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Abstract

We exploit the Facebook reaction feature in a distant supervised fashion to train a support vec-
tor machine classifier for emotion detection, using several feature combinations and combining
different Facebook pages. We test our models on existing benchmarks for emotion detection
and show that employing only information that is derived completely automatically, thus without
relying on any handcrafted lexicon as it’s usually done, we can achieve competitive results. The
results also show that there is large room for improvement, especially by gearing the collection
of Facebook pages, with a view to the target domain.

1 Introduction

In the spirit of the brevity of social media’s messages and reactions, people have got used to express
feelings minimally and symbolically, as with hashtags on Twitter and Instagram. On Facebook, people
tend to be more wordy, but posts normally receive more simple “likes” than longer comments. Since
February 2016, Facebook users can express specific emotions in response to a post thanks to the newly
introduced reaction feature (see Section 2), so that now a post can be wordlessly marked with an expres-
sion of say “joy” or “surprise” rather than a generic “like”.

It has been observed that this new feature helps Facebook to know much more about their users and
exploit this information for targeted advertising (Stinson, 2016), but interest in people’s opinions and
how they feel isn’t limited to commercial reasons, as it invests social monitoring, too, including health
care and education (Mohammad, 2016). However, emotions and opinions are not always expressed
this explicitly, so that there is high interest in developing systems towards their automatic detection.
Creating manually annotated datasets large enough to train supervised models is not only costly, but
also—especially in the case of opinions and emotions—difficult, due to the intrinsic subjectivity of the
task (Strapparava and Mihalcea, 2008; Kim et al., 2010). Therefore, research has focused on unsuper-
vised methods enriched with information derived from lexica, which are manually created (Kim et al.,
2010; Chaffar and Inkpen, 2011). Since Go et al. (2009) have shown that happy and sad emoticons can
be successfully used as signals for sentiment labels, distant supervision, i.e. using some reasonably safe
signals as proxies for automatically labelling training data (Mintz et al., 2009), has been used also for
emotion recognition, for example exploiting both emoticons and Twitter hashtags (Purver and Battersby,
2012), but mainly towards creating emotion lexica. Mohammad and Kiritchenko (2015) use hashtags,
experimenting also with highly fine-grained emotion sets (up to almost 600 emotion labels), to create the
large Hashtag Emotion Lexicon. Emoticons are used as proxies also by Hallsmar and Palm (2016), who
use distributed vector representations to find which words are interchangeable with emoticons but also
which emoticons are used in a similar context.

We take advantage of distant supervision by using Facebook reactions as proxies for emotion labels,
which to the best of our knowledge hasn’t been done yet, and we train a set of Support Vector Machine
models for emotion recognition. Our models, differently from existing ones, exploit information which
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is acquired entirely automatically, and achieve competitive or even state-of-the-art results for some of
the emotion labels on existing, standard evaluation datasets. For explanatory purposes, related work is
discussed further and more in detail when we describe the benchmarks for evaluation (Section 3) and
when we compare our models to existing ones (Section 5). We also explore and discuss how choosing
different sets of Facebook pages as training data provides an intrinsic domain-adaptation method.

2 Facebook reactions as labels

For years, on Facebook people could leave comments to posts, and also “like” them,
by using a thumbs-up feature to explicitly express a generic, rather underspecified, ap-
proval. A “like” could thus mean “I like what you said”, but also “I like that you
bring up such topic (though I find the content of the article you linked annoying)”.

Figure 1: Facebook reactions

In February 2016, after a short trial, Facebook made a more
explicit reaction feature available world-wide. Rather than
allowing for the underspecified “like” as the only wordless
response to a post, a set of six more specific reactions was
introduced, as shown in Figure 1: Like, Love, Haha,
Wow, Sad and Angry. We use such reactions as proxies
for emotion labels associated to posts.

