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Abstract

Neural machine translation (NMT), a new approach to machine translation, has achieved promis-
ing results comparable to those of traditional approaches such as statistical machine translation
(SMT). Despite its recent success, NMT cannot handle a larger vocabulary because training com-
plexity and decoding complexity proportionally increase with the number of target words. This
problem becomes even more serious when translating patent documents, which contain many
technical terms that are observed infrequently. In NMTs, words that are out of vocabulary are
represented by a single unknown token. In this paper, we propose a method that enables NMT
to translate patent sentences comprising a large vocabulary of technical terms. We train an NMT
system on bilingual data wherein technical terms are replaced with technical term tokens; this
allows it to translate most of the source sentences except technical terms. Further, we use it as
a decoder to translate source sentences with technical term tokens and replace the tokens with
technical term translations using SMT. We also use it to rerank the 1,000-best SMT translations
on the basis of the average of the SMT score and that of the NMT rescoring of the translated sen-
tences with technical term tokens. Our experiments on Japanese-Chinese patent sentences show
that the proposed NMT system achieves a substantial improvement of up to 3.1 BLEU points and
2.3 RIBES points over traditional SMT systems and an improvement of approximately 0.6 BLEU
points and 0.8 RIBES points over an equivalent NMT system without our proposed technique.

1 Introduction

Neural machine translation (NMT), a new approach to solving machine translation, has achieved promis-
ing results (Kalchbrenner and Blunsom, 2013; Sutskever et al., 2014; Cho et al., 2014; Bahdanau et al.,
2015; Jean et al., 2014; Luong et al., 2015a; Luong et al., 2015b). An NMT system builds a simple
large neural network that reads the entire input source sentence and generates an output translation. The
entire neural network is jointly trained to maximize the conditional probability of a correct translation
of a source sentence with a bilingual corpus. Although NMT offers many advantages over traditional
phrase-based approaches, such as a small memory footprint and simple decoder implementation, con-
ventional NMT is limited when it comes to larger vocabularies. This is because the training complexity
and decoding complexity proportionally increase with the number of target words. Words that are out
of vocabulary are represented by a single unknown token in translations, as illustrated in Figure 1. The
problem becomes more serious when translating patent documents, which contain several newly intro-
duced technical terms.
There have been a number of related studies that address the vocabulary limitation of NMT systems.

Jean el al. (2014) provided an efficient approximation to the softmax to accommodate a very large vocab-
ulary in an NMT system. Luong et al. (2015b) proposed annotating the occurrences of a target unknown
word token with positional information to track its alignments, after which they replace the tokens with
their translations using simple word dictionary lookup or identity copy. Li et al. (2016) proposed to re-
place out-of-vocabulary words with similar in-vocabulary words based on a similarity model learnt from
monolingual data. Sennrich et al. (2016) introduced an effective approach based on encoding rare and
unknown words as sequences of subword units. Luong and Manning (2016) provided a character-level

47



Figure 1: Example of translation errors when translating patent sentences with technical terms using
NMT

and word-level hybrid NMTmodel to achieve an open vocabulary, and Costa-jussà and Fonollosa (2016)
proposed a NMT system based on character-based embeddings.
However, these previous approaches have limitations when translating patent sentences. This is be-

cause their methods only focus on addressing the problem of unknown words even though the words are
parts of technical terms. It is obvious that a technical term should be considered as one word that com-
prises components that always have different meanings and translations when they are used alone. An
example is shown in Figure1, wherein Japanese word “ ”(bridge) should be translated to Chinese
word “ ” when included in technical term “bridge interface”; however, it is always translated as “ ”.
In this paper, we propose a method that enables NMT to translate patent sentences with a large vocab-

ulary of technical terms. We use an NMT model similar to that used by Sutskever et al. (2014), which
uses a deep long short-term memories (LSTM) (Hochreiter and Schmidhuber, 1997) to encode the input
sentence and a separate deep LSTM to output the translation. We train the NMT model on a bilingual
corpus in which the technical terms are replaced with technical term tokens; this allows it to translate
most of the source sentences except technical terms. Similar to Sutskever et al. (2014), we use it as a
decoder to translate source sentences with technical term tokens and replace the tokens with technical
term translations using statistical machine translation (SMT). We also use it to rerank the 1,000-best
SMT translations on the basis of the average of the SMT and NMT scores of the translated sentences
that have been rescored with the technical term tokens. Our experiments on Japanese-Chinese patent
sentences show that our proposed NMT system achieves a substantial improvement of up to 3.1 BLEU
points and 2.3 RIBES points over a traditional SMT system and an improvement of approximately 0.6
BLEU points and 0.8 RIBES points over an equivalent NMT system without our proposed technique.

