly better than the baseline in the closed track. Figure 4
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also shows the confusion matrix of our best model on the dev and official test sets. The best performance
was achieved on the MSA class, while the worst was on the Gulf dialect. For the open track, our results
were considerably poorer than those for the closed class even though we employed more training data.
This could be explained by the significant difference in genre and lexical distribution between the task’s
training data and the AOC data.

More sophisticated models such as the SVM with a string kernel and a 2 Layer neural network did not
perform as well as the linear SVM. This is potentially due to the limited size of the training set that does
not allow the parameters to be adequately learned from the existing data to generalize as well.

Raw Term Unigrams Bigrams trigrams 1,2,3-grams
Counts Frequencies TF-IDF TF-IDF TF-IDF TF-IDF

Naive Bayes 0.5450 0.4339 0.4832 0.4504 0.3544 0.4734
Logistic Regression 0.5556 0.5227 0.5694 0.4523 0.3432 0.5082
SVM (linear) 0.5503 0.5457 0.5976 0.4931 0.3958 0.5700
2 Layer NN 0.5030 0.5312 0.5477 0.4536 0.3787 0.4845

Table 2: Accuracy on dev set with various word-level features

Bigrams Trigrams 4-grams 5-grams 2,3,4,5-grams Best
TF-IDF TF-IDF TF-IDF TF-IDF TF-IDF system

Naive Bayes 0.5030 0.5273 0.4668 0.4655 0.3702 0.3468
Logistic Regression 0.5654 0.6213 0.6318 0.6108 0.6377 0.6619
SVM (linear) 0.5378 0.6154 0.6410 0.6404 0.6588 0.7007
2 Layer NN 0.5352 0.6062 0.5845 0.5819 0.6009 0.6237

Table 3: Accuracy on dev set with various character-level features

Test Set Track Run Accuracy F1 (micro) F1 (macro) F1 (weighted)
C - baseline 0.2279 - - -
C closed run1 0.5136 0.5136 0.5091 0.5112
C closed run2 0.5117 0.5117 0.5023 0.5065
C open run1 0.3792 0.3792 0.3462 0.352
C open run2 0.3747 0.3747 0.3371 0.3413

Table 4: Results for all runs on the hidden test set.

5 Conclusion

In this paper, we described our Arabic dialect detection system that we used to submit four runs to sub-
task 2 of the 2016 DSL shared task, which involves the automatic identification of 5 Arabic variants,
namely Egyptian, Gulf, Levantine, North-African, and MSA. The training data for the sub-task at hand
differs from data used in the literature in two ways, namely:

• The training data is relatively small,

• the training data is composed of ASR output, which makes the data difficult to work with.

For classification, we tried several machine-learning models. Our best performing model used an SVM
classifier with a linear kernel that is trained on combined character n-gram where n = 1, 2, 3, 4, and 5
with tf-idf weighting. In the closed submission, we got the best accuracy of 0.5136 and the third best
weighted F1 score, with a difference of less than 0.002 from the best system.

For future work, we plan to apply more powerful techniques, such as recurrent neural networks over
both words and characters to capture the differences between the dialects better. We will be using larger
datasets, since these models usually require large amounts of data to perform well.
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(a) Development set (b) Test set

Figure 1: Confusion matrix for our best model
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Abstract

This paper describes an analysis of our submissions to the Dialect Detection Shared Task 2016.
We proposed three different systems that involved simplistic features, to name: a Naive-bayes
system, a Support Vector Machines-based system and a Tree Kernel-based system. These sys-
tems underperform when compared to other submissions in this shared task, since the best one
achieved an accuracy of ∼0.834.

1 Introduction

The problem of discriminating similar languages has been tackled in previous years in the context of
shared tasks (Zampieri et al., 2014; Zampieri et al., 2015b). Here, there are promising results for dialect
detection, being the best results around 95.54% and for an open challenge, the best results yield around
95.65%.

Despite these positive results, some research issues remain to be solved such as: domain adaptation,
inclusion of new languages and classifier performance in terms of processing time.

The DSL 2014 Shared Task aimed to discriminate dialects within each of these 6 groups: Group A
(Bosnian, Croatian, Serbian), Group B (Indonesian, Malay), Group C (Czech, Slovak), Group D (Brazil-
ian Portuguese, European Portuguese), Group E (Castilian Spanish, Argentine Spanish), and Group F
(American English, British English). The 2015 version of this Shared task considered the first 5 groups
plus an additional group comprising Bulgarian and Macedonian. The 2016 version (Malmasi et al., 2016)
where our systems were competing differs to previous tasks in the addition of a new variety of Spanish
language: Mexican Spanish. Additionally, a second task aims to test dialect identification systems in
Arabic language datasets.

Our submissions mainly addressed the sub-task 1 for automatically discriminating between similar
languages and language varieties. We took into account two principles: a) to design lightweight systems
given that such a system should work in an online environment, and b) to design systems that would
involve using grammatical information without the recurring to sophisticated parsers.

This paper is structured as follows: Section 2 provides a brief context for our work in the state of the
art of language detection. Section 3 describes the core of our experiments. Section 4 outlines our results
and an analysis of the relevance of the proposed methods. Finally, we conclude with Section 6.

2 Related Work

Zampieri et al. (2012) and Zampieri et al. (2013) developed a computationally efficient method for de-
tecting Spanish and French dialects, which produces highly accurate results based on a naive Bayes
method. They address dialection detection in text extracted from newspaper articles. Since one of our
systems is mainy based in this method we provide a more detailed explanation in Section 3.3.

The previous DSL shared task was hold in 2015, in for which nine systems where submitted to the
close challenge. The best system was developed by (Malmasi and Dras, 2015). It consists of an ensemble
of SVM classifiers trained with character ngrams and word unigrams and bigrams.

Other approaches were based on two stage classification, the first stage was designed to classify the
group of languages and the second stage to differentiate between dialects (Goutte and Serge, 2015; Fabra-
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Boluda et al., 2015; Acs et al., 2015). Zampieri et al. (2015a) created a system based on Support Vector
Machines that has features in form of TF-IDF and also token base back-off (Jauhiainen et al., 2015), an
interesting method that split unknown tokens (unknown in the training data sets) into character n-grams
until it is found some examples on the training data set that can be use to derived probabilities.

3 Methods

This section briefly describes the resources and methods used to develop our systems.

3.1 Datasets
The training datasets provided by the shared task organizers were created based on text from newspapers
articles. One in-domain test set and also two out of domain twitter base data sets were made available
for testing purposes; these two twitter data sets were collected in a different manner to the news dataset.

3.2 Pre-processing
Punctuation marks, brackets, parenthesis, hyphens, and multiple blank spaces were removed. Also,
sentences were standardized to be all in upper-case. This pre-processing simplifies the text and that could
be beneficial on classification tasks with scarce amount of training data, but could also lose relevant
information for the classification, for instance (Tan et al., 2012) claim that in Malaysian numbers are
written with decimal point while in Indonesian are written using colons.