We collected Facebook posts and their corresponding reactions from public pages using the Facebook
API, which we accessed via the Facebook-sdk python library1. We chose different pages (and there-
fore domains and stances), aiming at a balanced and varied dataset, but we did so mainly based on
intuition (see Section 4) and with an eye to the nature of the datasets available for evaluation (see
Section 5). The choice of which pages to select posts from is far from trivial, and we believe this is
actually an interesting aspect of our approach, as by using different Facebook pages one can intrinsi-
cally tackle the domain-adaptation problem (See Section 6 for further discussion on this). The final
collection of Facebook pages for the experiments described in this paper is as follows: FoxNews,
CNN, ESPN, New York Times, Time magazine, Huffington Post Weird News, The
Guardian, Cartoon Network, Cooking Light, Home Cooking Adventure, Justin
Bieber, Nickelodeon, Spongebob, Disney.

[
{
"created_time": "2016-06-19T01:40:00+0000",
"message": "Walt Disney World representatives said
they plan to put up fencing and signs at all resorts
and waterways.",
"reactions": [5073, 4483, 60, 22, 54, 284, 170, 0]
}
],
[
{
"created_time": "2016-06-19T01:00:00+0000",
"message": "Charlene and Joseph Handrik face more
than 550 counts of animal cruelty.",
"reactions": [2256, 1011, 16, 6, 123, 409, 691, 0]
}
],

Figure 2: Sample of resulting JSON file. The or-
der of values/reactions is total, like, love,
haha, wow, sad, angry, thankful.3

For each page, we downloaded the latest 1000
posts, or the maximum available if there are
fewer, from February 2016, retrieving the counts
of reactions for each post. The output is a JSON
file containing a list of dictionaries with a times-
tamp, the post and a reaction vector with fre-
quency values, which indicate how many users
used that reaction in response to the post (Fig-
ure 2). The resulting emotion vectors must then
be turned into an emotion label.3

In the context of this experiment, we made the
simple decision of associating to each post the
emotion with the highest count, ignoring like
as it is the default and most generic reaction peo-
ple tend to use. Therefore, for example, to the first post in Figure 2, we would associate the label sad, as
it has the highest score (284) among the meaningful emotions we consider, though it also has non-zero
scores for other emotions. At this stage, we didn’t perform any other entropy-based selection of posts, to
be investigated in future work.

1https://pypi.python.org/pypi/facebook-sdk
3Note that thankfulwas only available during specific time spans related to certain events, as Mother’s Day in May 2016.
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3 Emotion datasets

Three datasets annotated with emotions are commonly used for the development and evaluation of emo-
tion detection systems, namely the Affective Text dataset, the Fairy Tales dataset, and the ISEAR dataset.
In order to compare our performance to state-of-the-art results, we have used them as well. In this Sec-
tion, in addition to a description of each dataset, we provide an overview of the emotions used, their
distribution, and how we mapped them to those we obtained from Facebook posts in Section 3.4. A
summary is provided in Table 1, which also shows, in the bottom row, what role each dataset has in our
experiments: apart from the development portion of the Affective Text, which we used to develop our
models (Section 4), all three have been used as benchmarks for our evaluation.

3.1 Affective Text dataset

Task 14 at SemEval 2007 (Strapparava and Mihalcea, 2007) was concerned with the classification of
emotions and valence in news headlines. The headlines where collected from several news websites
including Google news, The New York Times, BBC News and CNN. The used emotion labels were
Anger, Disgust, Fear, Joy, Sadness, Surprise, in line with the six basic emotions of
Ekman’s standard model (Ekman, 1992). Valence was to be determined as positive or negative. Classi-
fication of emotion and valence were treated as separate tasks. Emotion labels were not considered as
mututally exclusive, and each emotion was assigned a score from 0 to 100. Training/developing data
amounted to 250 annotated headlines (Affective development), while systems were evaluated on another
1000 (Affective test). Evaluation was done using two different methods: a fine-grained evaluation using
Pearson’s r to measure the correlation between the system scores and the gold standard; and a coarse-
grained method where each emotion score was converted to a binary label, and precision, recall, and
f-score were computed to assess performance. As it is done in most works that use this dataset (Kim et
al., 2010; Chaffar and Inkpen, 2011; Calvo and Mac Kim, 2013), we also treat this as a classification
problem (coarse-grained). This dataset has been extensively used for the evaluation of various unsu-
pervised methods (Strapparava and Mihalcea, 2008), but also for testing different supervised learning
techniques and feature portability (Mohammad, 2012).