2 Japanese-Chinese Patent Documents

Japanese-Chinese parallel patent documents were collected from the Japanese patent documents pub-
lished by the Japanese Patent Office (JPO) during 2004-2012 and the Chinese patent documents pub-
lished by the State Intellectual Property Office of the People’s Republic of China (SIPO) during 2005-
2010. From the collected documents, we extracted 312,492 patent families, and the method of Utiyama
and Isahara (2007) was applied1 to the text of the extracted patent families to align the Japanese and
Chinese sentences. The Japanese sentences were segmented into a sequence of morphemes using the
Japanese morphological analyzer MeCab2 with the morpheme lexicon IPAdic,3 and the Chinese sen-
tences were segmented into a sequence of words using the Chinese morphological analyzer Stanford
Word Segment (Tseng et al., 2005) trained using the Chinese Penn Treebank. In this study, Japanese-
Chinese parallel patent sentence pairs were ordered in descending order of sentence-alignment score
and we used the topmost 2.8M pairs, whose Japanese sentences contain fewer than 40 morphemes and

1Herein, we used a Japanese-Chinese translation lexicon comprising around 170,000 Chinese entries.
2http://mecab.sourceforge.net/
3http://sourceforge.jp/projects/ipadic/
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Chinese sentences contain fewer than 40 words.4

3 Neural Machine Translation (NMT)

NMT uses a single neural network trained jointly to maximize the translation performance (Kalchbren-
ner and Blunsom, 2013; Sutskever et al., 2014; Cho et al., 2014; Bahdanau et al., 2015; Luong et al.,
2015a). Given a source sentence x = (x1, . . . , xN ) and target sentence y = (y1, . . . , yM ), an NMT
system uses a neural network to parameterize the conditional distributions

p(yl | y<l,x)

for 1 ≤ l ≤ M . Consequently, it becomes possible to compute and maximize the log probability of the
target sentence given the source sentence

log p(y | x) =
M∑
l=1

log p(yl|y<l,x) (1)

In this paper, we use an NMTmodel similar to that used by Sutskever et al. (2014). It uses two separate
deep LSTMs to encode the input sequence and output the translation. The encoder, which is implemented
as a recurrent neural network, reads the source sentence one word at a time and then encodes it into a
large vector that represents the entire source sentence. The decoder, another recurrent neural network,
generates a translation on the basis of the encoded vector one word at a time.
One important difference between our NMT model and the one used by Sutskever et al. (2014) is that

we added an attention mechanism. Recently, Bahdanau et al. (2015) proposed an attention mechanism,
a form of random access memory, to help NMT cope with long input sequences. Luong et al. (2015a)
proposed an attention mechanism for different scoring functions in order to compare the source and
target hidden states as well as different strategies for placing the attention. In this paper, we utilize the
attention mechanism proposed by Bahdanau et al. (2015), wherein each output target word is predicted
on the basis of not only a recurrent hidden state and the previously predicted word but also a context
vector computed as the weighted sum of the hidden states.

4 NMT with a Large Technical Term Vocabulary

4.1 NMT Training after Replacing Technical Term Pairs with Tokens
Figure 2 illustrates the procedure of the training model with parallel patent sentence pairs, wherein
technical terms are replaced with technical term tokens “TT1”, “TT2”, . . ..
In the step 1 of Figure 2, we align the Japanese technical terms, which are automatically extracted from

the Japanese sentences, with their Chinese translations in the Chinese sentences.5 Here, we introduce the
following two steps to identify technical term pairs in the bilingual Japanese-Chinese corpus:

1. According to the approach proposed by Dong et al. (2015), we identify Japanese-Chinese technical
term pairs using an SMT phrase translation table. Given a parallel sentence pair 〈SJ , SC〉 containing
a Japanese technical term tJ , the Chinese translation candidates collected from the phrase translation
table are matched against the Chinese sentence SC of the parallel sentence pair. Of those found in
SC , tC with the largest translation probability P (tC | tJ) is selected, and the bilingual technical
term pair 〈tJ , tC〉 is identified.