3.3 Naive Bayes, bi-gram language model
Our best system is a re-creation of the lightweight naive bayes bi-gram-word classification model de-
scribed in (Zampieri et al., 2015a; Zampieri et al., 2013; Zampieri et al., 2012; Zampieri and Gebre,
2012; Tiedemann and Ljubešić, 2012; Baldwin and Lui, 2010) for detecting Spanish dialects, Portuguese
dialects (from Brazil or Portugal), between Bosnian, Croatian and Serbian, and other languages. This
model has been extensively tested in different scenarios in the aforementioned works and we deemed it
was a good starting point for our experiment and it seemed less demanding in terms of processing times.
Its implementation was also described in language identification studies (Tiedemann and Ljubešić, 2012).

The formula used to calculate the likelihood of a given text belonging to a language or dialect L is:

P (L|text) = argmaxL

N∑
i=1

log(Pl(ni|L)) + log(P (L))) (1)

where N is the number of n-grams, Pl(ni|L) is the Laplace probability of the ni n-gram appearing on
the language model L and P (L) is the ratio of the number of n-grams used to build the language model
L divided by the total amount of n-grams used to build all language models.

Pl(ng|L) =
C(ng|L) + α

N +B
(2)

where α = 1. C(ng|L) is the number of times the n-gram ng appears on the text used to build the
language model L. N is the total number of n-grams extracted from the text used to build L, and B is
the total number of unique n-grams found at the text used to build the language model L.

The best results on the discerning western languages development data set where reach using bi-grams,
therefore bi-grams models where used to for both tasks.

3.4 SVM
Support Vector Machines are among the most used algorithms for classification problems. Baldwin and
Lui (2010) successfully used SVMs in language identification. It was also used in previous shared tasks
in different setups (Purver, 2014; Zampieri et al., 2015a; Malmasi and Dras, 2015).

Each unique word on the train data set was assigned a unique index. Using these indexes, a sparse
vector was created for each sentence of the training and testing data set. Words which did not appear
on the training data set were ignored. The appearance of a word was flagged as a single occurrence
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on the projected vector independently of how many times that word appeared on the sentence. For this
experiment the multi-class setup of lib-SMV was used.

4 Analysis of Results

This shared task is about classifying sentences, and context plays a crucial role. Nonetheless, the authors
think it is worth to discuss the importance of dialect detection when the dialect of a short piece of
language cannot be detected by neither humans or machines.

Two scenarios appear likely: a) such piece of language is standard amongst language variations and
understood by the great majority of native speakers of the corresponding language, or b) It is too specific
in a dialect and in a register within that dialect that there is there is no body of comparison that allows
detection.

For the second case, let us consider the domain register of the dataset used during the training phase
of the experiments.

4.1 Training times

The naive Bayes model is quickly trained because it just requires to calculate n-grams probabilities and
has a linear computational cost (see Table 1). SVM is has a quadratic computational time, and the training
time is measured in hours or minutes, except for the Arabic data set, which is measured in seconds due
to its small size.

All experiments were done in a laptop with an Intel Core i7-5600U processor at 2.60GHz with 2 Cores
and 16GB of RAM.

Method Sub-task Set unigrams bigrams
SVM 1 train 5.5 hours 5 hours
SVM 2 train 30 seconds 12 seconds
SVM 1 dev 20 minutes 14 minutes
Bayes 1 train 11 seconds 17 seconds
Bayes 2 train <1 second <1 second
Bayes 1 dev <1 second <1 second

Table 1: Training times for both training datasets: Sub-task 1(for Roman Alphabet Languages) and
Sub-task 2 (for the Arabic language)

5 Overview

The official results for our submissions are shown in Table 2. They correspond to two of the systems
described in Section 3. This table shows the accuracy, micro and macro and weighted F1 for each of the
submitted classifications. Test set A is the in-domain composed by text from newspaper articles. Test
datasets B1 and B2 are composed by text extracted from twitter microposts, in two different ways. Test
set C is composed by Arabic text extracted by Automatic Speech Recognition.

Test Set Run Accuracy F1 (micro) F1 (macro) F1 (weighted)
A run1(Bayes) 0.8377 0.8377 0.8317 0.8317
A run2(SVM) 0.5848 0.5848 0.5802 0.5802
B1 run1(Bayes) 0.806 0.806 0.5667 0.7934
B1 run2(SVM) 0.594 0.594 0.3949 0.4739
B2 run1(Bayes) 0.74 0.74 0.4543 0.7268
B2 run2(SVM) 0.588 0.588 0.3394 0.543
C run1(Bayes) 0.3584 0.3584 0.3492 0.3455

Table 2: Results for all runs (for the closed track)

Table 3 shows the confusion matrix for the in-domain test set A per language. When a word cannot
be identified as belonging to any language model the system classifies as “bs” by default, that is why the
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Figure 1: Accuracy graph for Lidstone smoothing factor (development data set)

first column (predicted bs) shows more false positives than other languages. This confusion table shows
that the system classifies the language of a sentence with an accuracy of about 99.5%.

bs+hr+sr es fr id-my pt
bs+hr+sr 2994 3 1 1 1
es 3 2994 1 1 1
fr 9 1 1989 0 1
id-my 7 2 2 1988 1
pt 3 1 1 0 1995

Table 3: Language confusion matrix

Table 4 shows the confusion matrix for all dialects. Table 5 shows Precision, Recall and F1 of each
dialect, in domain test set. Here the Indonesian and Malasian (Group B) show the highest F1-scores, and
Bosnian, Croatian and Serbian (group A) show the lowest F1-scores.

Table 6 shows the confusion matrix for the twitter testing data sets B1 and B2, the tables are simplified
because there are only testing samples for group D:Portuguese and group A: Bosnian, Croatian and
Serbian, rows corresponding to other dialects where removed as only contain zeros, but those dialects
may appear in the column section to identify false positives, which in this case are es-es, fr-fr and id.

B1 bs es-ar es-es es-mx fr-ca fr-fr hr id my pt-br pt-pt sr
bs 500 2 247 251
es-ar 861 126 12 1
es-es 2 70 909 16 1 1 1
es-mx 191 350 459
fr-ca 863 137
fr-fr 6 1 46 943 3 1
hr 78 1 871 50
id 5 1 1 2 976 14 1
my 2 40 958
pt-br 1 945 54
pt-pt 2 1 1 95 901
sr 79 1 52 1 1 866

Table 4: Confusion matrix results
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Figure 2: Accuracy graph for Lidstone smoothing factor for A (in-domain test).

Figure 3: Accuracy graph for Lidstone smoothing factor for B1 (first out-of-domain twitter data set)

Figure 4: Accuracy graph for Lidstone smoothing factor for B2 (second out-of-domain twitter data set)
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bs es-ar es-es es-mx fr-ca fr-fr hr id my pt-br pt-pt sr
Precision 50 86 91 46 86 94 87 98 96 95 90 87
Recall 43 43 40 49 49 46 43 49 50 48 48 43
F1 46 58 55 47 62 62 57 65 65 63 63 57

Table 5: Precision, Recall and F1 of each dialect, in domain test set (in percentages)

Predicted
bs-hr-sr dialects Portuguese Others

B1 bs hr sr pt-br pt-pt es-es fr-fr id
bs 36 6 56 . . 1 . 1
hr 2 90 8 . . . . .
sr 1 . 99 . . . . .
pt-br . . . 99 1 . . .
pt-pt . . . 21 79 . . .
B2 bs hr sr pt-br pt-pt es-es fr-fr id
bs 34 7 57 . . 1 . 1
hr 4 87 9 . . . . .
sr 1 . 99 . . . . .
pt-br 3 . . 88 9 . . .
pt-pt 2 . . 34 62 1 1 .

