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Abstract

In this paper, we propose a method of augmenting existing bilingual terminologies. Our method
belongs to a “generate and validate” framework rather than extraction from corpora. Although
many studies have proposed methods to find term translations or to augment terminology within
a “generate and validate” framework, few has taken full advantage of the systematic nature of
terminologies. A terminology of a domain represents the conceptual system of the domain fairly
systematically, and we contend that making use of the systematicity fully will greatly contribute
to the effective augmentation of terminologies. This paper proposes and evaluates a novel method
to generate bilingual term candidates by using existing terminologies and delving into their sys-
tematicity. Experiments have shown that our method can generate much better term candidate
pairs than the existing method and give improved performance for terminology augmentation.

1 Introduction

In this paper, we propose a new way of generating new bilingual multi-word term pairs for augmenting
existing bilingual terminologies.

There is growing demand for properly managed terminologies in many areas of society, e.g. in doc-
ument authoring and management, in technical translation, in knowledge transfer and education, and
in IR/NLP (Sager, 1990; Wright and Wright, 1997; Budin, 2008; Kockaert and Steurs, 2015). With
the constant introduction of new terms in many domains, timely augmentation and update of terminolo-
gies is critical for proper terminology management, and automatic assistance for this process is greatly
needed (Kockaert and Steurs, 2015). Many researchers have proposed various methods to augment ter-
minologies automatically. As we will see in Section 2, these can be divided into two broad approaches,
i.e. “extraction from corpora” approach and “generate and validate” approach. We focus on the latter ap-
proach, which fits better for augmenting or expanding existing terminologies, the task which is in strong
demand in language industries but has not been much addressed from the NLP point of view.

A term in a terminology of a domain represents a concept of that domain. Majority of terms are
complex in most domains in most languages. These complex terms represent concepts analytically, with
each constituent element representing an important feature of the concept. A terminology, i.e. the set
of terms of a domain, represents the structure of concepts of that domain more or less systematically.
Although the extent of systematicity differ from language to language and from domain to domain, new
terms are generally formed systematically within the conceptual system of the domain. If we can take
into account this aspect of term formation for generating term candidates in the task of augmenting
terminologies, we would be able to develop an effective way of help augmenting existing terminologies.

Against this backdrop, this paper proposes a new method of generating bilingual term candidates by
taking advantage of the structural feature of terminology. The basic idea is as follows: define termino-
logical network that reflects conceptual systematicity; identify “motivated” subnetworks within which
term formation is supposed to be activated, and generate term candidates for each subnetwork.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
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Figure 1: Example of generating a term candidate

The rest of this paper is organised as follows. Section 2 looks at related work and places the present
work in context. Section 3 explains our proposed method. Sections 4 and 5 introduce the experimental
setup and the results, respectively. Section 6 summarises the results and discusses remaining issues.

2 Related work

2.1 Automatic extraction/augmentation of bilingual terms/terminology

Bilingual term extraction from parallel or comparable corpora has been actively pursued since the
1990s (Dagan and Church, 1997; Fung and Mckeown, 1997; Gaussier, 1998; Chiao and Zweigenbaum,
2002; Kwong et al., 2004; Bernhard, 2006; Robitaille et al., 2006; Daille and Morin, 2008; Lefever et
al., 2009; Laroche and Langlais, 2010), most of which use contextual information such as co-occurrence
within aligned segments or contextual similarity. Research into the improvement of quality of corpora
is also pursued (Morin et al., 2010; Li and Gaussier, 2010). The European project TTC (Terminology
extracting Translation Tools and Comparable Corpora) is the culmination of this trend of research (Blan-
cafort et al., 2010).

Some use the correspondence at the level of constituent elements of terms in finding term transla-
tions (Grefenstette, 1999; Tonoike et al., 2005; Tonoike et al., 2006; Daille and Morin, 2008), i.e. they
generate term candidates in target language by translating constituent elements and validate their exis-
tence. These studies partly adopt the “generate and validate” framework. Sato et al. (2013) generated
multi-word term pairs as bilingual term candidates by considering all possible pairs of constituent ele-
ments of terms in a terminology. The generated pairs are then validated by using web documents.

Our method adopts this “generate and validate” framework. More specifically, we take Sato et al.
(2013) as a point of departure as the aim of this work is the same as the present work, i.e. extending
existing bilingual terminologies. The method proposed by Sato et al. (2013) takes advantage of a general
tendency that if one term is a compound, a part of the term is a term and a part of the term can be changed.