4In this paper, we focus on the task of translating patent sentences with a large vocabulary of technical terms using the NMT
system, where we ignore the translation task of patent sentences that are longer than 40 morphemes in Japanese side or longer
than 40 words in Chinese side.

5In this work, we approximately regard all the Japanese compound nouns as Japanese technical terms. These Japanese
compound nouns are automatically extracted by simply concatenating a sequence of morphemes whose parts of speech are
either nouns, prefixes, suffixes, unknown words, numbers, or alphabetical characters. Here, morpheme sequences starting
or ending with certain prefixes are inappropriate as Japanese technical terms and are excluded. The sequences that include
symbols or numbers are also excluded. In Chinese side, on the other hand, we regard Chinese translations of extracted Japanese
compound nouns as Chinese technical terms, where we do not regard other Chinese phrases as technical terms.
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Figure 2: NMT training after replacing technical term pairs with technical term tokens “TTi” (i =
1, 2, . . .)

2. For the Japanese technical terms whose Chinese translations are not included in the results of Step 1,
we then use an approach based on SMT word alignment. Given a parallel sentence pair 〈SJ , SC〉
containing a Japanese technical term tJ , a sequence of Chinese words is selected using SMT word
alignment, and we use the Chinese translation tC for the Japanese technical term tJ .6

As shown in the step 2 of Figure 2, in each of Japanese-Chinese parallel patent sentence pairs, oc-
currences of technical term pairs 〈t 1

J , t1C〉, 〈t2J , t2C〉, . . ., 〈tkJ , tkC〉 are then replaced with technical term
tokens 〈TT1, TT1〉, 〈TT2, TT2〉, . . ., 〈TTk, TTk〉. Technical term pairs 〈t1J , t1C〉, 〈t2J , t2C〉, . . ., 〈tkJ , tkC〉
are numbered in the order of occurrence of Japanese technical terms ti

J (i = 1, 2, . . . , k) in each Japanese
sentence SJ . Here, note that in all the parallel sentence pairs 〈SJ , SC〉, technical term tokens “TT1”,
“TT2”, . . . that are identical throughout all the parallel sentence pairs are used in this procedure. There-
fore, for example, in all the Japanese patent sentences SJ , the Japanese technical term t 1

J which appears
earlier than other Japanese technical terms in SJ is replaced with TT1. We then train the NMT system
on a bilingual corpus, in which the technical term pairs is replaced by “TTi” (i = 1, 2, . . .) tokens, and
obtain an NMT model in which the technical terms are represented as technical term tokens.7

4.2 NMT Decoding and SMT Technical Term Translation
Figure 3 illustrates the procedure for producing Chinese translations via decoding the Japanese sentence
using the method proposed in this paper. In the step 1 of Figure 3, when given an input Japanese sentence,
we first automatically extract the technical terms and replace them with the technical term tokens “TTi”
(i = 1, 2, . . .). Consequently, we have an input sentence in which the technical term tokens “TTi”
(i = 1, 2, . . .) represent the positions of the technical terms and a list of extracted Japanese technical
terms. Next, as shown in the step 2-N of Figure 3, the source Japanese sentence with technical term
tokens is translated using the NMT model trained according to the procedure described in Section 4.1,
whereas the extracted Japanese technical terms are translated using an SMT phrase translation table in
the step 2-S of Figure 3.8 Finally, in the step 3, we replace the technical term tokens “TTi” (i = 1, 2, . . .)

6We discard discontinuous sequences and only use continuous ones.
7We treat the NMT system as a black box, and the strategy we present in this paper could be applied to any NMT system

(Kalchbrenner and Blunsom, 2013; Sutskever et al., 2014; Cho et al., 2014; Bahdanau et al., 2015; Luong et al., 2015a).
8We use the translation with the highest probability in the phrase translation table. When an input Japanese technical term

has multiple translations with the same highest probability or has no translation in the phrase translation table, we apply a
compositional translation generation approach, wherein Chinese translation is generated compositionally from the constituents
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Figure 3: NMT decoding with technical term tokens “TTi” (i = 1, 2, . . .) and SMT technical term
translation

of the sentence translation with SMT the technical term translations.