Table 6: Simplified confusion matrix for the twitter test datasets B1 and B2.

5.1 Lidstone smoothing factor
With Lidstone smoothing factor α set to one, the probability formula results in the Laplace probability,
however with α < 1 the probability results in Lidstone smoothing (Tan et al., 2012).

Extensive experimentation using Laplace probability has been carried out (α = 1) (Baldwin and Lui,
2010; Tan et al., 2012; Zampieri and Gebre, 2012; Zampieri et al., 2013; Zaidan and Callison-Burch,
2014), but non as far as the authors of this article know using an optimization of Lidstone smoothing.

An investigation carried out after the submission deadline for the experiment using the development
set, shows that an accuracy of 80.4% for uni-grams using Laplace probabilities could be improved to
82.0% (increment of 1.6%) with Lidstone smoothing using an alpha value of α = 0.01.

The tuning of the parameter α seems to improve the uni-grams language model more than the bi-grams
language model to the extent that the uni-gram model outperforms the bi-gram one. This is an important
observation because it was believed that the bi-gram model outperforms the uni-gram model, and that is
what happens with α = 1, this is why the results of the bi-gram model where submitted to the shared
task evaluation.

Figure 1 shows how the accuracy changes along with the parameter α. The smallest the α value the
higher weight of infrequent words on the results of the experiment.

It is a plausible hypothesis that uni-gram models are less likely to capture name entities that consist
on multiple words and therefore not only outperforms the bi-gram model but also adapts better to new
domains. This expectation is not observed on the results show on other data sets, for instance Figure 2
shows a similar trend by the crossing point from which uni-grams outperform bi-grams 10−1.6 is much
lower than the one suggested by the development set 10−0.6. Also the out of domains data sets, B1 shows
a graph for which bi-grams always outperform uni-grams (See Figure 3), and B2, shows opposite trends
as the in-domain testing set (see Figure 3).

6 Concluding Remarks

Observations on the tuning of the smoothing factor (Section 3.3) are important contributions of this work.
This results indicates that with proper selection of the α parameter the word base uni-gram model tends
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to outperforms the word base bi-gram model. This is important because previous published research used
the default parameter α = 1 and it looks like bi-gram word base models outperform uni-gram models,
where the results shown on this article point otherwise. Uni-gram word base models can have smaller
dictionaries which probably are less attached to the training set domain and that could lead to better
domain adaptation, this hypothesis needs further investigation.

The optimal value for the alpha parameter seems to be substantially lower than the default set on
Laplace probabilities, about α = 0.01 for words uni-grams and α = 0.2 for words bi-grams, where the
crossing point from which the uni-grams model outperform the bi-grams model is α = 0.25 (10−0.6)
this values are derivative from the development set.

This article re-produces a successfully naive Bayes language classifier approach for the automatic
classification. The system was trained with for two different groups of languages, the first task contains
twelve different languages or dialects group in five different clusters according to their similarity. The
groups are: Group A (Bosnian, Croatian, and Serbian), Group B (Malay and Indonesian), Group C
(Portuguese: Brazil and Portugal), Group D (Spanish: Argentina, Mexico, and Spain), Group E (French:
France and Canada).

Classifying sentences among this groups of languages is not a novel task if analysed on individual
groups but what is novel is to discriminate with all twelve groups together, except on previous shared
tasks.

As an interesting observation using naive Bayes about 4.2% of the in-domain test set of Argentinian-
Spanish is classified as Castilian-Spanish, where almost no Argentinian-Spanish samples are classified
as Mexican-Spanish (0.4%). However with the SVM model, this trend is reversed, with SVM still 3%
of Argentinian-Spanish samples are misclassified as Spanish, and 13% are misclassified as Mexican-
Spanish.

Regarding the second task, classifying Arabic languages/dialects, the results obtained using naive
Bayes differ in great manner from the naive Bayes system described in (Zaidan and Callison-Burch,
2014) where the accuracy for each dialect ranges between 69.1% to 86.5%. The data sets are not the
same, but the difference could be due to a problem on encoding Arabic characters.
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Marcos Zampieri, Liling Tan, Nikola Ljubešić, Jörg Tiedemann, and Nikola Ljube. 2014. A Report on the DSL
Shared Task 2014. Proceedings of the First Workshop on Applying NLP Tools to Similar Languages, Varieties
and Dialects, (2013):58–67.

Marcos Zampieri, Binyam Gebrekidan Gebre, Hernani Costa, and Josef Van Genabith. 2015a. Comparing Ap-
proaches to the Identification of Similar Languages. Joint Workshop on Language Technology for Closely
Related Languages, Varieties and Dialects (LT4VarDial’15). 2nd Discriminating between Similar Languages
Shared Task (DSL’15), page 7.

Marcos Zampieri, Liling Tan, Nikola Ljubešić, Jörg Tiedemann, and Preslav Nakov. 2015b. Overview of the DSL
Shared Task 2015. Proceedings of the Joint Workshop on Language Technology for Closely Related Languages,
Varieties and Dialects, (2014):1–9.

234



Proceedings of the Third Workshop on NLP for Similar Languages, Varieties and Dialects,
pages 235–242, Osaka, Japan, December 12 2016.

Vanilla Classifiers for Distinguishing between Similar Languages

Alina Maria Ciobanu, Sergiu Nisioi, Liviu P. Dinu
Solomon Marcus Center for Computational Linguistics,

Faculty of Mathematics and Computer Science,
University of Bucharest

alina.ciobanu@my.fmi.unibuc.ro,
sergiu.nisioi@gmail.com,

ldinu@fmi.unibuc.ro

Abstract

In this paper we describe the submission of the UniBuc-NLP team for the Discriminating between
Similar Languages Shared Task, DSL 2016. We present and analyze the results we obtained in
the closed track of sub-task 1 (Similar languages and language varieties) and sub-task 2 (Arabic
dialects). For sub-task 1 we used a logistic regression classifier with tf-idf feature weighting
and for sub-task 2 a character-based string kernel with an SVM classifier. Our results show that
good accuracy scores can be obtained with limited feature and model engineering. While certain
limitations are to be acknowledged, our approach worked surprisingly well for out-of-domain,
social media data, with 0.898 accuracy (3rd place) for dataset B1 and 0.838 accuracy (4th place)
for dataset B2.

1 Introduction

Automatic language identification is the task of determining the language in which a piece of text is writ-
ten using computational methods. In today’s context of multilingualism, and given the rapid development
of the online repositories of cross-language information, language identification is an essential task for
many downstream applications (such as cross-language information retrieval or question answering), to
route the documents to the appropriate NLP systems, based on their language.

Although language identification has been intensively studied in the recent period, there are still ques-
tions to be answered. Language identification is still a challenging research problem for very similar
languages and language varieties, for very short pieces of text, such as tweets, or for documents involv-
ing code-switching (the practice of mixing more languages within a single communication).

The DSL 2016 shared task (Malmasi et al., 2016) tackles two interesting aspects of language identifi-
cation: similar language and language varieties (with in-domain and out-of-domain – social media data –
test sets) and Arabic dialects. In this paper we present the submission of the UniBuc-NLP team for the
closed track (using only the training data provided by the organizers) of both sub-tasks.