3.2 Fairy Tales dataset

This is a dataset collected by Alm (2008), where about 1,000 sentences from fairy tales (by B. Potter,
H.C. Andersen and Grimm) were annotated with the same six emotions of the Affective Text dataset,
though with different names: Angry, Disgusted, Fearful, Happy, Sad, and Surprised. In
most works that use this dataset (Kim et al., 2010; Chaffar and Inkpen, 2011; Calvo and Mac Kim,
2013), only sentences where all annotators agreed are used, and the labels angry and disgusted are
merged. We adopt the same choices.

3.3 ISEAR

The ISEAR (International Survey on Emotion Antecedents and Reactions (Scherer and Wallbott, 1994;
Scherer, 1997)) is a dataset created in the context of a psychology project of the 1990s, by collecting
questionnaires answered by people with different cultural backgrounds. The main aim of this project
was to gather insights in cross-cultural aspects of emotional reactions. Student respondents, both psy-
chologists and non-psychologists, were asked to report situations in which they had experienced all of
seven major emotions (joy, fear, anger, sadness, disgust, shame and guilt). In
each case, the questions covered the way they had appraised a given situation and how they reacted. The
final dataset contains reports by approximately 3000 respondents from all over the world, for a total of
7665 sentences labelled with an emotion, making this the largest dataset out of the three we use.

3.4 Overview of datasets and emotions

We summarise datasets and emotion distribution from two viewpoints. First, because there are different
sets of emotions labels in the datasets and Facebook data, we need to provide a mapping and derive a
subset of emotions that we are going to use for the experiments. This is shown in Table 1, where in
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the “Mapped” column we report the final emotions we use in this paper: anger, joy, sadness,
surprise. All labels in each dataset are mapped to these final emotions, which are therefore the labels
we use for training and testing our models.

Second, the distribution of the emotions for each dataset is different, as can be seen in Figure 3.

Table 1: Emotion labels in existing datasets, Facebook, and resulting mapping for
the experiments in this work. The last row indicates which role each dataset has in
our experiments.

Affective Text Fairy tales ISEAR Facebook Mapped
Anger Angry-Disgusted Anger Angry anger
Disgust Angry-Disgusted Disgust anger
Fear Fearful Fear
Joy Happy Joy Haha, Love joy
Sadness Sad Sadness Sad sadness
Surprise Suprised Wow surprise

Shame
Guilt

development/test test test train

In Figure 4 we
also provide the
distribution of
the emotions
anger, joy,
sadness,
surprise per
Facebook page, in
terms of number
of posts (recall
that we assign to
a post the label
corresponding to
the majority emo-
tion associated to
it, see Section 2).
We can observe that for example pages about news tend to have more sadness and anger posts, while
pages about cooking and tv-shows have a high percentage of joy posts. We will use this information to
find the best set of pages for a given target domain (see Section 5).

Figure 3: Emotion distribution in the datasets Figure 4: Emotion distribution per Facebook page

4 Model

There are two main decisions to be taken in developing our model: (i) which Facebook pages to select
as training data, and (ii) which features to use to train the model, which we discuss below. Specifically,
we first set on a subset of pages and then experiment with features. Further exploration of the interaction
between choice of pages and choice of features is left to future work, and partly discussed in Section 6.
For development, we use a small portion of the Affective data set described in Section 3.1, that is the por-
tion that had been released as development set for SemEval’s 2007 Task 14 (Strapparava and Mihalcea,
2007), which contains 250 annotated sentences (Affective development, Section 3.1). All results reported
in this section are on this dataset. The test set of Task 14 as well as the other two datasets described in
Section 3 will be used to evaluate the final models (Section 4).
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4.1 Selecting Facebook pages

Although page selection is a crucial ingredient of this approach, which we believe calls for further and
deeper, dedicated investigation, for the experiments described here we took a rather simple approach.
First, we selected the pages that would provide training data based on intuition and availability, then
chose different combinations according to results of a basic model run on development data, and eventu-
ally tested feature combinations, still on the development set.