4.3 NMT Rescoring of 1,000-best SMT Translations

As shown in the step 1 of Figure 4, similar to the approach of NMT rescoring provided in Sutskever et
al.(2014), we first obtain 1,000-best translation list of the given Japanese sentence using the SMT system.
Next, in the step 2, we then replace the technical terms in the translation sentences with technical term
tokens “TTi” (i = 1, 2, 3, . . .), which must be the same with the tokens of their source Japanese technical
terms in the input Japanese sentence. The technique used for aligning Japanese technical terms with their
Chinese translations is the same as that described in Section 4.1. In the step 3 of Figure 4, the 1,000-
best translations, in which technical terms are represented as tokens, are rescored using the NMT model
trained according to the procedure described in Section 4.1. Given a Japanese sentence SJ and its 1,000-
best Chinese translations S n

C (n = 1, 2, . . . , 1, 000) translated by the SMT system, NMT score of each
translation sentence pair 〈SJ , Sn

C〉 is computed as the log probability log p(Sn
C | SJ) of Equation (1).

Finally, we rerank the 1,000-best translation list on the basis of the average SMT and NMT scores and
output the translation with the highest final score.

5 Evaluation

5.1 Training and Test Sets

We evaluated the effectiveness of the proposed NMT system in translating the Japanese-Chinese parallel
patent sentences described in Section 2. Among the 2.8M parallel sentence pairs, we randomly extracted
1,000 sentence pairs for the test set and 1,000 sentence pairs for the development set; the remaining
sentence pairs were used for the training set.
According to the procedure of Section 4.1, from the Japanese-Chinese sentence pairs of the training

set, we collected 6.5M occurrences of technical term pairs, which are 1.3M types of technical term pairs
with 800K unique types of Japanese technical terms and 1.0M unique types of Chinese technical terms.
of Japanese technical terms.
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Figure 4: NMT rescoring of 1,000-best SMT translations with technical term tokens “TTi” (i = 1, 2, . . .)

Out of the total 6.5M occurrences of technical term pairs, 6.2M were replaced with technical term tokens
using the phrase translation table, while the remaining 300K were replaced with technical term tokens
using the word alignment.9 We limited both the Japanese vocabulary (the source language) and the
Chinese vocabulary (the target language) to 40K most frequently used words.
Within the total 1,000 Japanese patent sentences in the test set, 2,244 occurrences of Japanese technical

terms were identified, which correspond to 1,857 types.

5.2 Training Details

For the training of the SMT model, including the word alignment and the phrase translation table, we
used Moses (Koehn et al., 2007), a toolkit for a phrase-based SMT models.
For the training of the NMT model, our training procedure and hyperparameter choices were similar

to those of Sutskever et al. (2014). We used a deep LSTM neural network comprising three layers, with
512 cells in each layer, and a 512-dimensional word embedding. Similar to Sutskever et al. (2014), we
reversed the words in the source sentences and ensure that all sentences in a minibatch are roughly the
same length. Further training details are given below:

• All of the LSTM’s parameter were initialized with a uniform distribution ranging between -0.06 and
0.06.

• We set the size of a minibatch to 128.

• We used the stochastic gradient descent, beginning at a learning rate of 0.5. We computed the
perplexity of the development set using the currently produced NMT model after every 1,500 mini-
batches were trained and multiplied the learning rate by 0.99 when the perplexity did not decrease
with respect to the last three perplexities. We trained our model for a total of 10 epoches.

• Similar to Sutskever et al. (2014), we rescaled the normalized gradient to ensure that its norm does
not exceed 5.

9There are also Japanese technical terms (3% of all the extracted terms) for which Chinese translations can be identified
using neither the SMT phrase translation table nor the SMT word alignment.
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Table 1: Automatic evaluation results

System

NMT decoding and
SMT technical term

translation

NMT rescoring of
1,000-best SMT
translations

BLEU RIBES BLEU RIBES
Baseline SMT (Koehn et al., 2007) 52.5 88.5 - -
Baseline NMT 53.5 90.0 55.0 89.1
NMT with technical term translation by SMT 55.3 90.8 55.6 89.3

Table 2: Human evaluation results (the score of pairwise evaluation ranges from −100 to 100 and the
score of JPO adequacy evaluation ranges from 1 to 5)

System

NMT decoding and
SMT technical term

translation

NMT rescoring of
1,000-best SMT
translations

pairwise
evaluation

JPO
adequacy
evaluation

pairwise
evaluation

JPO
adequacy
evaluation

Baseline SMT (Koehn et al., 2007) - 3.5 - -
Baseline NMT 5.0 3.8 28.5 4.1
NMT with technical term translation by SMT 36.5 4.3 31.0 4.1

We implement the NMT system using TensorFlow,10 an open source library for numerical computation.
The training time was around two days when using the described parameters on an 1-GPU machine.

