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Abstract

Paraphrase generation is important in various applications such as search, summarization, and
question answering due to its ability to generate textual alternatives while keeping the overall
meaning intact. Clinical paraphrase generation is especially vital in building patient-centric clin-
ical decision support (CDS) applications where users are able to understand complex clinical
jargons via easily comprehensible alternative paraphrases. This paper presents Neural Clinical
Paraphrase Generation (NCPG), a novel approach that casts the task as a monolingual neu-
ral machine translation (NMT) problem. We propose an end-to-end neural network built on an
attention-based bidirectional Recurrent Neural Network (RNN) architecture with an encoder-
decoder framework to perform the task. Conventional bilingual NMT models mostly rely on
word-level modeling and are often limited by out-of-vocabulary (OOV) issues. In contrast, we
represent the source and target paraphrase pairs as character sequences to address this limitation.
To the best of our knowledge, this is the first work that uses attention-based RNNs for clini-
cal paraphrase generation and also proposes an end-to-end character-level modeling for this task.
Extensive experiments on a large curated clinical paraphrase corpus show that the attention-based
NCPG models achieve improvements of up to 5.2 BLEU points and 0.5 METEOR points over a
non-attention based strong baseline for word-level modeling, whereas further gains of up to 6.1
BLEU points and 1.3 METEOR points are obtained by the character-level NCPG models over
their word-level counterparts. Overall, our models demonstrate comparable performance relative
to the state-of-the-art phrase-based non-neural models.

1 Introduction

Paraphrasing, the act of generating the same semantic content as the source in the same language, can
help gain performance improvements in many NLP applications. Examples include generating query
variants or pattern alternatives for information retrieval, information extraction or question answering
systems, creating reference paraphrases for automatic evaluation of machine translation and document
summarization systems, and generating concise or simplified information for sentence compression or
sentence simplification systems (Madnani and Dorr, 2010; Androutsopoulos and Malakasiotis, 2010). In
particular, paraphrase generation has a significant value in developing patient-centric intelligent clinical
decision support (CDS) applications where users are able to understand complex clinical jargons via
easily comprehensible alternative paraphrases (Elhadad and Sutaria, 2007; Deléger and Zweigenbaum,
2009). For example, the complex clinical term “nocturnal enuresis” can be paraphrased as “nocturnal
incontinence of urine” or “bedwetting” to better clarify a well-known condition associated with children.

Traditional paraphrase generation methods exploit hand-crafted rules (McKeown, 1983) or automati-
cally learned complex paraphrase patterns (Zhao et al., 2009), use thesaurus-based (Hassan et al., 2007)
or semantic analysis driven natural language generation approaches (Kozlowski et al., 2003), or leverage
statistical machine learning theory and principles (Quirk et al., 2004; Wubben et al., 2010). In con-
trast, inspired by the recent success of bilingual neural machine translation (NMT) (Kalchbrenner and
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Blunsom, 2013; Sutskever et al., 2014; Cho et al., 2014b; Bahdanau et al., 2015) that shows promising
performance compared to the traditional statistical machine translation (SMT) approaches, we propose
neural clinical paraphrase generation (NCPG) by casting the task as a monolingual NMT problem. Un-
like bilingual machine translation, monolingual machine translation considers the source language the
same as the target language, which allows for its adaptation as a paraphrase generation task.

SMT systems (Koehn et al., 2003; Koehn, 2010) use a noisy channel model to identify an optimal
target sentence that maximizes its conditional probability given a source sentence. Ideally, this process
uses the Bayes’ rule to distinctly maximize the KL-divergence between a language model and a trans-
lation model from a monolingual and a parallel corpus, respectively. However, NMT models are built
from training a single end-to-end neural network architecture on a large parallel corpus that can directly
optimize the conditional probability of an underlying sentence pair. Such models typically follow an
encoder-decoder approach by building a pair of neural networks, where the first network acts as an en-
coder to generate a fixed-length vector representation of the source sentence, which is in turn decoded by
the second network to form a target sentence (Sutskever et al., 2014; Cho et al., 2014b). Recurrent Neu-
ral Network (RNN) architectures with Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber,
1997) or Gated Recurrent Units (GRU) (Cho et al., 2014a) are generally utilized to train the end-to-end
state-of-the-art NMT systems. Another effective NMT model has been proposed recently, which follows
an attention-based soft-search approach to improve the performance of the encoder-decoder architec-
tures (Bahdanau et al., 2015). We use an attention-based bidirectional RNN architecture (Schuster and
Paliwal, 1997; Bahdanau et al., 2015) with an encoder-decoder framework to build our NCPG mod-
els. Bidirectional RNNs have been shown to outperform unidirectional RNNs for sequence to sequence
learning tasks (Jean et al., 2015).

