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Abstract

Simultaneous interpretation is a very challenging application of machine translation in which the
input is a stream of words from a speech recognition engine. The key problem is how to segment
the stream in an online manner into units suitable for translation. The segmentation process
proceeds by calculating a confidence score for each word that indicates the soundness of placing
a sentence boundary after it, and then heuristics are employed to determine the position of the
boundaries. Multiple variants of the confidence scoring method and segmentation heuristics were
studied. Experimental results show that the best performing strategy is not only efficient in terms
of average latency per word, but also achieved end-to-end translation quality close to an offline
baseline, and close to oracle segmentation.

1 Introduction

Simultaneous interpretation performs spoken language translation in a online manner. A spoken language
translation system automatically translates text from an automatic speech recognition (ASR) system into
another language. Spoken language translation itself is an important application of machine translation
(MT) because it takes one of the most natural forms of human communication — speech — as input (Peitz
et al., 2011). Simultaneous interpretation is even more demanding than spoken language translation
because the processing must occur online.

Simultaneous interpretation can bridge the language gap in people’s daily lives transparently because
of its ability to respond immediately to users’ speech input. Simultaneous interpretation systems rec-
ognize and translate speech at the same time the speakers are speaking, thus the audience can hear the
translation and catch the meaning without delay. Potential applications of simultaneous interpretation
include interpreting speeches and supporting cross-lingual conversation.

This paper is devoted to online sentence segmentation methods for simultaneous interpretation. Si-
multaneous interpretation systems are normally comprised of ASR systems and MT systems. The output
of ASR systems is typically streams of words, but the input to MT systems is normally sentences. Sen-
tence segmenters bridge this gap by segmenting stream of words into sentences. Figure 1 illustrates this
process.

A number of segmentation methods have been proposed to pipeline ASR and MT, yet most of them
require a long context of future words that follow sentence boundaries. In addition, they are often com-
putationally expensive. These shortages make them unattractive for use in simultaneous interpretation.
To the best of our knowledge, there are no published ready-to-use online sentence segmenters, and this
motivated this paper. The proposed method is crafted in a way that requires little computation and
minimum future words in order to achieve efficiency. Also the proposed method is directly optimized
against the widely used measurement of translation quality — BLEU (Papineni et al., 2002) — in order to
achieve effectiveness. We believe that this work can directly contribute to the development of real-world
simultaneous interpretation systems.

The main contributions of this paper are,

e proposing a segment boundary confidence score;
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Figure 1: Illustration of Online Sentence Segmenter in Simultaneous Interpretation System

e proposing a hybrid online sentence segmenter;
e an empirical study and analysis of the proposed method on two translation tasks.

The rest of this paper is organized as follows. Section 2 reviews related works on segmentation meth-
ods. Section 3 describes our methods. Section 4 presents experiments between English and Japanese.
Section 5 concludes this paper with a description of future work.

2 Related Works

A number of methods have been proposed to segment the output of ASR for MT. The works of Stolcke
and Shriberg (1996), and Stolcke et al. (1998) are most related to this paper. They treated segmentation
boundaries as hidden events occurring between words. They used N-gram language models and Viterbi
algorithms to find the most likely sequences of hidden events. We admire them for approaching the
problem by language models, which are well-studied techniques that run very fast. For sentence seg-
mentation, they can tackle the task through the insertion of hidden beginning and end of sentence events.
However, Stolcke et al. employed off-line Viterbi algorithms that require a long context of words. This
will causes long latency for simultaneous interpretation. Therefore, this work has focused on developing
lower-latency segmenters that require only one future word. Please note that Stolcke et al.’s methods
are implemented using the SRILM toolkit, and it is used as a baseline (denoted Hidden N-gram) in our
experiments.

Fiigen et al. (2007) and Bangalore et al. (2012) proposed using pauses captured by ASR to denote
segmentation boundaries. However, studies on human interpreters show that segmenting merely by
pauses is insufficient, as human speakers may not pause between sentences. The mean proportion of
silence-based chunking by interpreters is 6.6% when the source is English, 10% when it is French, and
17.1% when it is German (Venuti, 2012). Therefore, this paper focuses on using linguistic information.
Nevertheless, pauses can be directly integrated into the proposed segment boundary confidence scores to
boost performance.

Matusov et al. (2006) proposed a sentence segmentation algorithm which is similar to a conditional
random field (CRF) (Lafferty et al., 2001). Lu and Ng (2010) applied CRFs to punctuation prediction
which is an almost equivalent task to sentence segmentation. These CRF-based methods achieve high
performance as they are able to integrate arbitrary features. However, CRF models take whole sequences
as input, thus they cannot be directly applied in an online manner. Online CRFs are beyond the scope of
this paper, and we plan to explore this in the future.