2 Related Work

Most approaches to language identification are based on character n-grams. Dunning (1994) was one
of the very first who used them. He proposed a statistical method for language identification based on
Markov models to compute the likelihood of the character n-grams. Ever since, character n-grams have
been employed to discriminate between a wide variety of closely related languages and dialects. Maier
and Gómez-Rodrı́guez (2014) performed language classification on tweets for Spanish varieties, with
character n-grams as features and using the country of the speaker to identify the variety. Trieschnigg
et al. (2012) discriminated between Dutch dialects (and several other languages) using a large collec-
tion of folktales. They compared several approaches to language identification and reported good results
when using the method of Cavnar and Trenkle (1994), based on character n-grams. Sadat et al. (2014)
performed language identification on Arabic dialects using social media texts. They obtained better re-
sults with Naive Bayes and n-gram features (2-grams) than with a character n-gram Markov model for

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
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most of the Arabic dialects. Gottron and Lipka (2010) conducted a comparative experiment of classifi-
cation methods for language identification in short texts, discriminating between languages from various
language families and using n-gram features. Their results show that Naive Bayes classifier performs
best and that errors occur for languages from the same family, reinforcing the hypothesis that language
identification is more difficult for very similar languages.

Word n-grams have also proven effective for discriminating between languages and language varieties.
Malmasi and Dras (2015) achieved the best performance in the closed track of the DSL 2015 shared
task, experimenting with classifier ensembles trained on character and word n-gram features. Goutte
and Leger (2015) obtained a very good performance in the same competition using statistical classifiers
and employing a combination of character and word n-grams as features. Zampieri and Gebre (2012)
made use of a character n-gram model and a word n-gram language model to discriminate between
two varieties of Portuguese. They reported the highest accuracy when using character 4-grams and
reached the conclusion that orthographic and lexical differences between the two varieties have more
discriminative power than lexico-syntactic differences.

Other features, such as exclusive words, the format of the numbers (Ranaivo-Malancon, 2006), black-
lists (Tiedemann and Ljubesic, 2012), syllable n-grams (Maier and Gómez-Rodrı́guez, 2014) or skip-
grams have been employed and shown useful for this task.

3 Data

The organizers released two training datasets for the 2016 DSL shared task: a dataset of similar languages
and language varieties (for sub-task 1) and a dataset of Arabic dialects (for sub-task 2).

The dataset for sub-task 1 is a new version of the DSL Corpus Collection (Tan et al., 2014). It contains
instances written in the following languages and language varieties (organized by groups of similarity):

Language Lang. code Group code Avg. sent. lenth Avg. word length

Bosnian bs
bs-hr-sr

31.38 5.21
Croatian hr 37.30 5.30
Serbian sr 34.28 5.09

Indonesian id
id-my

34.34 5.84
Malay my 26.01 5.91

Portuguese (Brazil) pt-BR
pt

39.94 4.90
Portuguese (Portugal) pt-PT 36.70 4.92

Spanish (Argentina) es-AR
es

41.70 4.98
Spanish (Mexico) es-MX 30.96 4.78
Spanish (Spain) es-ES 45.06 4.84

French (France) fr-FR
fr

37.13 4.69
French (Canada) fr-CA 30.20 4.69

Table 1: Statistics for the dataset of similar languages and language varieties (sub-task 1).

The dataset consists of 20,000 instances (18,000 for training and 2,000 for development) in each
language or language variety, extracted from journalistic texts. In Table 1 we report several statistics for
this dataset. The average sentence length varies from 26.01 (for Malay) to 45.06 (for the Spanish variety
used in Spain). We observe a high variance for the average sentence length within some of the language
groups (the difference between the average sentence length of Indonesian and Malay is ∼8, and between
the average sentence length of the Spanish variety spoken in Spain and the one spoken in Mexico is
∼14). The average word length varies from 4.69 (for both versions of French) to 5.91 (for Malay), with
a low variance within groups.

Comparing these statistics with those extracted from the sub-task 1 test sets, we notice that while the
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average sentence length values for test set A are similar to those of the training set, for test sets B1 and
B2 – social media data – sentences are significantly shorter, as expected, ranging from an average of
11.33 for Portuguese (Brazil) to an average of 13.39 for Serbian. The average word length values for
B1 and B2 are also smaller than those for test set A and the training set, but the differences are not as
significant as the differences regarding the length of the sentences.

The dataset for sub-task 2 contains automatic speech recognition transcripts (Ali et al., 2016) written in
the following Arabic dialects: Egyptian, Gulf, Levantine, North-African, and Modern Standard Arabic.
In Table 2 we report several statistics for this dataset. The average sentence length ranges from 35.41
(for North-African) to 60.57 (for Egyptian). All the Arabic dialects have the average word length lower
than 4.

Dialect Dialect code # instances Avg. sent. lenth Avg. word length

Egyptian EGY 1,578 60.57 3.65
Gulf GLF 1,672 43.21 3.64
Levantine LAV 1,758 42.01 3.63
North-African NOR 1,612 35.41 3.74
Modern Standard Arabic MSA 999 56.94 3.80

Table 2: Statistics for the dataset of Arabic dialects (sub-task 2).

4 Our Approach

In this section we describe and analyze the methods we used for discriminating between similar lan-
guages, language varieties and dialects. We used standard linear classifiers with basic n-grams features.1

4.1 Classifiers
Logistic Regression
For sub-task 1 we used a logistic regression classifier with word unigrams and bigrams as features. The
features are tf-idf (Salton and Buckley, 1988) weighted and we keep only the features that occur at least
3 times in the training set. We use the L2 distance for term vectors and the default regularization constant
C = 1 without performing any grid search for best parameters. We use the wrapper of the scikit learn
Python library (Pedregosa et al., 2011) over the Liblinear logistic regression implementation (Fan et al.,
2008). The main advantages of this model are its simplicity and training speed.

SVM + String Kernel
On the Arabic dataset we decided to use string a kernel based on character n-grams, since the text is
obtained through ASR systems and most certainly the transcript contains errors. Character n-grams
are able to cover sub-parts of words and can theoretically increase the overall classification accuracy,
especially in a language recognition task. We used a string kernel in combination with a support vector
machine classifier. A kernel function can be used either to embed the data in a higher dimensional space
to achieve linear separability, or to replace the dot product between vectors with values that are more
appropriate for the data used. Previous studies on text classification revealed that character n-gram-based
string kernels can be effective tools for authorship attribution, native language identification or plagiarism
detection (Grozea and Popescu, 2010).

The kernel we propose is computed by summing the number of common character n-grams between
two examples, where n varies between 2 and 7. Formally, given an alphabet A, we define the mapping
function Φn : D → {0, 1}Qn for an example e ∈ C in the corpus to be the vector of all the binary values
of existence of the n-gram g in the document:

Φn(e) = [φg(e)]g∈An

1The source code to reproduce our results is available at https://gitlab.com/nlp-unibuc/dsl2016-code/.
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The function φg(e) = 1 if the n-gram g is in the example e and equal to zero otherwise. Computationally,
Qn depends on all the possible character n-grams between two examples at certain instance.