For the sake of simplicity and transparency, we first trained an SVM with a simple bag-of-words
model and default parameters as per the Scikit-learn implementation (Pedregosa et al., 2011) on different
combinations of pages. Based on results of the attempted combinations as well as on the distribution of
emotions in the development dataset (Figure 3), we selected a best model (B-M), namely the combined
set of Time, The Guardian and Disney, which yields the highest results on development data.
Time and The Guardian perform well on most emotions but Disney helps to boost the performance
for the Joy class.

4.2 Features

In selecting appropriate features, we mainly relied on previous work and intuition. We experimented
with different combinations, and all tests were still done on Affective development, using the pages for
the best model (B-M) described above as training data. Results are in Table 2. Future work will further
explore the simultaneous selection of features and page combinations.

Standard textual features We use a set of basic text-based features to capture the emotion class. These
include a tf-idf bag-of-words feature, word (2-3) and character (2-5) ngrams, and features related to the
presence of negation words, and to the usage of punctuation.

Affect Lexicons This feature is used in all unsupervised models as a source of information, and we
mainly include it to assess its contribution, but eventually do not use it in our final model.

We used the NRC10 Lexicon because it performed best in the experiments by (Mohammad, 2012),
which is built around the emotions anger, anticipation, disgust, fear, joy, sadness, and
surprise, and the valence values positive and negative. For each word in the lexicon, a
boolean value indicating presence or absence is associated to each emotion. For a whole sentence, a
global score per emotion can be obtained by summing the vectors for all content words of that sentence
included in the lexicon, and used as feature.

Word Embeddings As additional feature, we also included Word Embeddings, namely distributed
representations of words in a vector space, which have been exceptionally successful in boosting perfor-
mance in a plethora of NLP tasks.We use three different embeddings:

• Google embeddings: pre-trained embeddings trained on Google News and obtained with the skip-
gram architecture described in (Mikolov et al., 2013). This model contains 300-dimensional vectors
for 3 million words and phrases.

• Facebook embeddings: embeddings that we trained on our scraped Facebook pages for a total of
20,000 sentences. Using the gensim library (Řehůřek and Sojka, 2010), we trained the embed-
dings with the following parameters: window size of 5, learning rate of 0.01 and dimensionality of
100. We filtered out words with frequency lower than 2 occurrences.

• Retrofitted embeddings: Retrofitting (Faruqui et al., 2015) has been shown as a simple but efficient
way of informing trained embeddings with additional information derived from some lexical re-
source, rather than including it directly at the training stage, as it’s done for example to create sense-
aware (Iacobacci et al., 2015) or sentiment-aware (Tang et al., 2014) embeddings.4 In this work, we
retrofit general embeddings to include information about emotions, so that emotion-similar words
can get closer in space. Both the Google as well as our Facebook embeddings were retrofitted with

4Training emotion-aware embeddings is a strategy that we plan to explore in future work.
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lexical information obtained from the NRC10 Lexicon mentioned above, which provides emotion-
similarity for each token. Note that differently from the previous two types of embeddings, the
retrofitted ones do rely on handcrafted information in the form of a lexical resource.

4.3 Results on development set
We report precision, recall, and f-score on the development set. The average f-score is reported as micro-
average, to better account for the skewed distribution of the classes as well as in accordance to what is
usually reported for this task (Mohammad and Kiritchenko, 2015).