NMT models mostly rely on word-level modeling that often causes an out-of-vocabulary (OOV) is-
sue while predicting a target word given an unknown source word (Luong et al., 2015b). To address
this limitation, we represent the source and target paraphrase pairs as character sequences and pro-
pose a character-level encoder-decoder framework for clinical paraphrase generation. To the best of
our knowledge, this work is the first to adapt monolingual NMT for clinical paraphrase generation using
an attention-based mechanism and also propose an end-to-end character-level NCPG model.

Extensive experiments on a large curated clinical paraphrase corpus built on a benchmark parallel
paraphrase database, PPDB 2.0 (Pavlick et al., 2015b), along with a comprehensive medical metathe-
saurus (Lindberg et al., 1993) show that the proposed attention-based NCPG model can outperform an
RNN encoder-decoder based strong baseline for word-level modeling, whereas character-level models
can achieve further improvements over their word-level counterparts. Overall, the proposed models
demonstrate comparable performance relative to the state-of-the-art phrase-based conventional machine
translation models. The main contributions of our paper can be summarized as follows:

e We presented a novel approach for clinical paraphrase generation by casting the task as a monolin-
gual neural machine translation problem. We proposed an end-to-end neural network model built
on an attention-based bidirectional Recurrent Neural Network (RNN) architecture (Bahdanau et al.,
2015) with an encoder-decoder framework to perform the task.

e We also presented a novel character-based neural clinical paraphrase generation approach to over-
come the OOV issues encountered by the word-level models.

e We built a large curated paraphrase corpus using a benchmark parallel paraphrase database, PPDB
2.0 (Pavlick et al., 2015b) along with a comprehensive medical metathesaurus, UMLS (Lindberg et
al., 1993) for our experiments.

e We conducted rigorous automatic and manual evaluations of our models. Results demonstrated
that our proposed attention-based NCPG model can outperform an RNN encoder-decoder based
strong baseline for word-level modeling, whereas character-level models can achieve further im-
provements. Overall, our models showed comparable performance relative to the state-of-the-art
phrase-based non-neural machine translation models.
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2 Related Work

Deep learning has been successfully applied to various NLP tasks in recent years. There are works that
effectively apply recursive autoencoders (Socher et al., 2011) and convolutional neural networks (Yin
and Schiitze, 2015) for paraphrase recognition. However, paraphrase generation is a harder task due
to the requirement of constructing semantically similar, grammatically accurate alternatives to a source
sentence, and no prior work has attempted to solve this problem using deep learning.

Prior work that regards paraphrase generation as a monolingual machine translation task typically uses
(non-neural) statistical machine translation (SMT) principles. Quirk et al. (2004) show the effectiveness
of SMT techniques for paraphrase generation given adequate monolingual parallel corpus extracted from
comparable news articles. Wubben et al. (2010) propose a phrase-based SMT framework for sentential
paraphrase generation by using a large aligned monolingual corpus of news headlines. Zhao et al. (2008)
propose a combination of multiple resources to learn phrase-based paraphrase tables and corresponding
feature functions to devise a log-linear SMT model. Other models generate application-specific para-
phrases (Zhao et al., 2009), leverage bilingual parallel corpora (Bannard and Callison-Burch, 2005) or
apply a multi-pivot approach to output candidate paraphrases (Zhao et al., 2010).