The corresponding Gram matrix K of size |C| × |C| has the following elements:

Kij =
n≤7∑
n=2

< Φn(ei)Φn(ej) >

The Gram matrix is then normalized to the [0, 1] interval:

Kij =
Kij√
KiiKjj

(1)

The kernel function, in our case, is computed between every pair of training and testing examples. This
type of approach is less scalable for large amounts of data, which is the main reason for not applying
this technique on sub-task 1. However, additional optimizations can be taken into consideration, such
as using just the upper half of the symmetric Gram matrix, aggregating multiple kernels trained on sub-
samples of the data or hashing techniques for faster computation. In our vanilla approach we did not
make use of any of these techniques.

In practice, kernel methods over strings for text classification work remarkably well covering
fine-grained similarities such as content, punctuation marks, affixes etc., however one important down-
side of this method is usually the lack of linguistic features available within the classifier, making almost
impossible to analyze from the Gram matrix the actual features that lead to good or bad results.

4.2 Experiments
Using the experimental setup previously described, we developed several systems for discriminating
between similar languages and language varieties (sub-task 1) and between Arabic dialects (sub-task 2).

The organizers provided three test datasets, two for sub-task 1 and one for sub-task 2. In Table 3 we
provide a brief characterization of the datasets:

Dataset Description Task # instances

A In-domain: newspaper texts Sub-task 1 12,000
B1 Out of domain: social media data Sub-task 1 500
B2 Out of domain: social media data Sub-task 1 500
C ASR texts from Arabic dialects Sub-task 2 1,540

Table 3: Test datasets for DSL 2016.

Sub-task 1
Our two runs for sub-task 1 are as follows:

• Run 1: a one-level system. The first system consists of a single logistic regression classifier that
predicts the language or language variety.

• Run 2: a two-level system. The second system consists of multiple logistic regression classifiers:
we train a classifier to predict the language group (“inter-group classifier”), and one classifier for
each language group (“intra-group classifier”), to predict the language or language variety within
the group.

For the one-level system we obtained 0.8441 accuracy when evaluating on the development dataset.
For the two-level system we obtained 0.9972 accuracy for the inter-group classifier, and the following
values for the intra-group classifiers: 0.7510 for es, 0.8940 for fr, 0.9207 for pt, 0.7848 for bs-hr-sr,
0.9820 for id-my.
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Test Set Run Accuracy F1 (micro) F1 (macro) F1 (weighted)
A Run 1 0.8624 0.8624 0.8620 0.8620
A Run 2 0.8648 0.8648 0.8643 0.8643

B1 Run 1 0.8980 0.8980 0.7474 0.8969
B1 Run2 0.8940 0.8940 0.7429 0.8915

B2 Run1 0.8360 0.8360 0.5970 0.8358
B2 Run2 0.8380 0.8380 0.5236 0.8378

Table 4: The results of the UniBuc-NLP team for sub-task 1.

Test Set Run Accuracy F1 (micro) F1 (macro) F1 (weighted)
C run1 0.3948 0.3948 0.3891 0.3938
C run2 0.4747 0.4747 0.4729 0.4732
C run3 0.4753 0.4753 0.4732 0.4742

Table 5: The results of the UniBuc-NLP team for sub-task 2.

In Table 4 we report the results that we obtained for the test datasets. Our best results for each dataset
are as follows: 0.8648 accuracy (11th place) for dataset A, 0.8980 accuracy (3rd place) for dataset B1 and
0.8380 accuracy (4th place) for dataset B2. For two of the three datasets (A, B2), the two-level system
obtained better results than the one-level system. However, our highest accuracy (0.8990) was obtained
by the one-level system for dataset B1.

Lang. code Top 10 informative features

bs povrije ,fbih, rs, poslije, km, prenosi, je, sarajevo, bh, bih
hr tko, hdz, je, hrvatska, milijuna, u, te, kuna, tijekom, s
sr evra, deo, srbije, predsednik, dve, vreme, gde, da, pre, posle

id tim, tak, indonesia, mengatakan, di, bahwa, saat, dari, karena, bisa
my ialah, encik, turut, apabila, selepas, boleh, berkata, daripada, beliau, kerana

pt-BR para, ela, voce, do, em, brasil, r, e, o, ele
pt-PT acores, o seu, a sua, numa, equipa, num, e, euros, a, portugal

es-AR productores, empresas, ar, de rosario, el, santa fe, de, y, argentina, rosario
es-MX mexicano, gadafi, mil, el, mexico, dijo, en, la, que, de
es-ES alicante, murcia, del, ayer, han, la, y, euros, el, ha

fr-FR d, paris, euros, est, et, les, le, l, france, vous
fr-CA des, dit, de, de montreal, mme, quebecois, m, canada, montreal, quebec

Table 6: The most informative features for the one-level system for sub-task 1.

In Tables 6 and 7 we report the most informative features for each class. With few exceptions, most
of the informative features are unigrams. While for the language classifiers many of these features are
named entities (such as references to geographical regions or names of persons), as expected, for the
language group classifier (Table 7a) the situation is different: mostly very short words prove to have high
discriminative power. Among others, we identified definite and indefinite articles – “los” (es), “le” (fr) –
and functional words – “nao” (pt), “dalam” (id-my) – ranked among the most informative features.

Despite the fact that quite many of the top features are named entities, which could a suggest a topic
bias in classification, our systems obtain a good performance on out-of-domain data, ranking 3rd and 4th

on the social media datasets.
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Both our systems outperform significantly a random baseline that obtains 0.0883 F1 score for dataset
A and 0.20 for datasets B1 and B2.

Group code Top 10 informative features

bs-hr-sr da, ce, iz, su, od, na, za, u, i, je
id-my dari, pada, dalam, ini, untuk, dengan, itu, di, yang, dan
pt nao, a, com, um, as, os, em, do, o, e
es una, las, con, de, la, del, en, los, el, y
fr au, une, pour, d, du, l, des, les, et, le

(a) Level 1: language groups.

Lang. code Top 10 informative features

bs sarajeva,sarajevu, fbih, rs, poslije, prenosi, km, sarajevo, bh, bih
hr hrvatska, tisuca, hdz, tko, milijuna, te, no, kuna, tijekom, s
sr evra, deo, srbije, predsednik, dve, gde, vreme, da, pre, posle

id harus, tak, indonesia, tim, mengatakan, bahwa, dari, saat, bisa, karena
my encik, turut, bahawa, apabila, selepas, boleh, berkata, daripada, beliau, kerana

pt-BR eles, equipe, voce, sao paulo, federal, ela, em um, brasil, r, ele
pt-PT numa, lisboa, acores, num, o seu, a sua, este, equipa, euros, portugal

es-AR provincial, produccion, productores, empresas, mercado, empresa, santa fe, de rosario,
argentina, rosario

es-MX pri, de mexico, japon, pues, gadafi, mexicano, libia, mil, dijo, mexico
es-ES ayuntamiento, espana, y a, murcia, alicante, han, cantabria, ayer, euros, ha

fr-FR est, l, sarkozy, 2, francais, paris, 1, euros, vous, france
fr-CA canadiens, ottawa, harper, m, du quebec, de montreal, quebecois, canada, montreal,

quebec

(b) Level 2: languages.

Table 7: The most informative features for the two-level system for sub-task 2.