Table 2: Results on the development set (Affective development). avg f is the micro-averaged f-score.

anger joy sadness surprise
Feature prec,rec,f prec,rec,f prec,rec,f prec,rec,f avg f
Tf-idf 0.57,0.22,0.32 0.44,0.51,0.47 0.41,0.25, 0.31 0.22,0.49,0.30 0.368

Lexicon 0.28,0.08,0.13 0.43,0.37,0.40 0.31,0.30, 0.30 0.20,0.51,0.29 0.297

Token n-grams(2,5) 0.00,0.00,0.00 1.00,0.01,0.03 0.00,0.00, 0.00 0.17,1.00,0.29 0.172

Character n-grams(2,5) 0.50,0.03,0.06 0.39,0.73,0.51 0.38,0.07, 0.12 0.17,0.31,0.22 0.325

All features 0.40,0.03,0.06 0.35,0.97,0.52 0.62,0.11, 0.19 1.00,0.03,0.06 0.368

Google (G) embeddings 0.41,0.49,0.45 0.56,0.46,0.51 0.48,0.57, 0.52 0.22,0.17,0.19 0.445

Facebook (FB) embeddings 0.33,0.15,0.21 0.31,0.45,0.37 0.23,0.11,0.15 0.20,0.31,0.24 0.273

Retrofitted G-embeddings 0.36,0.20,0.26 0.42,0.48,0.45 0.30,0.25, 0.27 0.20,0.34,0.26 0.330

Retrofitted FB-embeddings 0.07,0.02,0.03 0.34,0.86,0.49 0.36,0.09,0.15 0.17,0.03,0.05 0.321

Tf-idf + G-emb 0.42,0.46,0.44 0.45,0.49,0.47 0.49,0.41, 0.44 0.29,0.26,0.27 0.426

All features + G-emb 0.63,0.29,0.40 0.43,0.83,0.56 0.46,0.27, 0.34 0.33,0.17,0.23 0.450

All features – Lexicon + G-emb 0.62,0.34,0.44 0.43,0.85,0.57 0.57,0.30, 0.39 0.36,0.14,0.20 0.469

From Table 2 we draw three main observations. First, a simple tf-idf bag-of-word mode works already
very well, to the point that the other textual and lexicon-based features don’t seem to contribute to the
overall f-score (0.368), although there is a rather substantial variation of scores per class. Second, Google
embeddings perform a lot better than Facebook embeddings, and this is likely due to the size of the corpus
used for training. Retrofitting doesn’t seem to help at all for the Google embeddings, but it does boost
the Facebook embeddings, leading to think that with little data, more accurate task-related information is
helping, but corpus size matters most. Third, in combination with embeddings, all features work better
than just using tf-idf, but removing the Lexicon feature, which is the only one based on hand-crafted
resources, yields even better results. Then our best model (B-M) on development data relies entirely on
automatically obtained information, both in terms of training data as well as features.

5 Results

In Table 3 we report the results of our model on the three datasets standardly used for the evaluation of
emotion classification, which we have described in Section 3.

Our B-M model relies on subsets of Facebook pages for training, which were chosen according to their
performance on the development set as well as on the observation of emotions distribution on different
pages and in the different datasets, as described in Section 4. The feature set we use is our best on the
development set, namely all the features plus Google-based embeddings, but excluding the lexicon. This
makes our approach completely independent of any manual annotation or handcrafted resource. Our
model’s performance is compared to the following systems, for which results are reported in the referred
literature. Please note that no other existing model was re-implemented, and results are those reported in
the respective papers.

Kim et al. (2010) experiment with four different unsupervised techniques that rely on lexicon-derived
information. In Table 3 we report the scores for their best average performing approach, namely a
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CNMF-based categorical classification. They made the decision not to deal with surprise because
this emotion is not present in the ISEAR dataset.

Strapparava and Mihalcea (2008) experiment with several models based on a core LSA model and,
in their best performing model (LSA-all emotion words) whose results we report in Table 3, also
use information from lexical resources both in their general (WordNet (Fellbaum, 1998)) and emotion-
aware (WordNet Affect (Strapparava et al., 2004)) form.

Danisman and Alpkocak (2008) adopt a supervised approach, training a model using the ISEAR
dataset and testing it on the Affective text dataset. They only report results per category in terms of
f-score, without further specification of how precision and recall contribute.