LEINY3

For example, if a terminological lexicon contains, “linear programming”, “linear optimization”, “linear
function”, “convex programming” and “convex function”, they can expect that the term “convex opti-
mization” exists, even if this term is not listed in the lexicon. They generate term candidates consisting
of two constituents by defining head-modifier bipartite graph and interpolate missing edges. Figure 1
shows this idea graphically.

The problems we identify with their method are (a) if applied straightforwardly, a huge number of
bilingual term candidates are generated, and (b) the Kernighan-Lin algorithm they adopted (Kernighan
and Lin, 1970) to partition head-modifier bipartite graph in order to reduce term candidates does not re-
flect systematic structure of terminologies. Following theoretical research in terminology (Sager, 1990;
Kageura, 2002), we understand that new terms are formed within the conceptual-terminological subsys-
tem surrounding the new concepts. So our main task is concerned with consolidating these subsystems
consisting of tightly-related or “motivated” terms/concepts within which new terms are formed.

2.2 Structural nature of terminology

Terminologies in most languages contain a substantial number of complex terms (Cerbah, 2000; No-
mura and Ishii, 1989). Research has shown that complex terms tend to show conceptual relationships
systematically, with each constituent element representing an important feature of concepts represented
by terms (Felber, 1984; Sager, 1990; Kageura, 2002).
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Figure 3: Proposed method

Kageura (2012) examined the systematic nature of terminologies by introducing terminological net-
work, the vertices of which are terms and the edges of which consist of common constituent elements
between terms. For instance, a putative terminology consisting of six terms, “information”, “informa-
tion retrieval”, “information extraction”, “document retrieval”, “document processing”, and “information
processing” makes a network as shown in Figure 2.

Kageura and Abekawa (2007) applied partitive clustering over the terminological network to obtain
sub-groups of terminologies. Asaishi and Kageura (2011) comparatively analysed the formal nature
of terminological structure by defining terminological networks of English and Japanese bilingual ter-
minologies of several domains. Iwai et al. (2016) have shown that there is a reasonable amount of
cross-lingual correspondence between sub-groups of English and Japanese terms identified by using
community detection algorithms over the terminological network. As stated above, to identify concep-
tual subsystems consisting of closely-related concepts in terminology constitutes an essential part of our
method. Iwai et al. (2016) showed that meaningful conceptual subsystems can be identified and extracted
by applying relevant network partition algorithms to terminological networks.

3 Method of term candidate generation

Starting from a given terminology, the method of term candidate generation we propose consists of two
steps:

1. Dividing a terminology into subgroups each of which consists of terms representing closely related
concepts; and

2. Generating bilingual term candidates by generating possible combinations of constituent elements
of terms included in each subgroup.

Figure 3 shows an outline of the method.

While Sato et al. (2013) firstly considered all possible head-modifier pairs for all terms in termi-
nology and then reduced the number of term candidates by applying Kernighan-Lin algorithm to the
head-modifier bipartite graph, our method first consolidate subgroups of terms and generate term can-
didates for each subgroup separately. Note that this is not just a methodological alternative, but reflects
theoretical understanding of how new terms are formed, as stated above.
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3.1 Identifying “motivated’ sub-groups of terms

We first construct terminological networks (Kageura, 2012), and then apply partitive clustering or com-
munity detection algorithm to the network. This manipulation identifies motivated sub-groups of terms
within a given terminology. As terms are formed within subsystems of concepts, this serves for reducing
the number of generated term candidates while at the same time increasing the plausibility of candidates.
After dividing terminological networks into sub-groups or clusters, we generated a head-modifier set for
each cluster.

The steps for this process are as follows:

1. Decompose each term into its constituent elements;
2. Generate terminological network with terms as vertices and common constituent elements as edges;

3. Divide the generated terminological network into clusters using a community detection algorithm.

For step 1, we used MeCab' with UniDic? to decompose Japanese terms into constituent elements. For
English terms, we decompose terms using spaces and other punctuations and then apply stemming and
lemmatisation of constituent words using a lemmatiser’. Although POS taggers, such as Stanford POS
Tagger*, are widely used for pre-processing English sentences or phrases, we used here the lemmatiser
because (a) our aim is to extract semantically identical units by removing inflectional (and sometimes
derivational) variations and (b) we do not need POS-information. Previous work has shown that ap-
proximately matching units can be extracted for English and Japanese terminologies by applying these
pre-processing steps (Asaishi and Kageura, 2011).

For step 2, we used python igraph library to generate terminology networks for English and Japanese.
We removed functional words (symbols, numbers, prepositions and articles for English; symbols, num-
bers, particles and auxiliary verbs for Japanese) as they do not represent conceptual characteristics.