Sub-task 2
Our three runs for sub-task 2 are as follows:

• Run 1: SVM + string kernel with n-gram size n ∈ { 2,...,5 }.

• Run 2: SVM + string kernel with n-gram size n ∈ { 2,...,6 }.

• Run 3: SVM + string kernel with n-gram size n ∈ { 2,...,7 }.

In Table 5 we report the results that we obtained for the test dataset. As expected, the accuracy of
the system increases as the range of n-grams becomes wider. Our best result for sub-task 2 is 0.4753
accuracy (8th place). In Figures 1, 2 and 3 we render the confusion matrices for the classification of the
Arabic dialects. We observe a different behavior for the five classes, along the three runs: for EGY and
LAV, the number of correctly classified instances is very similar over the three runs. For GLF there is a
slight increase in correctly classified instances at run 2. For MSA the increase is significant (from 92 in
run 1 to 190 – more than double – in run 2), and for NOR there is a certain decrease (from 180 in run 1
to 145 in run 2).
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Figure 2: Run 2
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Figure 3: Run 3

5 Conclusions

In this paper we described the submission of the UniBuc-NLP team for the DSL 2016 shared task. We
participated in the closed track of both sub-tasks (sub-task 1: similar languages and language varieties,
sub-task 2: Arabic dialects), submitting a total of 5 runs (2 for sub-task 1 and 3 for sub-task 2). We
used linear classification methods based on word and character n-gram features. For sub-task 1 we used
a logistic regressions classifier with tf-idf feature weighting and for sub-task 2 an SVM classifier with
a string kernel. Our best system obtains 89.80% accuracy for sub-task 1, dataset B1 (3rd place). Our
results suggest that relatively good results may be obtained with plain vanilla linear classifiers, with
no hyper-parameter optimization or special feature selection. When compared to other competitors in
the shared task, our logistic regression results were at most 0.03% lower compared to the top score on
sub-task 1, dataset A and among the top scoring for the datasets B1 and B2. On the Arabic dataset, the
kernel method stands 0.04% from the first position and while additional parameters can improve the
model, we believe the dataset created using ASR had a great impact on the results. To conclude, plain
vanilla methods can be good enough to distinguish between similar languages, however we are still a
long way from claiming this task solved and clearly more research is needed in this direction to create
robust models that capture linguistic variation.
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Abstract

This paper describes our submission (named clac) to the 2016 Discriminating Similar Lan-
guages (DSL) shared task. We participated in the closed Sub-task 1 (Set A) with two separate
machine learning techniques. The first approach is a character based Convolution Neural Net-
work with a bidirectional long short term memory (BiLSTM) layer (CLSTM), which achieved
an accuracy of 78.45% with minimal tuning. The second approach is a character-based n-gram
model. This last approach achieved an accuracy of 88.45% which is close to the accuracy of
89.38% achieved by the best submission, and allowed us to rank #7 overall.

1 Introduction

Discriminating between languages is often the first task to many natural language applications (NLP),
such as machine translation or information retrieval. Current approaches to address this problem achieve
impressive results in ideal conditions: a small number of unrelated or dissimilar languages, enough
training data and long enough sentences. For example, Simões et al. achieved an accuracy of 97%
on the discrimination of 25 languages in TED talks (Simões et al., 2014). However, in the case of
discriminating between similar languages or dialects, such as French Canadian and European French,
or Spanish varieties, the task is more challenging (Goutte and Leger, 2015). This problem is addressed
specifically in the DSL shared task at VarDial 2016 (DSL 2016). In comparison to results from Simões
et al. who achieved a 97% accuracy, the best performing system at DSL 2016 achieved only an 89.38%
accuracy.

This paper describes our system and submission at the DSL 2016 shared task. The shared task is
split into two main sub-tasks. Sub-task 1 aims at discriminating between similar languages and national
language varieties; whereas Sub-task 2 focuses on Arabic dialect identification. We will only describe
the specifics of Sub-task 1, for which we submitted results. For Sub-task 1, participants could chose
between the closed submission, where only the use of the DSL Corpus Collection, provided by the
organisers (see Section 3), was allowed; or the open task which permitted the use of any external data for
training. Participants could also submit runs for two different data sets: Set A, composed of newspaper
articles, and Set B, composed of social media data. We only participated in the closed Sub-task 1 using
Set A. Hence, our task was to discriminate between 12 similar languages and national language varieties
using only the newspaper articles provided in the DSL corpus as training set. For a full description of
all sub-tasks, see the overview paper (Malmasi et al., 2016), which also discusses data and results for all
participants.

It was our first participation to the DSL task, and registered late to the shared task. Hence our system
is the result of a 3 person-week effort. We started with very little existing code. We had experimented
previously with neural language models (NLM) and wanted to evaluate their applicability to this task.
In addition, we believed that a convolutional plus long-short term memory network (CLSTM) would be
appropriate for the task given their success in several other NLP tasks (see Section 2 for details). In the

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/
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end, we managed to submit 3 runs: run1 and run2 consist of standard character-based n-gram models;
while run3 is the CLSTM. Our best performance was achieved by run1, with an accuracy of 88.45%
ranking it 7th among the 17 participants, and arriving very close to the top run which had an accuracy of
89.38%. Alas, our run3, the CLSTM, attained an accuracy of 78.45% but benefited from very minimal
tuning.

2 Related Work

Through the years, statistical language identification has received much attention in Natural Language
Processing. The standard technique of character n-gram modeling has traditionally been very success-
ful for this application (Cavnar and Trenkle, 1994), but other statistical approaches such as Markov
models over n-grams (Dunning, 1994), dot products of word frequency vectors (Dafmashek, 1995), and
string kernels in support vector machines (Kruengkrai et al., 2005) have also provided impressive results.
However, as noted by (Baldwin and Lui, 2010), more difficult situations where languages are similar, less
training data is available or the text to identify is short can significantly degrade performance. This is
why, more recently, much effort has addressed more difficult questions such as the language identifi-
cation of related languages in social media texts (e.g. (Zubiaga et al., 2014)) and the discrimination of
similar languages (e.g. (Zampieri et al., 2015; Malmasi et al., 2016)).

The second Discriminating Similar Languages shared task (DSL 2015) aimed to discriminate between
15 similar languages and varieties, with an added “other” category. At this shared task, the best accuracy
was 95.54% and was achieved by (Malmasi and Dras, 2015). The authors used two classes of features:
character n-grams (with n=1 to 6) and word n-grams (with n=1 to 2). Three systems were submitted for
evaluation. The first was a single Support Vector Machine (SVM) trained on the features above; while
the other two systems were ensemble classifiers, combining the results of various classifiers with a mean
probability combiner. A second team at DSL 2015 relied on a two-stage process, first predicting the
language group and then the specific language variant (Goutte and Leger, 2015). This team achieved
an accuracy of 95.24%. As (Goutte et al., 2016) note, many other techniques were also used for the
task, such as TF-IDF and SVM, token-based backoff, prediction by partial matching with accuracies
achieving between 64.04% and 95.54%. An interesting experiment at DSL-2015 consisted in having two
versions of the corpora, where one corpus was the original newspaper articles; while the other substituted
named entities with placeholders. The aim was to evaluate how strong a clue named entities are in the
identification of language varieties. By relying heavily on geographic names, for example, which are
highly correlated to specific nations, it was thought that accuracy would increase significantly. However,
surprisingly, accuracy on the modified data set was only 1 to 2 percentage points lower than the original
data set for all systems (Goutte et al., 2016).

