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Abstract

This paper describes the NICT-2 translation system for the 3rd Workshop on Asian Translation.
The proposed system employs a domain adaptation method based on feature augmentation. We
regarded the Japan Patent Office Corpus as a mixture of four domain corpora and improved the
translation quality of each domain. In addition, we incorporated language models constructed
from Google n-grams as external knowledge. Our domain adaptation method can naturally in-
corporate such external knowledge that contributes to translation quality.

1 Introduction

In this paper, we describe the NICT-2 translation system for the 3rd Workshop on Asian Translation
(WAT2016) (Nakazawa et al., 2016a). The proposed system employs Imamura and Sumita (2016)’s
domain adaptation technique, which improves translation quality using other domain data when the target
domain data is insufficient. The method employed in this paper assumes multiple domains and improves
the quality inside the domains (cf., Section 2).

For WAT2016, the Japan Patent Office (JPO) Corpus can be regarded as multi-domain data because it
includes chemistry, electricity, machine, and physics patents with their domain ID, and thus it is suitable
for observing the effects of domain adaptation. WAT2016 provides the JPO corpora in Japanese and
English (Ja-En), Japanese and Chinese (Ja-Zh), and Japanese and Korean (Ja-Ko) pairs. We used Ja-
En and Ja-Zh pairs in order to add Asian Scientific Paper Experts Corpus (ASPEC) (Nakazawa et al.,
2016b) as a fifth domain.1 The relationship between the corpora and domains used in this paper is shown
in Table 1.

# of Sentences (Ja-En pair) # of Sentences (Ja-Zh pair)
Corpus Domain Training Development Test Training Development Test
JPC Chemistry 250,000 500 500 250,000 500 500

Electricity 250,000 500 500 250,000 500 500
Machine 250,000 500 500 250,000 500 500
Physics 250,000 500 500 250,000 500 500

ASPEC ASPEC 1,000,000 1,790 1,812 672,315 2,090 2,107

Table 1: Bilingual Corpora and Domains

The remainder of this paper is organized as follows. Section 2 briefly reviews our domain adaptation.
Section 3 describes the proposed translation system, including preprocessing, training, and translation.
Section 4 explains experimental results focusing on the effects of domain adaptation.

This work is licenced under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

1The ASPEC corpus is provided in Ja-En and Ja-Zh pairs.
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Figure 1: Structure of Augmented Feature Space; hc and hi denote subvectors of the feature vector
h(e, f). wc and wi denote subvectors of the weight vector w. Φc(e, f) and Φi(e, f) are feature functions
that return feature subvectors (cf., Section 2.2).

2 Domain Adaptation

We used the domain adaptation method proposed by Imamura and Sumita (2016). This method adapts a
weight vector by feature augmentation (Daumé, 2007) and a feature vector using a corpus-concatenated
model. Since this method only operates in feature space, it can be applied to various translation strategies,
such as tree-to-tree translation. In this study, we applied it to phrase-based statistical machine translation
(PBSMT) (Koehn et al., 2003; Koehn et al., 2007).

2.1 Adaptation of Weight Vector by Feature Augmentation

Most statistical machine translation employs log-linear models that interpolate feature function values
obtained from various submodels, such as phrase tables and language models (LMs). The likelihood of
a translation is computed as follows:

log P (e|f) ∝ w · h(e, f), (1)

where h(e, f) denotes a feature vector and w denotes its weight vector.
Figure 1 shows a feature space structure of feature augmentation. When we translate texts of D

domains, the feature space is segmented into D + 1 subspaces: common, domain 1, · · · domain D. A
feature vector (subvector) of each subspace is the same as that of a normal translator, i.e., feature function
values obtained from phrase tables and language models.

Features of each translation hypothesis are deployed to different spaces depending on the domain of
the input data. For example, features obtained from domain 1 data are deployed to the common and
domain 1 spaces. Features obtained from domain 2 data are deployed to the common and domain 2
spaces. In other words, features are always deployed to the common spaces.