Recently proposed NMT systems have shown excellent performance compared to the SMT systems
by using RNN-based end-to-end deep neural network architectures (Sutskever et al., 2014; Cho et al.,
2014b). Previous works that deploy RNNs have shown favorable results to model variable-length se-
quential inputs (Schuster and Paliwal, 1997; Sutskever et al., 2011; Graves, 2013; Kalchbrenner and
Blunsom, 2013; Sperduti, 2015) while attention-based NMT models have shown better performance
than the traditional encoder-decoder frameworks (Bahdanau et al., 2015; Luong et al., 2015a).

State-of-the-art NMT models usually perform word-level computations by limiting the size of the
source and the target vocabulary and hence, suffer from OOV issues due to vocabulary incompatibility.
This phenomenon may arise when a trained model has to deal with a previously unseen word during the
testing phase (Luong et al., 2015b). Jean et al. (2015) use a large target vocabulary to address OOV issues
for word-level NMT models while Luong et al. (2015b) introduce a post-processing step to translate OOV
words using a dictionary. Since these approaches depend heavily on the time- and cost-effective process
of developing or acquiring large volume dictionaries that may not scale across several domains, OOV
issues still limit the accuracy of the word-based models. Based on the recent success of character-level
modeling in resolving the OOV limitation (Bojanowski et al., 2015; Kim et al., 2015; Ling et al., 2015;
Costa-JussA and Fonollosa, 2016; Chung et al., 2016), we propose a character-level NCPG model and
perform relative comparisons with the word-level models.

Depending on the level of granularity, there can be different types of paraphrasing such as: lexical (e.g.
<automobile, car>), phrasal (e.g. <carry on, persist in>), and sentential (e.g. <The book was inter-
esting, I enjoyed reading the book>) (Madnani and Dorr, 2010). Earlier work related to clinical-domain
specific paraphrasing uses some unsupervised textual similarity measures to generate/extract lexical and
phrasal paraphrases from monolingual parallel and comparable corpora (Elhadad and Sutaria, 2007;
Deléger and Zweigenbaum, 2009). Prud’hommeaux and Roark (2015) propose a graph-based word
alignment algorithm to examine neurological disorders through analysis of spoken language data. An-
other loosely related recent work adopts a semi-supervised word embedding model for medical synonym
extraction (Wang et al., 2015) that can be regarded as the simplest form of a lexical paraphrase extraction
task. Our work is the first to propose a neural network-based architecture that can model word/character
sequences to essentially address all granularities of paraphrase generation for the clinical domain.

For our experiments, we combine the Paraphrase Database (PPDB) 2.0 (Pavlick et al., 2015b) with
a large medical metathesaurus, known as Unified Medical Language System (UMLS) (Lindberg et al.,
1993) to build a comprehensive monolingual parallel paraphrase corpus such that the proposed NCPG
models can effectively learn discriminatory features related to complex clinical terms. Similar meth-
ods of combining general and domain-specific data have been proven to be useful for domain-focused
paraphrasing tasks in the literature (Pavlick et al., 2015a).
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3 Model Description

3.1 Task Formulation

Our NCPG system is an attention-based bidirectional RNN architecture (Schuster and Paliwal, 1997)
that uses an encoder-decoder framework (Bahdanau et al., 2015). We construct different NCPG models
by representing the source and target paraphrase pairs as word or character-level sequences.

The neural clinical paraphrase generation task can be formulated as follows: given a source sequence
T = xo,...,TL, generate a target paraphrase sequence y = yo, ..., ynm, where z; (0 < ¢ < L) and y;
(0 < j < M) are the individual textual units (word/character), and L, M are the respective lengths of
the source and the target sequences. Ideally, generation of the next target unit y,, depends on the source
sequence z and the already generated target units yg, . . . , y,—1. In the following subsections, we present
a description of the generic RNN architecture and the attention-based NCPG model.

Output Layer

Hidden Layer

Input Layer
X0 X1 Xy

Figure 1: Generic recurrent neural network architecture.