Given the recent success of Recurrent Neural Networks in many NLP tasks, such as machine trans-
lation (Bahdanau et al., 2015) and image captioning (Karpathy and Fei-Fei, 2015), we believed that an
interesting approach for the DSL task would be to use solely characters as inputs, and add the ability to
find long-distance relations within texts. Neural models are quite efficient at abstracting word meaning
into a dense vector representation. Mikolov et al. for example, developed an efficient method to repre-
sent syntactic and semantic word relationships through a neural network (Mikolov et al., 2013) and the
resulting vectors can be used in a variety of NLP tasks. For certain NLP tasks however, Convolutional
Neural Networks (ConvNets), extensively studied in computer vision, have been shown to be effective
for text classification. For example, (Zhang et al., 2015) experimented with ConvNets on commonly used
language data sets, such as topic classification and polarity detection. A key conclusion of their study
is that traditional methods, such as n-grams, work best for small data sets, whereas character ConvNets
work best for data sets with millions of instances. Since the DSL data set contained a few thousand
instances (see Section 3), we decided to give it a try. Further, it has been shown recently that augmenting
ConvNets with Reccurrent Neural Networks (RNNs) is an effective way to model word sequences (Kim
et al., 2016), (Choi et al., 2016). For this reason, we developed a neural model based on the latter method.
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3 Data Set

Because we participated in the closed task, we only used the DSL Corpus Collection (Set A) (Tan et
al., 2014) provided by the organisers. The data set contained 12 languages organised into 5 groups: two
groups of similar languages and three of national language varieties.

Group 1: Similar languages: Bosnian, Croatian, and Serbian
Group 2: Similar languages: Malay and Indonesian
Group 3: National varieties of Portuguese: Brazil and Portugal
Group 4: National varieties of Spanish: Argentina, Mexico, and Spain
Group 5: National varieties of French: France and Canada

Table 1 illustrates statistics of the shared task data set. As shown in the table, the data set is equally
divided into 12 similar languages and national language varieties with 18,000 training instances for each
language. On average, each instance is 35 tokens long and contain 219 characters.

Group Language Code Train. Dev. Test Av. # char. Av. # token
1 1 Bosnian bs 18,000 2,000 1,000 198 31

2 Croatian hr 18,000 2,000 1,000 240 37
3 Serbian sr 18,000 2,000 1,000 213 34

2 4 Malaysian my 18,000 2,000 1,000 182 26
5 Indonesian id 18,000 2,000 1,000 240 34

3 6 Spanish (Argentina) es-AR 18,000 2,000 1,000 254 41
7 Spanish (Spain) es-ES 18,000 2,000 1,000 268 45
8 Spanish (Mexico) es-MX 18,000 2,000 1,000 182 31

4 9 Portuguese (Brazil) pt-BR 18,000 2,000 1,000 241 40
10 Portuguese (Portugal) pt-PT 18,000 2,000 1,000 222 36

5 11 French (Canada) fr-CA 18,000 2,000 1,000 175 28
12 French (France) fr-FR 18,000 2,000 1,000 216 35

Total 216,000 24,000 12,000 219 35

Table 1: Statistics of DSL 2016 Data set A. We list the number of instances across languages for the
Training, Development and Test sets. The last two columns represent the average number of characters
and average number of tokens of the training set.

Since the results of our CLSTM model (See Section 4.2) were lower than expected during the devel-
opment phase, we attempted to increase the size of the training set. Using the data set from DSL-2015,
we could find additional training data for most languages, with the exception of French. We therefore
attempted to use publicly vailable corpora for French. For Canadian French, we used the Canadian
Hansard1; whereas for France French, we used the French monolingual news crawl data set (2013 ver-
sion) from the ACL 2014 Ninth Workshop on Statistical Machine Translation2. However, upon closer
investigation, this last corpus clearly contained non-French news content, heavily referencing locations
and other international entities. Additionally, the majority of the Canadian French Hansard is translated
from English, possibly not being representative of actual Canadian French. We experimented with these
two additional data sets, but the accuracy of our models was far from our closed task equivalent. Given
our short development time, we decided to drop the open task, and train our models on only the given
DSL 2016 Data Set A.

4 Methodology

As indicated in Section 1, we experimented with two main approaches: a standard n-gram model to
use as baseline, and a convolution neural network (ConvNet) with bidirectional long-short term memory
recurrent neural network (BiLSTM), which we refer to as CLSTM.

1http://www.isi.edu/natural-language/download/hansard/
2http://www.statmt.org/wmt14/translation-task.html
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4.1 N-gram Model

Our baseline is a standard text-book character-based n-gram model (Jurafsky and Martin, 2014). Because
we used a simple baseline, the same unmodified character set (including no case-folding) is used for both
of our approaches, for easier later comparison. During training, the system calculates the frequency of
each n-gram for each language. Then, at test time, the model computes a probability distribution over all
possible languages and selects the most probable language as the output. Unseen n-grams were smoothed
with additive smoothing with α = 0.1. As discussed in Section 5, surprisingly, this standard approach
was much more accurate than our complex neural network. We experimented with different values for
n with the development set given (see Section 3). As table 2 shows, the accuracy peaks at sizes n = 7
and n = 8; while larger n-grams degrade in performance and explode in memory use. The curse of
dimensionality seriously limits this type of approach.

N-gram size Accuracy
1 0.5208
2 0.6733
3 0.7602
4 0.7523
5 0.8035
6 0.8303
7 0.8424
8 0.8474

Table 2: Accuracy across n-grams of sizes 1 to 8 with the development Set A.

4.2 Convolution Neural Network with Long Short Term Memory (CLSTM)

Our second approach is a Convolution Neural Network with a Bidirectional Long Short Term Memory
layer (CLSTM). The goal of this approach was to build a single neural model without any feature engi-
neering, solely taking the raw characters as input. Using characters as inputs has the added advantage of
detecting language patterns even with little data available. For example, a character based neural model
can predict the word running as being more likely to be in English than courir if it has seen the word run
in English training texts. In a word based model that has not seen the word in this form, running would
be represented as a random vector. Given the heavy computational requirements of training neural mod-
els and the limited time we had, we could not develop an ensemble neural model system, which could
combine the strength of diverse models.

The input to the model is the raw text where each character in an instance has been mapped to its one-
hot representation. Each character is therefore encoded as a vector of dimension d, where d is a function
of the maximum number of unique characters in the corpus. Luckily, the languages share heavily in
alphabets and symbols, limiting d to 217. A fixed number of characters l is chosen from each instance.
Since our texts are relatively short, as observed by the character average column in Table 1, we set l to
256. Shorter texts are zero padded, while longer instances are cut after the first 256 characters. Our input
matrix A is thus a d × l matrix where elements Aij ∈ {0, 1}. The input feeds into three sequences of
convolutions and max-pooling. We used temporal max-pooling, the 1D version equivalent in computer
vision. Our ConvNet parameters are heavily based on (Zhang et al., 2015)’s empirical research who
observed that the temporal max-pooling technique is key to deep convolutional networks with text. We
further improved results on our development set by stacking the ConvNet with a Bidirectional LSTM
(BiLSTM). The BiLSTM effectively takes the output of the ConvNet as its input. As shown in Table 3,
the two LSTM layers are merged by concatenation and followed by a fully connected layer with 1024
units. ReLU is used as activation function and loss is measured on cross-entropy and optimized with
the Adam algorithm (Kingma and Ba, 2015). The system is built as a single neural network with no
pre-training. We could not test much wider networks due to lack of computing capability. However, as
experienced by (Zhang et al., 2015), it seems that much wider networks than our own would result in
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little, if any, performance improvement. The model is built in Keras3 and TensorFlow4.