We obtain the weight vector w by optimizing a feature matrix of development data acquired by the
above process. This weight vector is optimized to each domain. When we translate test data of domain
i, only the subspaces of the common and domain i (i.e., subvectors wc and wi) are used.

2.2 Adaptation of Feature Vector using Corpus-Concatenated Model and Single-Domain Models

Our domain adaptation method adapts the feature function h(e, f) by changing submodels according to
the feature spaces.
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• For the common space, where all domain features are located, we use a model trained from a
concatenated corpus of all domains (i.e., the corpus-concatenated model) to obtain the features.

• For the domain spaces, where only the domain specific features are located, we use models trained
from specific domain data (i.e., single-domain models) to obtain the features.

The procedure is summarized as follows.

1. The training corpora of all domains are concatenated. From this corpus, the corpus-concatenated
model is trained. This includes all submodels, such as phrase tables, language models, and lexical-
ized reordering models. Similarly, the single-domain models are trained from the training corpus of
each domain.

2. In feature augmentation, the scores obtained from the corpus-concatenated model are deployed to
the common space as the feature function values, while those from the single-domain models are
deployed to the domain spaces.

We represent the augmented feature space as follows:

h(f, e) = ⟨hc,h1, . . . ,hi, . . . ,hD⟩, (2)

where hc denotes a feature vector of the common space, and hi denotes a feature vector of the
domain i space. The feature vector Φc(f, e) obtained from the corpus-concatenated model is always
located in the common space. The feature vector Φi(f, e) is located in the domain-specific space i
iff the domain of an input sentence is matched to i.

hc = Φc(f, e), (3)

hi =

{
Φi(f, e) if domain(f ) = i
∅ otherwise.

(4)

3. A feature matrix is obtained by translating a development set, and the weight vector w is acquired
by optimizing the feature matrix.

4. For decoding, phrase pairs are first retrieved from both the corpus-concatenated and single-domain
phrase tables. Use of the corpus-concatenated phrase table reduces the number of unknown words
because phrase pairs appearing in other domains can be used to generate hypotheses.

5. During search of the best hypothesis, the likelihood of each translation hypothesis is computed using
only the common space and domain-specific space of the input sentence.

2.3 Implementation Notices
There are some notices for applying the proposed method to phrase-based statistical machine translation.

Empty Value In the proposed method, several phrases appear in only one of the phrase tables of the
corpus-concatenated and single-domain models. The feature functions are expected to return appropriate
values for these phrases. We refer to these as empty values.

Even though an empty value is a type of unknown probability and should be computed from the
probability distribution of the phrases, we treat it as a hyper-parameter. In other words, an empty value
was set experimentally to maximize the BLEU score of a development corpus. Since the BLEU scores
were almost stable between -5 and -10 in our preliminary experiments, we used -7 for all settings. If this
value is regarded as a probability, it is exp(−7) ≈ 0.0009.

Very Large Monolingual Corpora In machine translation, monolingual corpora are easier to obtain
than bilingual corpora. Therefore, language models are sometimes constructed from very large monolin-
gual corpora. They can be regarded as corpus-concatenated models that contain various domains. When
we introduce models constructed from external knowledge, they are located in the common space while
increasing the dimension. We introduce language models constructed from Google n-grams in Section
4.
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Japanese English Chinese
Pr
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ro
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ss

in
g Character Normalization NFKC Normalization of Unicode

Tokenizer MeCab Moses Toolkit Stanford Segmenter
TrueCaser - Moses Toolkit -
PreOrderer (1) Top-Down BTG

(2) Developed by NICT, for Patents (w/ Berkeley Parser)

Tr
ai

ni
ng

Phrase Tables The same as the baseline system of WAT2016.
Lex. Reordering Models The same as the baseline system of WAT2016.
Language Models (1) 5-gram model built from the target side of the bilingual corpora.

(2) Google n-gram (2) Google n-gram -
Optimization K-Best Batch MIRA

Tr
an

sl
at

io
n Decoder Clone of Moses Decoder

DeTrueCaser - Moses Toolkit -
DeTokenizer - Moses Toolkit -

Table 2: Summary of Preprocessing, Training, and Translation

Optimization Imamura and Sumita (2016) proposed joint optimization and independent optimization.
We employ independent optimization, which can use existing optimizers.