5.3 Evaluation Results

We calculated automatic evaluation scores for the translation results using two popular metrics:
BLEU (Papineni et al., 2002) and RIBES (Isozaki et al., 2010). As shown in Table 1, we report the
evaluation scores, on the basis of the translations by Moses (Koehn et al., 2007), as the baseline SMT11
and the scores based on translations produced by the equivalent NMT system without our proposed ap-
proach as the baseline NMT. As shown in Table 1, the two versions of the proposed NMT systems clearly
improve the translation quality when compared with the baselines. When compared with the baseline
SMT, the performance gain of the proposed system is approximately 3.1 BLEU points if translations are
produced by the proposed NMT system of Section 4.3 or 2.3 RIBES points if translations are produced
by the proposed NMT system of Section 4.2. When compared with the result of decoding with the base-
line NMT, the proposed NMT system of Section 4.2 achieved performance gains of 0.8 RIBES points.
When compared with the result of reranking with the baseline NMT, the proposed NMT system of Sec-
tion 4.3 can still achieve performance gains of 0.6 BLEU points. Moreover, when the output translations
produced by NMT decoding and SMT technical term translation described in Section 4.2 with the output
translations produced by decoding with the baseline NMT, the number of unknown tokens included in
output translations reduced from 191 to 92. About 90% of remaining unknown tokens correspond to
numbers, English words, abbreviations, and symbols.12
In this study, we also conducted two types of human evaluation according to the work of Nakazawa

et al. (2015): pairwise evaluation and JPO adequacy evaluation. During the procedure of pairwise eval-
10https://www.tensorflow.org/
11We train the SMT system on the same training set and tune it with development set.
12In addition to the two versions of the proposed NMT systems presented in Section 4, we evaluated a modified version of

the propsed NMT system, where we introduce another type of token corresponding to unknown compound nouns and integrate
this type of token with the technical term token in the procedure of training the NMT model. We achieved a slightly improved
translation performance, BLEU/RIBES scores of 55.6/90.9 for the proposed NMT system of Section 4.2 and those of 55.7/89.5
for the proposed NMT system of Section 4.3.
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Figure 5: Example of correct translations produced by the proposed NMT system with SMT technical
term translation (compared with baseline SMT)

uation, we compare each of translations produced by the baseline SMT with that produced by the two
versions of the proposed NMT systems, and judge which translation is better, or whether they are with
comparable quality. The score of pairwise evaluation is defined by the following formula, where W
is the number of better translations compared to the baseline SMT, L the number of worse translations
compared to the baseline SMT, and T the number of translations having their quality comparable to those
produced by the baseline SMT:

score = 100 × W − L

W + L + T

The score of pairwise evaluation ranges from −100 to 100. In the JPO adequacy evaluation, Chinese
translations are evaluated according to the quality evaluation criterion for translated patent documents
proposed by the Japanese Patent Office (JPO).13 The JPO adequacy criterion judges whether or not the
technical factors and their relationships included in Japanese patent sentences are correctly translated into
Chinese, and score Chinese translations on the basis of the percentage of correctly translated information,
where the score of 5 means all of those information are translated correctly, while that of 1 means most
of those information are not translated correctly. The score of the JPO adequacy evaluation is defined
as the average over the whole test sentences. Unlike the study conducted Nakazawa et al. (Nakazawa
et al., 2015), we randomly selected 200 sentence pairs from the test set for human evaluation, and both
human evaluations were conducted using only one judgement. Table 2 shows the results of the human
evaluation for the baseline SMT, the baseline NMT, and the proposed NMT system. We observed that
the proposed system achieved the best performance for both pairwise evaluation and JPO adequacy
evaluation when we replaced technical term tokens with SMT technical term translations after decoding
the source sentence with technical term tokens.
Throughout Figure 5∼Figure 7, we show an identical source Japanese sentence and each of its transla-