Layer Type Features Kernel Max-pooling
1 Convolutional 256 7 3
2 Convolutional 256 7 3
3 Convolutional 256 3 3
4 LSTM (left) 128 - -
5 LSTM (right) 128 - -
6 Dense 1024 - -

Table 3: Layers used in our neural network. The Features column represents the number of filters for
the convolutional layers and hidden units for LSTM and Dense layers. Layers 4 and 5 are merged by
concatenation to form the BiLSTM layer. Dropout was added between layer 6 and the output layer (not
listed in the table).

With the development set provided, the accuracy of the CLSTM approach reached 82% on average
which was below but comparable to the n-gram model. Additionally, our tests on the development set
showed that adding the BiLSTM on top of our ConvNet does indeed increase performance. We were
able to improve accuracy by 2 to 3% on average, with little additional computing time.

5 Results and Discussion

We submitted 3 runs for the closed test Set A: run1 – the N-gram of size 7, run2 – the N-gram of
size 8, and run3 – the CLSTM model. Table 4 shows the overall results of all 3 runs on the official test
set. As the table shows, the standard n-gram model significantly outperformed the CLSTM model. It
is interesting to note that the difference between the two n-grams is negligible. This was also observed
during training (see Section 4.1). Recall from Table 2 that the accuracy peaked at sizes n = 7 and n = 8
on the development set reaching 84.74%. The 3.71% increase with the test set was a welcome surprise.
On the other hand, the CLSTM performed about 3.55% lower during the test than it did at training time,
decreasing from an average of 82% to 78.46%. Overall, as Table 5 shows, our run1 (labeled clac)
ranked #7 with respect to the best runs of all 17 participating teams.

Run Description Accuracy F1 (micro) F1 (macro) F1 (weighted)
Run 1 N-gram 7 0.8845 0.8845 0.8813 0.8813
Run 2 N-gram 8 0.8829 0.8829 0.8812 0.8812
Run 3 CLSTM 0.7845 0.7845 0.7814 0.7814

Table 4: Results of our 3 submissions on test set A (closed training).

Table 6 shows the confusion matrix for our best run, the N-gram of size 7. For comparative purposes,
we have added the confusion matrix in Table 7 for our third and lesser performing model, the CLSTM.
As shown in Tables 6 and 7, for all language groups the N-gram performed significantly better than
the CLSTM. However, with both models, misclassifications outside of a language group are sparse and
statistically insignificant. This may indicate that a two-stage hierarchical process, as proposed by (Goutte
and Leger, 2015), is not necessary for the models we propose.

As shown in Tables 6 and 7, the major difficulty for our models was the classification of the Spanish
varieties in Group 3. It seems that the addition of Mexican Spanish is a significant challenge to dis-
criminating national varieties of Spanish. At DSL 2015, (Goutte and Leger, 2015) were able to classify
European Spanish and Argentine Spanish with an 89.4% accuracy, lower than for other languages. Given
the low variability among the best performing systems (see Table 5), and the lower performance with re-
spect to previous iterations of the DSL shared task, this was likely a challenge for all systems at DSL
2016.

3https://keras.io/
4https://www.tensorflow.org/
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Rank Team Run Accuracy F1 (weighted)
1 tubasfs run1 0.8938 0.8937
2 SUKI run1 0.8879 0.8877
3 GWU LT3 run3 0.8870 0.8870
4 nrc run1 0.8859 0.8859
5 UPV UA run1 0.8833 0.8838
6 PITEOG run3 0.8826 0.8829
7 clac run1 0.8845 0.8813
8 XAC run3 0.8790 0.8786
9 ASIREM run1 0.8779 0.8778
10 hltcoe run1 0.8772 0.8769
11 UniBucNLP run2 0.8647 0.8643
12 HDSL run1 0.8525 0.8516
13 Citius Ixa Imaxin run2 0.8525 0.8501
14 ResIdent run3 0.8487 0.8466
15 eire run1 0.8376 0.8316
16 mitsls run3 0.8306 0.8299
17 Uppsala run2 0.8252 0.8239

Table 5: Results for all systems, data set A, closed track. Our system “clac” ranked 7th.

Group
1 2 3 4 5

Group Code bs hr sr my id es-ar es-es es-mx pt-br pt-pt fr-ca fr-fr F1

1
bs 674 182 142 1 1 0.75
hr 76 911 11 1 1 0.86
sr 54 15 928 1 1 1 0.89

2 my 992 8 0.99
id 13 985 1 1 0.99

3
es-ar 927 58 15 0.83
es-es 92 875 29 2 2 0.81
es-mx 219 218 563 0.70

4 pt-br 956 44 0.95
pt-pt 54 946 0.95

5 fr-ca 972 28 0.93
fr-fr 2 1 3 109 885 0.92

Table 6: Confusion matrix for the n-gram of size 7, test Set A. We also add the F1 score in the last
column.

6 Conclusion

Although, it still achieved an accuracy of 78.46% with very little tuning and training set, we are disap-
pointed in the performance of the CSLTM. Based on the empirical study of (Zhang et al., 2015), character
based ConvNets performed in line with traditional methods with data sets in the hundreds of thousands,
and better with data sets in the millions. Since the shared task data set size was in between, it was not
clear which approach would perform best. We believe that a deep neural network can outperform the
traditional n-gram model for this task, but only once the data set size is dramatically increased and given
more time to experiment on the network parameters and structure. Since only raw texts are necessary,
i.e. containing no linguistic annotations, increasing the data set does not constitute a problem.

As future work, we would like to explore once again the open task. With the addition of Mexican
Spanish, France French and Canadian French, discriminating similar languages continues to be a chal-
lenge. In Table 5 we see how the top 7 teams are within a 1% spread, but all below 90% accuracy. We
believe that with a very large data set, a neural model could automatically learn key linguistic patterns to
differentiate similar languages and possibly perform better than the current iteration of our CLSTM.
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Group
1 2 3 4 5

Group Code bs hr sr my id es-ar es-es es-mx pt-br pt-pt fr-ca fr-fr F1

1
bs 697 172 129 1 1 0.67
hr 249 726 23 1 1 0.75
sr 130 43 826 1 0.83

2 my 909 91 0.94
id 23 975 1 1 0.94

3
es-ar 2 816 87 93 2 0.71
es-es 1 173 633 190 1 1 1 0.62
es-mx 304 309 385 1 1 0.46

4 pt-br 1 1 847 150 1 0.83
pt-pt 1 4 183 811 1 0.83

5 fr-ca 972 28 0.90
fr-fr 1 1 1 1 178 818 0.88

Table 7: Confusion matrix for the CLSTM, test Set A. We also add the F1 score in the last column.
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