3.2 Recurrent Neural Network (RNN)

RNNs are particularly suitable for modeling sequences and have been shown to perform well to solve
various NLP tasks because of their ability to deal with variable-length input and output (Sutskever et al.,
2011). The RNN network architecture is similar to the standard feedforward neural network with the
exception that hidden unit activation at a particular time ¢ is dependent on that of time ¢ — 1.

Figure 1 shows an unrolled RNN architecture, where x;, y;, h; are the input, output, and hidden state
at time step ¢, and W, U, V' are the parameters of the model corresponding to input, hidden, and output
layer weights (shared across all time steps).

The hidden state h; is essentially the memory of the network as it can capture necessary information
about an input sequence by exploiting the previous hidden state h;_; and the current input x; as follows:

]’Li :f(W.'L't+Uht_1), (1)

where f is an element-wise nonlinear activation function. The output y; is computed similarly as a
function of the memory at time ¢: Vh;. Although RNN is theoretically a powerful model to encode
sequential information, in practice it often suffers from the vanishing/exploding gradient problems while
learning long-range dependencies (Bengio et al., 1994). LSTM (Hochreiter and Schmidhuber, 1997) and
GRU (Cho et al., 2014a) networks are known to be successful remedies to these problems. We use GRU
as the hidden layer activation unit in our paraphrase generation framework.

GRU is a simplified version of LSTM with less number of parameters per unit, thus the total number
of parameters can be greatly reduced for a large neural network (Cho et al., 2014a). In contrast to LSTM,
GRU does not have an internal memory state and the output gate, rather it introduces two gates termed
update and reset as alternatives to the LSTM components. Specifically, GRU computes the hidden state
h; as follows:
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z2e=0(W?z + U hi—1)

re=0(W z + U hi—1)

ke = tanh(W"zy + U"(re © hui—1))

he =1 —2¢) Okt + 26 © he—1, @)

where z;, r; are the update gate and the reset gate, and k; is the candidate hidden state. Note that, z;, r¢
are computed similarly as LSTM (using different weight parameters) where 2; determines how much of
the old memory to keep while r; denotes how much new information is needed to be combined with
the old memory. Finally, k; is computed by exploiting 7;, and h; is calculated to denote the amount of
information needed to be transmitted to the following layers.

3.3 Neural Clinical Paraphrase Generation (NCPG)

The architectural diagram of our paraphrase generation model is presented in Figure 2. In the encoder-
decoder framework of our NCPG model, the encoder uses a bidirectional RNN architecture (Schuster
and Paliwal, 1997; Bahdanau et al., 2015) where one forward RNN reads the input sequence to generate

a hidden state sequence (fT(;, cee h_£ ) and one backward RNN reads the input sequence in the reverse
— —

order to generate a backward hidden state sequence (ho, ..., hy) using the GRU framework presented

in Eq. 2.

Then, an annotation vector h; for each textual unit x; is obtained by concatenating the corresponding
forward and backward hidden states as follows:

hy = H 3)

Thus, h; encodes all relevant information about the neighboring words or characters of x; that is used
in the decoding phase to compute the context vector of a potential target textual unit.

(; (? Output Layer

Decoder

Attention Mechanism

Encoder

Figure 2: Model architecture for neural clinical paraphrase generation.

The decoder of our model consists of a forward RNN that is built over the generated paraphrase
sequence y = Yo, - - - , Yar—1 by creating a hidden state sequence (sg, . .., Sp7—1) Where sj/—1 essentially
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encodes the context of the currently generated paraphrase units. Ideally, at each time step ¢, an attention
mechanism in the decoder computes a relevance score a;; for each annotation vector h; and sums the
weighted annotation vectors as the context vector ¢; while generating the next paraphrase word/character
y¢. Formally, ¢; is computed as follows:

L
Ct = Z atihi (4)
1=0

The annotation relevance score a;; determines the most relevant source unit to focus on and is com-
puted as:
exp(et)
> ko exp(es)
k=0 €XP\Ctk

where e; is called the alignment model that determines how closely the source context at position
matches with the output at position ¢. e;; is calculated with a feedforward neural network f based on the
candidate annotation vector h; and the previous hidden state s;_; as:

€ti = f(st—h hz‘) (6)