tions produced by the two versions of the proposed NMT systems, compared with translations produced
by the three baselines, respectively. Figure 5 shows an example of correct translation produced by the
proposed system in comparison to that produced by the baseline SMT. In this example, our model cor-
rectly translates the Japanese sentence into Chinese, whereas the translation by the baseline SMT is a
translation error with several erroneous syntactic structures. As shown in Figure 6, the second example
highlights that the proposed NMT system of Section 4.2 can correctly translate the Japanese technical
term “ ”(laminated wafer) to the Chinese technical term “ ”. The translation by the
baseline NMT is a translation error because of not only the erroneously translated unknown token but
also the Chinese word “ ”, which is not appropriate as a component of a Chinese technical term.
Another example is shown in Figure 7, where we compare the translation of a reranking SMT 1,000-best

13https://www.jpo.go.jp/shiryou/toushin/chousa/pdf/tokkyohonyaku_hyouka/01.pdf (in
Japanese)
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Figure 6: Example of correct translations produced by the proposed NMT system with SMT technical
term translation (compared to decoding with the baseline NMT)

Figure 7: Example of correct translations produced by reranking the 1,000-best SMT translations with
the proposed NMT system (compared to reranking with the baseline NMT)

translation produced by the proposed NMT system with that produced by reranking with the baseline
NMT. It is interesting to observe that compared with the baseline NMT, we obtain a better translation
when we rerank the 1,000-best SMT translations using the proposed NMT system, in which technical
term tokens represent technical terms. It is mainly because the correct Chinese translation “ ”(wafter)
of Japanese word “ ” is out of the 40K NMT vocabulary (Chinese), causing reranking with the
baseline NMT to produce the translation with an erroneous construction of “noun phrase of noun phrase
of noun phrase”. As shown in Figure 7, the proposed NMT system of Section 4.3 produced the translation
with a correct construction, mainly because Chinese word “ ”(wafter) is a part of Chinese technical
term “ ”(laminated wafter) and is replaced with a technical term token and then rescored by the
NMT model (with technical term tokens “TT1”, “TT2”, . . .).

6 Conclusion

In this paper, we proposed an NMT method capable of translating patent sentences with a large vocab-
ulary of technical terms. We trained an NMT system on a bilingual corpus, wherein technical terms are
replaced with technical term tokens; this allows it to translate most of the source sentences except the
technical terms. Similar to Sutskever et al. (2014), we used it as a decoder to translate the source sen-
tences with technical term tokens and replace the tokens with technical terms translated using SMT. We
also used it to rerank the 1,000-best SMT translations on the basis of the average of the SMT score and
that of NMT rescoring of translated sentences with technical term tokens. For the translation of Japanese
patent sentences, we observed that our proposed NMT system performs better than the phrase-based
SMT system as well as the equivalent NMT system without our proposed approach.
One of our important future works is to evaluate our proposed method in the NMT system proposed
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by Bahdanau et al. (2015), which introduced a bidirectional recurrent neural network as encoder and is
the state-of-the-art of pure NMT system recently. However, the NMT system proposed by Bahdanau et
al. (2015) also has a limitation in addressing out-of-vocabulary words. Our proposed NMT system is
expected to improve the translation performance of patent sentences by applying approach of Bahdanau
et al. (2015). Another important future work is to quantitatively compare our study with the work of
Luong et al. (2015b). In the work of Luong et al. (2015b), they replace low frequency single words
and translate them in a post-processing Step using a dictionary, while we propose to replace the whole
technical terms and post-translate them with phrase translation table of SMT system. Therefore, our
proposed NMT system is expected to be appropriate to translate patent documents which contain many
technical terms comprised of multiple words and should be translated together. We will also evaluate the
present study by reranking the n-best translations produced by the proposed NMT system on the basis
of their SMT rescoring. Next, we will rerank translations from both the n-best SMT translations and
n-best NMT translations. As shown in Section 5.3, the decoding approach of our proposed NMT system
achieved the best RIBES performance and human evaluation scores in our experiments, whereas the
reranking approach achieved the best performance with respect to BLEU. A translation with the highest
average SMT and NMT scores of the n-best translations produced by NMT and SMT, respectively, is
expected to be an effective translation.
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