3 System Description

In this section, we describe the preprocessing, training, and translation components of the proposed
system (Table 2).

3.1 Preprocessing

Preprocessing is nearly the same as the baseline system provided by the WAT2016 committee. However,
preorderers are added because our system is phrase-based with preordering. We used Nakagawa (2015)’s
Top-Down Bracketing Transduction Grammar (TDBTG) trained by the JPO corpus as the preorderer
without external knowledge. For the preorderer with external knowledge, we used the one developed
in-house (Chapter 4.5 of Goto et al. (2015)),2 which was tuned for patent translation.

3.2 Training and Optimization

We used the Moses toolkit (Koehn et al., 2007) to train the phrase tables and lexicalized reordering
models. We used multi-threaded GIZA++ for word alignment.

For the language models of the corpus-concatenated and single-domain models, we constructed 5-
gram models from the target side of the bilingual corpora using KenLM (Heafield et al., 2013). In
addition, we included the Google n-gram language models for Japanese and English as the external
knowledge. These are back-off models estimated using maximum likelihood. The Japanese model was
constructed from Web Japanese N-gram Version 1,3 and the English model was constructed from Web
1T 5-gram Version 1 (LDC2006T13).

For optimization, we used k-best batch MIRA (Cherry and Foster, 2012).

3.3 Translation

The decoder used here is a clone of the Moses PBSMT decoder. It accepts feature augmentation, i.e., it
can use multiple submodels and set an empty value.

2This preorderer modifies word order based on parse trees output by the Berkeley parser (Petrov et al., 2006; Petrov and
Klein, 2007).

3http://www.gsk.or.jp/catalog/gsk2007-c/
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JPC
Method Ja-En En-Ja Ja-Zh Zh-Ja
Single-Domain Model 34.58 38.06 33.35 39.54
Corpus Concatenation 35.64 38.61 34.27 40.96
Domain Adaptation 35.68 39.03 34.64 41.09

Table 3: BLEU Scores on JPO Corpus (official scores)

JPC
Method Ja-En En-Ja Ja-Zh Zh-Ja
Single-Domain Model 35.12(-) 37.40(-) 31.96(-) 38.15(-)
Corpus Concatenation 36.22 38.03(-) 32.92(-) 39.68(-)
Domain Adaptation 36.29 38.48 33.36 39.85

Table 4: BLEU Scores on JPO Corpus (MultEval scores)

4 Experimental Results

For evaluation, we used two toolkits based on BLEU (Papineni et al., 2002). One is the official BLEU
scores provided by the WAT2016 committee. Because the official tool cannot measure a significance
level of two systems, we also used the MultEval tool (Clark et al., 2011), which can measure significance
levels based on bootstrap resampling. Since we represent the mean scores of three optimizations, the
MultEval scores differ from the official scores.

4.1 JPO Corpus (without External Knowledge)

For JPO corpus experiments, we did not use external knowledge and compared translations of the single-
domain model, corpus concatenation, and domain adaptation. The JPO corpus was divided into four
domains (chemistry, electricity, machine, and physics). Tables 3 and 4 show the results evaluated by the
official scorer and MultEval tools, respectively. The symbol (-) indicates that the score was significantly
degraded compared to that of the domain adaptation (p < 0.05). Note that test sentences of each domain
were translated using the corresponding models, and the BLEU score was computed by concatenating
all test sentences as a document.

Results are presented in Table 4. Corpus concatenation corresponds to typical translation quality where
only the JPO corpus was used. The single-domain model scores were inferior to the corpus concatenation
scores because the corpus sizes were reduced by one-quarter. In contrast, the domain adaptation scores
for most language pairs improved significantly and the domain adaptation was successful.

4.2 JPO and ASPEC Corpora (with External Knowledge)

Next, we conducted experiments using five domains with the JPO and ASPEC corpora. In these exper-
iments, we evaluated the effects of external knowledge using the Google n-gram language model. The
results are shown in Tables 5 and 6.