For step 3, we adopted Potts spin glass algorithm to divide the terminology networks into clusters.
Many community detection algorithms have been proposed (Clauset et al., 2004; Rosvall and Bergstrom,
2008; Raghavan et al., 2007; Blondel et al., 2008; Pons and Latapy, 2006; Newman, 2006). After ex-
amining several commonly used methods, we decided to adopt Potts spinglass-based method (Reichardt
and Bornholdt, 2006), which works by solving the global optimization problem (Kirkpatrick, 1984). Not
only is this method reported to work well in several experiments, the underlying concept reflects nicely
the task of extracting motivated sub-groups of terminologies (Kageura and Abekawa, 2007).

3.2 Generating bilingual term candidates

After obtaining clusters on sub-groups of terms, we generated bilingual term candidates as follows:

1. Identify corresponding English and Japanese terms contained in each cluster. As English and
Japanese clusters do not match completely (Iwai et al., 2016), we generated term candidate pairs
in three different ways in step 1: (a) based on Japanese clusters (Japanese), (b) based on English
clusters (English), and (c) based on the intersections of Japanese and English clusters (mix).

2. Generate bilingual pairs of constituent elements (henceforth constituent pairs). This is carried out
first by identifying single-word term pairs and then subtracting them from multi-word terms and
making remaining elements as pairs recursively.

3. Generate head-modifier pairs for constituent elements of source language terms, as shown in Fig-
ure 4. We identify head-modifier relations by identifying constituents on the left as modifiers and
on the right as heads, as English (and Japanese, for that matter) complex terms are head final. We
also assumed that if a term constitutes more than three words, two constituent elements can replace
as one semantics unit. For example, we can consider that “data” is the modifier and “processing

'http://code.google.com/p/mecab/
http://pj.ninjal.ac.jp/corpus\_center/unidic
3http://www.nltk.org/api/nltk.stem.html

‘nttp://nlp.stanford.edu/software/tagger.shtml
‘http://igraph.org
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Figure 4: Extracting head-modifier pairs Figure 5: Example of bipartite graph
Dom. Lang. T 1 2 3 4+
Com En 16259 2634 (16.20%) 9044 (55.62%) 3645 (22.42%) 936 (5.76%)
' Ja 16259 2002 (12.31%) 7141 (43.92%) 4782 (29.41%) 2334 (14.36%)
Een En 9120 1219 (13.37%) 4858 (53.27%) 1659 (18.19%) 1384 (15.17%)

Ja 9120 947 (10.38%) 3753 (41.15%) 2814 (30.86%) 1606 (17.61%)

Table 1: The distribution of terms in each terminology

time” is the head in Figure 4. However, we considered only head-modifier pairs by minimum unit
in this time. We set English as source language for convenience of processing; there is no inherent
technical reason for us to make the process directional in terms of languages.

4. Generate a bipartite graph based on the head-modifier pairs of the source language, as shown in
Figure 5.

5. Take the direct product of the head and modifier vertices to generate extended head-modifier pairs
from that bipartite graph.

6. Create new bilingual term pairs by taking translations for each constituent elements of the head-
modifier pairs using constituent pairs.

The candidate term pairs generated through this process are then validated using web documents.

4 Experimental setup

4.1 Seed terminologies

For evaluation, we used two terminological dictionaries, i.e. one in the field of computer science (Aiso,
1993) and the other in the field of economics (Yuhikaku, 1986). These are two of the five terminological
dictionaries used in Sato et al. (2013). Table 1 shows the number and ratio of terms by length in each
terminology, i.e. single terms, terms with two constituents, terms with three constituents and terms with
four or more constituents. “Dom.” stands for domain, “Lang.” stands for language, and “T” indicates the
number of terms. From Table 1, we can observe that these terminologies contain many complex terms.

4.2 Terminological network and candidate generation

We constructed terminological networks for English and for Japanese separately for these two datasets.
Table 2 shows the quantitative nature of the terminological networks, in which /N stands for the number
of constituent elements, V' the number of vertices, E' the numbers of edges, and .S the number of isolated
terms. We can observe that each network consists of a single giant component (max subgraph) and
several small components (others) including isolated vertices.

We then extracted max subgraph and divided it into clusters. The number of clusters was set in two
ways, i.e. 25 and 10. These numbers were decided heuristically, referring to the number of subdomains
listed in handbooks and in academic societies. The number of candidates generated from these clusters
is given in Table 3, which also provides the number of candidates generated from the method by Sato et
al. (2013). Note that our method produces smaller number of term candidates.
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Dom. Lang. T A\ E S max subgraph
A% E

En 16259 14186 992319 1100 13046 992293
Ja 16259 15062 998245 1468 13380 997034
En 9120 8922 278836 749 8127 278812
Ja 9120 4647 267603 863 8096 26784

Com.