Ha et al. (2015) approached sentence segmentation by training a specialized monolingual machine
translation system. Kzai et al. (2015) proposed a neural network approach to sentence segmentation.
These two methods both require whole sequences as input, and require heavy computation. Therefore,
they might not be suitable for online segmentation.
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Figure 2: Illustration of Proposed Online Sentence Segmenter

A number of segmentation strategies targeted at splitting an input sentence into smaller pieces for
simultaneous interpretation. Yarmohammadi et al. (2013) extracted monotonic phrase alignments from
word-aligned sentence pairs and assumed that these phrasal alignments segment the source sentences
in an appropriate manner for MT. They used the segmented data to train a binary classifier to predict
segmentation boundaries.

Oda et al. (2014) built training data sets for segmentation through a greedy search algorithm, which
searches for segmentation boundaries that yield high BLEU score. They trained a linear SVM (Cortes
and Vapnik, 1995) to predict these boundaries. To mitigate the effect of noise in the training data sets,
they further introduced feature grouping and dynamic programming to the raw greedy search algorithm.

Fujita et al. (2013) used phrase tables and reordering probabilities in phrase-based translation systems
to segment an input sentence. Two heuristics were used for segmentation: in the first, if the partial
input doesn’t exist in phrase tables, segmentation boundaries are generated; in the second, if the right
probability of reordering is less than a predefined threshold, segmentation boundaries are generated.

These works aim at outputting shorter segments than sentences, ! which is capable of further reducing
the latency in simultaneous interpretation. However, they assumed that input stream is already segmented
into sentences, which is the topic of this paper. As such, our method is orthogonal to these methods, and
it would be possible to pipeline our proposed method with them; we plan to explore this in the future.
Another shortcoming of these works is that they are tied to specific translation systems, and this narrows
their applicability.

3 Methodology

The proposed online sentence segmenters have two components — boundary confidence scoring and
segmentation strategies (illustrated in Figure 2 and Algorithm 1). The input is a stream of words, denoted
as wo, + -+, Wi, Wit1, **+, We1. The boundary confidence score, denoted as s;, indicates the fitness of
breaking after the ¢-th word. Segment strategies decide whether or not break based on confidence scores,
denoted as b;. The final output is a segmented sentence, e.g. wy, - - -, W;.

The proposed segmenters work in an online manner as follows: words are input one by one. The
sequence of input words and the derived confidence scores are maintained as states. Once an word is
input, its confidence score is calculated and added into the sequence (which is labeled as a in Figure 2).
Then a segmentation strategy is applied to the sequence (labeled as (b) in Figure 2). In case that the

1Fujita et al. (2013)’s method may work on word streams without sentence boundaries; Oda et al. (2014)s’ segmentation
model uses linear SVMs and local features extracted from just three word lookahead, so it might be adapted.
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Algorithm 1 Online Sentence Segmenter

Require: wg, wi, wo, ...,

WS - ]

2: for wy, in stream of words do

3: W — W + [wy] >assume W = [wo, w1, ..., Wg_1, W]
4: sk—1 < confidence of segmenting before wy,

5: S — S+ [sp_1] > assume S = [sq, S1,- - ., Sp—1]
6: B « apply segmentation strategy to S > assume B = [bg, by, ..., bg_1]
7: ifb; =1 (0<i<k—1)then

8: output [wp, w1, . .., w;] as a segment

9: remove first 7 elements from W and S
10: end if
11: end for

segmentation strategy outputs no boundary, no action is taken (represented by (c) in Figure 2). Figure 2, a
segment will be output and the inner sequence will be updated accordingly (as in the process represented
by (d) in Figure 2).

The following two subsections describe the boundary confidence scores and segmentation strategies
in detail, respectively.

3.1 Segment Boundary Confidence Score

This confidence score is based on an N-gram language model. Suppose the language model order is n.