We have mentioned that the selection of Facebook pages is relevant and can be also thought of as a
tool for domain adaptation in accordance with the characteristics of the target domains/datasets (see also
Section 2 and Figures 3–4). Although we believe that such an interesting aspect will require deeper
investigation (see also Section 6), we preliminary test this assumption by developing and comparing two
more models: a model that uses a combination of pages that we expect will perform best on the Fairy
Tales dataset (FT-M), and a model that uses a combination of pages that should perform best on the
ISEAR dataset (ISE-M). The feature set is kept the same for all three models.

FT-M The sentences in the Fairy Tales dataset are quite different compared to the news headlines in
the development set. Looking at the distribution in this dataset, as can be seen in Figure 3, Joy is the
most frequent class. We selected the pages HuffPostWeirdNews, ESPN and CNN for this model
especially looking at the performance for the emotions that are most frequent in this dataset.

ISE-M As described in Section 3.3, the sentences in the ISEAR collection are also different compared
to the two other datasets. Looking at the distribution in Figure 3 and according to performance on relevant
emotions (we took into account the absence of Surprise in this dataset), we selected the pages Time,
The Guardian and CookingLight for this model.

In Table 3 we report results for all of the models mentioned above. We indicate averages only for our
models, since not all approaches deal with the same sets of emotions and we cannot easily compute
them. We discuss results both in terms of how our models fair with respect to other systems as reported
the literature, as well as how they compare to one another with a view to the selection of Facebook pages.

Compared to other systems, our models are globally competitive, given that B-M is entirely unsuper-
vised. Overall, the unsupervised but heavily lexicon-based best model of (Kim et al., 2010) performs
well on all emotions, excluding surprise, which they do not address (thus also making their classification
task slightly easier). Differently from existing systems, our models appear rather balanced in terms of
performance on the different emotions as well as in precision and recall, and are able to deal well with
the variance of the datasets.

On the Affective Text dataset, we have the highest precision for all emotions but joy, though on this
emotion our models have very good recall. The highest recall for all emotions for this dataset is reported
in (Strapparava and Mihalcea, 2008), together with extremely low precision. Such skewed performance
for all emotions can only be explained if different emotion-specific models were trained rather than a
single multiclass model, but this is not described as such in the paper. The authors state that their models
are completely unsupervised, which is true in terms of training data, but they nevertheless augment them
with information derived from hand-crafted resources.

On the Fairy Tales dataset, (Kim et al., 2010) Chaffar and Inkpen (2011) also used the Fairy tales
dataset to evaluate a supervised model using features like bag-of-words, N-grams and lexical emotion
features, but report cross-validated results using accuracy only, and are therefore harder to compare.

On the ISEAR dataset, which is the largest, our models perform best for all emotions but anger, for
which however we achieve the highest precision with all our models.
From the perspective of comparing our models, we do not observe any real correlation between our ac-
tual best performances and the models designed to best perform on a given dataset. For example, B-M
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Table 3: Results on test datasets according to Precision, Recall and F-score.
Affective test Fairy Tales ISEAR

P R F P R F P R F
anger

B-M 0.50 0.35 0.41 0.33 0.04 0.07 0.72 0.06 0.11

FT-M 0.51 0.30 0.38 0.27 0.02 0.04 0.57 0.10 0.17

ISE-M 0.48 0.35 0.40 0.36 0.05 0.08 0.74 0.06 0.11

(Strapparava and Mihalcea, 2008) 0.06 0.88 0.12

(Kim et al., 2010) 0.29 0.26 0.28 0.77 0.56 0.65 0.41 0.99 0.58
(Danisman and Alpkocak, 2008) 0.24

joy
B-M 0.39 0.85 0.54 0.49 0.77 0.60 0.41 0.79 0.53

FT-M 0.41 0.77 0.54 0.49 0.69 0.58 0.42 0.63 0.50

ISE-M 0.39 0.82 0.53 0.48 0.81 0.60 0.40 0.83 0.54
(Strapparava and Mihalcea, 2008) 0.19 0.90 0.31