Ecn.

Table 2: Basic quantities of terminologies and terminological networks

10clusters 25clusters

Dom. En Ta o En Ta o Sato et al. (2013)
Com. 106,422 37,741 27,252 93,175 27,342 20,891 202,446
Ecn. 33,348 12,478 10,009 29,075 9,112 7,885 82,806

Table 3: The number of generated term candidates

4.3 Collecting web documents for validation

Web documents are collected separately for two languages and stored in a database. To avoid collecting
irrelevant web pages, we used domain keywords (the name of the domain such as “computer science”)
together with individual terms for collecting documents.

Web documents for computer science were collected in October and November 2014, by using terms
and the domain keywords “computer science” (English) and “f&#FH¥” (“information science” for
Japanese) (see 3.1). Web documents for economics were collected at the end of December 2014, with
domain keywords “economics” (English) and “#&7# 27 (“economics” for Japanese). Table 4 shows the
basic quantities of the collected documents. We extracted 200 pages randomly from the English data and
manually checked the number of technical documents. The result is shown in Table 5. Approximately
60 % of the documents were technical in both domains.

5 Evaluation

We evaluated our method in two ways. First, we compared our result with Sato et al. (2013) in terms
of the number of retained candidates after validation. Second, to evaluate precision, we extracted top
100 candidates ranked according to (a) the sum of English and Japanese occurrences and (b) the Jaccard
coefficient. Note that we do not make comparison between our approach and the approach of extracting
terms from corpora, because their experimental setups are very different to each other.

5.1 Comparison of the number of retained candidates after validation

The candidate term pairs generated in six different ways (two cluster sizes of 10 and 25 by based on
Japanese clusters, based on English clusters, and based on the intersections of Japanese and English
clusters) were validated by 2 steps using the web documents (see 4.3).

1. Searching bilingual term candidates from collected web documents and retaining candidate pairs of
which both English part and Japanese part occur at least once in the documents.

2. Calculating a Jaccard coefficient by using retained candidate pairs.

In step 1, instead of using the web search directly, we first pool the web documents relevant to the two
domain. It is to avoid repeatedly searching the web for every candidate pairs. In step 1, we validate
English and Japanese terms separately, as we can assume that the candidates are aligned. However, it is
still useful to validate the bilingual co-occurrences in the web documents. In order to observe that, we
used Jaccard coefficient.
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Dom. English Japanese total Dom. Technical documents percentage

Com. 121,740 43,868 165,608 Com. 126 63.0%
Ecn. 98,630 58,411 157,040 Ecn. 130 65.0%
Table 4: The number of collected web documents Table 5: Percentage of technical documents
10clusters 25clusters
Dom. En Ta o En Ta o Sato et al. (2013)
Com 39,198 17,239 13,583 34,683 14,123 11,628 9,849
(36.83%) (45.68%) (49.84%) (37.22%) (51.65%) (55.67%) (4.87%)
Een 12,105 6,718 5,957 10,862 5,707 5,227 6,523
(36.30%) (52.70%) (59.52%) (37.36%) (62.63%) (66.29%) (7.88%)

Table 6: The result of validation (filtering)

5.1.1 Filtering by using collected web documents

We first did the filtering by using collected web documents to reduce the number of generated bilingual
term candidates. Candidate pairs of which both English part and Japanese part occur at least once in the
corpus were retained as validated terms. Table 6 shows the result. The first line in each domain shows the
number of validated candidates. The second line shows their percentage against the number of candidate
pairs given in Table 3. It shows that the number of terms retained after validation is generally larger in
our methods than Sato et al. (2013), with exceptions (“mix” for 10 clusters, and “Ja” and “mix” for 25
clusters in economics). In all cases, the ratio of retained candidates is much higher in our method than
Sato et al. (2013). These results indicate that our proposed method:

e performs both more effectively in terms of computational cost and in terms of recall, assuming that
the validated terms have roughly the same level of pairing precision and termhood precision; and

e enables us to control the balance between recall and precision, by changing the number of clusters
as well as the pairing methods.

The first point indicates that our method successfully captures the conceptual subsystems/terminological
subgroups within the dynamics of which new terms are formed. The second point shows that our method
gives us applicational flexibility.