The confidence score represents the plausibility of placing a sentence boundary after the word w;,
that is, converting the stream of words into - - -, w;_1, w;, (/s), (s), wit+1, - -+, where (/s) and (s) are
sentence start and end markers. The confidence score is based on the ratio of two probabilities arising
from two hypotheses defined below:

Hypothesis I : there is no sentence boundary after word w;. The corresponding Markov chain is,

B = Pen Pl Pagn
i+n—1

= Pt - H p(wk’w’]z:i+1)'Pright )]
k=it1

where p denotes the probability frqm the language model, Pief and Figp are the probabilities of the left
and right contexts, of the words w:.i’ffl.
Hypothesis II : there is a sentence boundary after the word w;. The corresponding Markov chain is,

P = P~ P({/s), (), w7 ™") - Pagn

- Pleft : p(</8>|w;’,n+2) : p(wi+1|<8>) ’
i—n—+1

H p(wk\wfﬁl, (5)) - Pright 2
k—it2

The confidence score is defined as the ratio of the probabilities Pi<II> and Pi<1>, that is,

P

i—n-i—l p(

_ p((/SHwi ) - p(wit1[(s)) 3)

k—1
wk’wi+1 3 <S>)
7

p(wi+1|wl—n—2) k=i+2 p(wk‘w]]z:frll_}_l)
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This formula requires a context of n — 1 future words wfi?_l. This requirement causes a delay of

n — 1 words. If only one future word is used, this delay can be reduced to one word, formulated as,

plwis](s)
p(wi+1|w;—n+2)

“)

8 = P((/Sﬂwffmz)'

Experimental results show that this approximation does not degrade the end-to-end translation quality
(see Section 4.3). This might be because, for most languages, the next word w; 1 is the most informative
to predict whether or not there is a sentence boundary after w;.

3.2 Segmentation Strategies

In this subsection, two basic segmentation strategies that are based on a threshold heuristic and a latency
heuristic, respectively, are first introduced. Then a hybrid strategy that combines these two heuristics is
proposed in order to achieve lower delay.

3.2.1 Threshold-based Segmentation Strategy

The threshold-based strategy has a preset threshold parameter denoted: fy,. The strategy places sentence
boundaries where the confidence score exceeds the threshold, formulated as,

0 otherwise.

3.2.2 Latency-based Segmentation Strategy

The latency-based strategy has a maximum latency parameter denoted: yr. Once the stream of confi-
dence scores grows to a length of Oy, the strategy searches for the maximum confidence score in the
stream of scores, and places a sentence boundary there, formulated as,

1 ifs; > s5(0 <j<6wmw),
b; = .
0 otherwise.

(6)

3.2.3 Threshold-latency-based Segmentation Strategy

Both the threshold-based and latency-based segmenters have strengths and weakness with respect to time
efficiency. The threshold-based strategy places a sentence boundary immediately when a confidence
score exceeds the threshold. In this case, the delay is low. However, continuous sequences of low
confidence scores, whose values are all under the threshold, will lead to a long unsegmented stream of
words, resulting in high latency.

The latency-based strategy has the opposite behavior. The latency for words ranges from O to Oy, — 1.
The maximum latency is guaranteed to be Ay, — 1, which is better than threshold-based strategy. But
if there are some extremely high confidence scores in the stream, the latency-based strategy will ignore
them, leading to unnecessarily long segments.

It is possible to combine to the threshold-based and latency-based strategies to achieve a lower delay.
This hybrid threshold-latency-based strategies operates as follows:

e Apply the threshold heuristic to the stream of confidence scores. If a sentence boundary is predicted,
then accept the boundary and update the stream.

e If the length of stream grows to Oy, apply the latency heuristic.
The method is formulated as,
1 if s; > O,

1 if s; < Omhand s; > Sj(o <7< 0ML)7 @)
0 otherwise.

b;
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Corpus # Sent. Pairs Japanese English

# Tokens # Words # Tokens # Words
Training 5,134,941 | 106,044,671 93,672,553 | 84,371,311 74,733,865
Develop 6,000 150,690 141,036 103,473 95,054
Test 6,000 150,751 141,035 103,638 95,176

Table 1: Experimental Corpora.’ Including punctuations.

4 Experiments

4.1 Experimental Settings

Experiments were performed on translation between Japanese and English in both directions. The word
orders of these two languages are very different, thus long-distance reordering is often obligatory during
translation. This makes simultaneous interpretation a very challenging task, and therefore we choose this
language pair for experiments.

The experimental corpus was a union of corpora from multiple sources, including shared tasks such
as the Basic Travel Expression Corpus (Takezawa et al., 2002), the NTCIR Patent Machine Translation
Corpus (Goto et al., 2013), crawled web data and several in-house parallel resources. Table 1 shows the
statistics of sentences and words in the training, development and test sets.

The corpora were pre-processed using standard procedures for MT. The Japanese text was segmented
into words using Mecab (Kudo, 2005). The English text was tokenized with the tokenization script
released with the Europarl corpus (Koehn, 2005) and converted to lowercase.