We first describe the effects of external knowledge, as shown in Table 6. In Table 6, the upper and lower
halves show the BLEU scores before and after adding the Google n-gram language model, respectively.
By adding the Google n-gram LMs, 0.27, 0.82, and 0.12 BLEU scores were improved on average in the
JPO domains of Ja-En, En-Ja and Zh-Ja pairs, respectively. In the ASPEC domain, −0.03, 0.56, and
0.67 BLEU scores were improved. Except for the Ja-En pair of the ASPEC domain, the Google n-gram
language model contributed to translation quality. The Japanese model tends to be suitable for JPO and
ASPEC domains compared to the English model.

Next, we focused on the effect of domain adaptation with the Google n-gram LMs. In most cases,
domain adaptation worked effectively except for the Ja-En pair of the ASPEC domain because the BLEU
scores improved or were maintained the same level compared to those of the single-domain model and
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JPC ASPEC
LM Method Ja-En En-Ja Ja-Zh Zh-Ja Ja-En En-Ja Ja-Zh Zh-Ja
w/o Single-Domain Model 33.67 38.75 33.27 40.06 21.54 33.97 30.12 39.33
GN Corpus Concatenation 35.49 39.18 33.94 41.08 20.90 33.11 29.66 37.84

Domain Adaptation 35.96 40.14 34.64 41.93 21.34 34.21 29.97 39.51
w/ Single-Domain Model 33.99 39.63 40.47 21.64 34.59 40.01
GN Corpus Concatenation 35.73 40.23 41.31 20.80 33.78 38.30

Domain Adaptation 36.06 40.90 41.87 21.54 34.67 40.02

Table 5: BLEU Scores on JPO and ASPEC Corpora (official scores)

JPC ASPEC
LM Method Ja-En En-Ja Ja-Zh Zh-Ja Ja-En En-Ja Ja-Zh Zh-Ja
w/o Single-Domain Model 33.90(-) 38.19(-) 31.78(-) 38.74(-) 22.79 34.80 29.47(+) 38.96(-)
GN Corpus Concatenation 35.81(-) 38.62(-) 32.76(-) 39.96(-) 22.20(-) 33.94(-) 28.95(-) 37.62(-)

Domain Adaptation 36.25 39.58 33.53 40.76 22.80 34.91 29.28 39.18
w/ Single-Domain Model 34.35(-) 39.04(-) 38.90(-) 22.87(+) 35.42 39.74(-)
GN Corpus Concatenation 36.03(-) 39.48(-) 40.14(-) 22.10(-) 34.55(-) 38.15(-)

Domain Adaptation 36.40 40.32 40.77 22.74 35.36 39.87

Table 6: BLEU Scores on JPO and ASPEC Corpora (MultEval scores)

corpus concatenation. However, we confirmed that the effects of the ASPEC domain were less than those
of the JPO domains because the score did not improve significantly. This is because the ASPEC domain
uses one million bilingual sentences; thus, domain adaptation could not contribute to the high-resource
domains.

5 Conclusions

We have described the NICT-2 translation system. The proposed system employs Imamura and Sumita
(2016)’s domain adaptation. In this study, we regarded the JPO corpus as a mixture of four domains and
improved the translation quality. Although we added the ASPEC corpus as a fifth domain, the effects
were not significant. Our domain adaptation can incorporate external knowledge, such as Google n-gram
language models. The proposed domain adaptation can be applied to existing translation systems with
little modification.

Acknowledgments

This work was supported by “Promotion of Global Communications Plan — Research and Development
and Social Demonstration of Multilingual Speech Translation Technology,” a program of the Ministry of
Internal Affairs and Communications, Japan.

References
Colin Cherry and George Foster. 2012. Batch tuning strategies for statistical machine translation. In Proceed-

ings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 427–436, Montréal, Canada, June.

Jonathan H. Clark, Chris Dyer, Alon Lavie, and Noah A. Smith. 2011. Better hypothesis testing for statistical
machine translation: Controlling for optimizer instability. In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Language Technologies, pages 176–181, Portland, Oregon,
USA, June.
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