5.1.2 Calculating Jaccard coefficient

After filtering by collected web documents, we searched retained bilingual term candidates with search
engine and calculated Jaccard coefficient by using the number of hit. In order to keep the comparison
with Sato et al. (2013) sensible, we chose the validated candidates generated from “mix” for 25 clusters,
as the number of validated terms in the two domains is close to that by Sato et al. (2013) (although “Ja”
pairing for 10 clusters is the closest in economics, we chose the same setting for the two domains). Jacard
coefficient is defined as:

H(L1)NH(L2) H(L1)ANH(L2)

Jaccard(L1,L2) = H(L1) v H(L2) = H(LL) + H(L2) — H(LLA L2)’

where L1 and L2 indicate English and Japanese parts (or vice versa) of a candidate pair in our case,
and H (z) is the number of documents in which they occur. If the number of hits is zero, the Jaccard
coefficient is defined to be zero. In filtering by using collected web documents, the process retained
candidate pairs that either English part or Japanese part occur. Therefore, it is considered that non-
parallel candidate pairs are retained. By calculating Jaccard coefficient with the number of hit in search
engine and retaining candidate pairs that Jaccard coefficient is positive, we finally extract candidate pairs
that is validated parallel. We used Bing search API as search engine. Table 7 shows the result of the total
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Dom. “mix” for 25 clusters Sato et al. (2013)

Com. 9,471 (81.45%) 2,261 (23.00%)
Ecn. 4,707 (90.05%) 2,286 (35.05%)

Table 7: The result of total number of positive Jaccard coefficients

Occurrences Jaccard
Dom. pairing term partial pairing  term partial
Com. 82(61) 56(28) 16(17) 86 (89) 72(51) 13(15)
Ecn. 87 (56) 69 (37) 24(16) 95(91) 86(60) 8(18)

Table 8: Precision of top 100 candidates

number of candidate term pairs that take positive values of Jaccard coefficients. The result indicates that
our method generates many more potentially valid candidate pairs than the method by Sato et al. (2013).

5.2 Precision of top 100 candidates

The top 100 candidates generated by “mix” for 25 clusters, ranked according to the sum of English and
Japanese occurrences and to the Jaccard coefficient, were manually evaluated for each domain. The
evaluation was carried out from two points of view, i.e. (a)whether the Japanese and English matches
or not (pairing), and (b)whether the Japanese candidates can be regarded as a term in the domain in
question (term). For (b), we also counted partial-terms (partial). The evaluation was carried out by one
of the authors. Table 8 shows the result, together with the corresponding results given in Sato et al.
(2013) (in bracket). Table 8 shows that except for “pairing” by Jaccard in computer science, our method
is consistently better than Sato et al. (2013) in terms of precision as well.

6 Conclusion and future work

In this paper we proposed a method of augmenting existing bilingual terminological lexicon. We in-
troduced a way of generating candidate term pairs which reflect the conceptual system/terminological
group within which new terms are formed, by taking advantage of the “motivated” structure of terminolo-
gies. Compared with the method proposed so far, our method consistently shows higher performance,
which indicates that our method succeeded in identifying, to a reasonable extent, the conceptual subsys-
tem/terminological subgroups within which terms are formed. The method also has more applicational
flexibility.
We are currently addressing the following issues:

e Extending our method so that it can generate and validate terms with more than three constituent
elements. For example, if a term consists of more than three words, it is natural to decompose it
into 2 words as one unit and the other one word from the point of semantic structure. In this way,
we try to apply generating bilingual term candidates that consists of more than three words.

e Improving the pairing module. As of now, we examined English as source language and Japanese
as target language. However, we can consider reverse pattern in our proposed method. Directional
property of language and correspondence of translation words are one of the points of that we need
to address in the future.

e Analysing non-validated candidates (error analysis). Now that it was shown that the proposed
method can capture, to a reasonable extent, conceptual subsystem within which new terms are gen-
erated, it is important to analyse non-validated candidates to obtain further insights into candidate
generation process.

e Finding a way of suggesting reasonable number of clusters. As can be inferred from Tables 4 and
7, the best number of clusters may differ from domain to domain.
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In addition, we are planning to extend our research into the following directions:

e Applying our method to different language pairs. We are planning to apply our method to Chinese-
English and Korean-English pairs.

o Clarifying the difference between the “generate and validate” framework and extraction from paral-
lel or comparable corpora. Although the comparison of these two approaches are difficult, because
not only the theoretical assumption and the range of relevant applications but also the range of data
which can be used differ greatly (the “generate and validate” approach in general can use wider
variety of data as they are used for validation rather than sources from which terms are extracted), it
would still be interesting to examine the relationship between these two approaches on the empirical
basis.
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