Two treatments were applied to the development and test sets in order to simulate the output from ASR
engines. First, because ASR engines normally do not output punctuation, punctuation was removed.
Second, because ASR engines output steams of tokens which are split by long pauses that may contain a
few sentences, a random number (from 1 to 10) of sentences were concatenated to form the input.

After segmentation using the proposed methods, punctuation was inserted into the sentences with a
hidden N-gram model model (Stolcke et al., 1998; Matusov et al., 2006) prior to translation. In (Anony-
mous, 2016), this method was shown to be the most effective strategy for the translation of unpunctuated
text.

The time efficiency of segmenters were measured by average latency per source word using the defini-
tion given in (Finch et al., 2014). The quality of segmenters were measured by the BLEU of end-to-end
translation, and because the segmented source sentences did not necessarily agree with the oracle, trans-
lations were aligned to reference sentences through edit distance in order to calculate BLEU (Matusov
et al., 2005).

The parameters (all of the 6’s in the ‘Parameters’ column in Table 2) were set by grid search to
maximize the BLEU score on the development set. 5-gram interpolated modified Kneser-Ney smoothed
language models were used to calculate the confidence. These were trained on the training corpus using
the SRILM (Stolcke and others, 2002) tools. The machine translation system was an in-house phrase-
based system that pre-ordered the input.

4.2 Experimental Results

The performance of the interpretation systems using different sentence segmenters is presented in Ta-
ble 2. The following observations can be made.

First, the three proposed online sentence segmenters — the threshold-based, latency-based and hybrid
ones — work reasonably well. They are much better than the trivial method of fixed-length segmenta-
tion, and comparable to the offline method using hidden N-gram models and also to the oracle sentence
segmentation.

Second, the proposed threshold-latency-based segmenter consistently outperformed the threshold-
based and latency-based segmenters in terms of both end-to-end translation quality and time efficiency.

Third, for Japanese-to-English translation, the threshold-based segmenter outperformed the latency-
based segmenter. The reason might be that Japanese language has obvious end of sentence indicators
such as “MA SU” and “DE SU”, and the segmentation confidence scores immediately following them

144



Sentence Segmenter | Parameters Dev. Set Test Set
BLEU Latency | BLEU Latency

Japanese-to-English

Oracle 13.82 NA 13.67 NA
Hidden N-gram | Opias=2.6 13.30 NA* 12.97 NA*
Fixed-length OLen=36 11.71 16.66 11.55 16.63
Threshold-based Orn=e’° 13.38 14.20 13.16 13.68
Latency-based OnL=30 13.21 18.04 13.20 18.03

Threshold-latency Orm=e"C, O =38 | 13.38 12.98 13.28 12.89
English-to-Japanese

Oracle 13.84 NA 14.15 NA
Hidden N-gram' Opias=4.2 12.85 NA? 13.10 NA?
Fixed-length Oren=18 11.86 8.19 12.15 8.20
Threshold-based Om=e 06 12.93 7.13 13.19 7.18
Latency-based OmL=20 13.18 12.25 13.38 12.26

Threshold-latency Orn=e®2, O=20 | 13.18 10.01 13.42 10.11

Table 2: Performance of interpretation systems that use different sentence segmenters. The confidence
scores in threshold-based, latency-based and threshold-latency-based segmenters were calculated using
Equation 4. T Employed the segment tool from the SRILM toolkit. ¥ The method is not online since it
operates on a whole sequence of words, thus the measurement of latency is not applicable.

# Future Words | Parameters Dev. Set Test Set
BLEU Latency | BLEU Latency

Japanese-to-English

1 Orn=e"C, O\ =38 13.38 12.98 13.28 12.89

2 Omn=e" %2, Om=38 | 13.42 12.86 13.21 12.77

3 Omn=e"%2, Ov=46 | 13.40 13.88 13.22 13.80

4 Orn=e" %2, Oy=46 | 13.38 14.71 13.23 14.65
English-to-Japanese

1 Omn=e"2, Op.=20 13.18 10.01 13.42 10.11

2 Orn=e"2, OpL=18 13.12 9.92 13.44 9.99

3 Orh=e’*, OpL=22 13.14 12.78 13.41 12.78

4 Omn=e"*, Opr=22 13.17 13.65 13.41 13.65

Table 3: Performance of using different numbers of future words to calculate confidence scores.

will be quite high, allowing the threshold-based segmenter to easily identify the corresponding segment
boundaries.

4.3 Confidence Scores Using Different Numbers of Future Words

Confidence scores were calculated using a context of up to four future words, as shown in Equation 3.
The results are presented in Table 3. Though there is some randomness due to variance on the parameters
chosen by grid search, these results show that using more future words does not effectively improve the
quality of end-to-end translation, and tends to increase the latency, for the language pair of English and
Japanese. Therefore, we found it sufficient to use just one future word.