(Kim et al., 2010) 0.77 0.58 0.65 0.80 0.76 0.78 0.39 0.01 0.01

(Danisman and Alpkocak, 2008) 0.50

sadness
B-M 0.51 0.21 0.30 0.43 0.39 0.41 0.50 0.39 0.44
FT-M 0.53 0.28 0.37 0.50 0.24 0.33 0.79 0.28 0.41

ISE-M 0.49 0.21 0.29 0.43 0.34 0.38 0.51 0.38 0.44
(Strapparava and Mihalcea, 2008) 0.12 0.87 0.22

(Kim et al., 2010) 0.50 0.45 0.48 0.71 0.82 0.77 0.37 0.01 0.25

(Danisman and Alpkocak, 2008) 0.37

surprise
B-M 0.20 0.05 0.08 0.12 0.04 0.06

FT-M 0.25 0.17 0.20 0.14 0.33 0.19
ISE-M 0.27 0.08 0.12 0.17 0.04 0.07

(Strapparava and Mihalcea, 2008) 0.08 0.95 0.14

(Kim et al., 2010)

(Danisman and Alpkocak, 2008)

AVERAGE (micro f-score)
B-M 0.409 0.459 0.411

FT-M 0.412 0.408 0.336

ISE-M 0.405 0.460 0.422

was expected to perform best on the Affective Text, but it is outperformed by FT-M in the precision of
detecting anger and sadness, and overall for the detection of surprise. Generally, by looking at averages,
it seems that our best performing model across datasets is ISE-M. However, the extremely large variance
among scores for the same emotion on the three datasets, highlights the differences among such datasets
and the need to better tailor training data to different domains. The large discrepancy in detecting dif-
ferent emotions in the same dataset also deserves further investigation. We discuss such issues further in
the next section, with a view to future work.

6 Discussion, conclusions and future work

We have explored the potential of using Facebook reactions in a distant supervised setting to perform
emotion classification. The evaluation on standard benchmarks shows that models trained as such, es-
pecially when enhanced with continuous vector representations, can achieve competitive results without
relying on any handcrafted resource. An interesting aspect of our approach is the view to domain adap-
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tation via the selection of Facebook pages to be used as training data.
We believe that this approach has a lot of potential, and we see the following directions for improve-

ment. Feature-wise, we want to train emotion-aware embeddings, in the vein of work by Tang et al.
(2014), and Iacobacci et al. (2015). Retrofitting FB-embeddings trained on a larger corpus might also be
successful, but would rely on an external lexicon.

The largest room for yielding not only better results but also interesting insights on extensions of this
approach lies in the choice of training instances, both in terms of Facebook pages to get posts from, as
well as in which posts to select from the given pages. For the latter, one could for example only select
posts that have a certain length, ignore posts that are only quotes or captions to images, or expand posts
by including content from linked html pages, which might provide larger and better contexts (Plank et
al., 2014). Additionally, and most importantly, one could use an entropy-based measure to select only
posts that have a strong emotion rather than just considering the majority emotion as training label. For
the former, namely the choice of Facebook pages, which we believe deserves the most investigation, one
could explore several avenues, especially in relation to stance-based issues (Mohammad et al., 2016).
In our dataset, for example, a post about Chile beating Colombia in a football match during the Copa
America had very contradictory reactions, depending on which side readers would cheer for. Similarly,
the very same political event, for example, would get very different reactions from readers if it was
posted on Fox News or The Late Night Show, as the target audience is likely to feel very differently
about the same issue. This also brings up theoretical issues related more generally to the definition of the
emotion detection task, as it’s strongly dependent on personal traits of the audience. Also, in this work,
pages initially selected on availability and intuition were further grouped into sets to make training data
according to performance on development data, and label distribution. Another criterion to be exploited
would be vocabulary overlap between the pages and the datasets.

Lastly, we could develop single models for each emotion, treating the problem as a multi-label task.
This would even better reflect the ambiguity and subjectivity intrinsic to assigning emotions to text,
where content could be at same time joyful or sad, depending on the reader.
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