4.4 Analysis

Table 4 presents an example of the proposed threshold-latency-based sentence segmenter in English-
to-Japanese interpretation. The oracle segments of the input in this example are three sentences. The
proposed method segments the input into four sentences, two of which are correct. The error is that the
third oracle sentence is split into two sentences.

In this example, the proposed segmenter works reasonable accurately, as it recognized two sentences
correctly out of three. Here, “i myself think”, “but it ’s ”, “we figured” are typical sentence beginnings
in English, which can be recognized by language model. Therefore, the proposed language-model-based
segmenters can correctly segment them. The error of splitting “we figured the ultimate test would be
...”” into two sentences may have arisen from the fact that “we figured” occurs at the end of sentences, or
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Input 1 myself think that the argument about smoking is a slightly misleading one but it ’s not
predicted to go as high as once believed we figured the ultimate test would be to ask the
dog ’s owner to leave

Oracle Segments <s> 1 myself think that the argument about smoking is a slightly misleading one </s>
<s> but it ’s not predicted to go as high as once believed </s>

<s> we figured the ultimate test would be to ask the dog ’s owner to leave </s>
Oracle Translation <s>SHTHE W EZ20 1 3EEICoWTom I AL Bz 2
LW Z&TY <Us>

<s>LULhLTHCEZvwoildzomd ko> TEbhTwio & H
CAIcZ? &) J& TY </s>

<> FEZ O RMKN L TANIROAMBEEICIEL T2 &9
KT 2k TH <hs>

Predicted Segments <s> 1 myself think that the argument about smoking is a slightly misleading one </s>
<s> but it ’s not predicted to go as high as once believed </s>

<s> we figured </s>

<s> the ultimate test would be to ask the dog ’s owner to leave </s>

Machine Translation | <s> H, IZ B O BYE ICHT 2 kim AL B 2 1< 2 &£ 8w £
<[s>

<s>LUILELOSNE FH KRB e THla R TWw 28 A <Us>
<s> B TARLL T <Us>

<> T TAN I ROMBEEICERTEZ DR EHEZoNT
W XA <>

Table 4: Example of Threshold-Latency-based Sentence Segmentor.

“the ultimate test would be” occurs as a sentence beginning in the training corpus of the language model.
A language model can only capture local patterns, and cannot understand structures of compound sen-
tences. This is a weakness of applying n-gram language modeling techniques to sentence segmentation.
As a solution, it may be advantageous to replace the n-gram models with recurrent neural networks that
are strong at exploiting long-distant context, and we plan to explore this in the future. It is interesting to
note that, the resulting translations of the wrong segmentation “we figured” and “the ultimate test would
be ...” are decent, as the origin meaning is delivered. This was an unexpected bonus that we owe to the
evaluation framework. The evaluation framework in this paper is end-to-end BLEU, and places no con-
straints on segmentation positions. This helped to tune the parameters of the proposed methods properly.
To sum up, this example illustrates that the proposed methods work reasonably well, and the evaluation
framework itself is also making a contributions. However, errors caused by lack of understanding whole
sentence structure are inevitable, and these need to be addressed in future work.

5 Conclusion

This paper proposed and studied a segmentation boundary confidence score and a set of online segmenta-
tion strategies for simultaneous interpretation. The solution expressed by Equations 4 and 7 was proven
empirically to be both effective and efficient.

The choice to use sentence segmentation units was motivated by the desire to handle difficult language
pairs that require long-distance intra-sentential word re-ordering (for example the Japanese-English pair
studied in this paper). For these cases, using smaller units than sentences will prevent the translation
system from being able to correctly re-order the words. For easier language pairs, segments shorter than
sentences may be preferable; note that the proposed confidence score can be easily modified to handle
sub-sentential segments if necessary. We would like to study this in the context of other language pairs
in the future.

The primary motivation for this work was to create an online version of the hidden n-gram ap-
proach (Stolcke and Shriberg, 1996; Stolcke et al., 1998), a de facto standard method that is often used
for sentence segmentation due to its effectiveness, simplicity and speed. However, it has a latency issue
that prevents it from being used in simultaneous interpretation. The proposed method alleviates this la-
tency issue while preserving all its merits, and we show empirically that the new method maintains the
effectiveness of the hidden n-gram method even when the future context is reduced as far as a single
word. We believe that the proposed method will not only lead to workable systems, but also establish
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a meaningful baseline for related research. In the long term, we plan to incorporate the findings in this
paper into an industrial simultaneous interpretation system.
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