&)

At =

Thus, the hidden state s, of the decoder is computed by the forward RNN based on the previous hidden
state s;_1, previously generated textual units 3,1, and the most relevant source context c;:

st = g(st—1,Yt-1,¢t) @)

where g is the GRU unit as described in Eq. 2. The conditional distribution over the textual units is
computed similarly using a feedforward neural network as follows:

P(ysm |y, ym—1,%) = f(yar—1, 80, ¢car) (®)

Thus, our encoder-decoder based NCPG model is jointly trained to maximize the conditional log-
likelihood of the underlying monolingual parallel paraphrase corpus.

4 Experimental Setup

4.1 Corpus

We combine a publicly available large paraphrase corpus, Paraphrase Database (PPDB) 2.0 (Pavlick et
al., 2015b) with a large clinical database curated from the UMLS metathesaurus (Lindberg et al., 1993) to
build a comprehensive monolingual parallel corpus. PPDB leverages multiple bilingual parallel corpora
to construct millions of general domain paraphrases in different languages. PPDB 2.0 uses a supervised
regression model-based ranking strategy to generate six database categories based on size. In this work,
we use the English S-size pack' database with lexical and phrasal paraphrases.

We extract a subset of 1.2M paraphrases from PPDB with 3.3M words that contain only alphabetic
characters. In addition, we consider all unique fully specified terms along with corresponding description
terms from SNOMED CT (Cornet and de Keizer, 2008) as source and target paraphrases (total 140K).
The SNOMED CT terms are selected based on UMLS concept unique identifiers (CUI). For example, the
fully specified term “sensorineural hearing loss” is set as the source and the corresponding description
terms such as “perceptive hearing loss”, “perceptive deafness”, “sensorineural deafness”, and “neu-
rosensory deafness” are set as the target paraphrases. Three-fifth of the combined corpus is used as
the training set while the rest is equally divided into two parts to produce validation and test sets. We
use a randomly selected subset of 5000 paraphrases from the test set to evaluate the performance of the
proposed models.

We perform normalization with respect to case and standard tokenization to pre-process the dataset.
For word-level models, a list of 30K most frequent words in each of the source and the target para-
phrase set is used for training, while any out-of-vocabulary word is treated as a special UNK token. For
char-level models, we tokenize text sequences into white-space delimited characters and use a special
character (#) to preserve word boundaries.

'The S-size database pack is used since it contains only the highest scoring paraphrase pairs.
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4.2 Models

For comparison, two types of models are trained. The first model (NCPG-1) is our baseline, which is
built on a non-attention based RNN encoder-decoder framework (Cho et al., 2014b; Cho et al., 2014a;
Sutskever et al., 2014), where an encoder (RNN) generates a fixed-length vector representation of the
input sequence and a decoder (another RNN) is used to form a output sequence from this representa-
tion. The second model (NCPG-2) is our proposed attention-based bidirectional RNN encoder-decoder
framework. Both models are trained with word-level and character-level sequences (for source-target

paraphrase pairs) resulting in four neural clinical paraphrase generation models.

We use a one-hot vector approach to represent the textual units (words/chars) in all models. Each
RNN is built with 1000 hidden units (i.e. GRU as discussed in Section 3.2). Models are trained with a
stochastic gradient descent (SGD) algorithm with update direction computed using a mini batch of 32
paraphrase pairs. Due to the large size of recurrent networks, the batch-size was limited to 32. We train
the models for approximately 150 hours using multiple GPU machines (Tesla K20m, and Tesla K80).

We use Theano (Bergstra et al., 2011) for all our experiments. We use RNN templates provided by
the GroundHog library?. For training, we use the Adadelta learning scheme (Zeiler, 2012) with p as 0.95
and eps as le-6. We use early stopping to prevent overfitting.

We use a beam search algorithm to generate optimal paraphrases by exploiting the trained models in
the testing phase (Sutskever et al., 2014). We also create a SMT model to compare the performance of
the proposed models. We use the Moses package (Koehn et al., 2007) for this purpose, which uses a
phrase-based approach by combining a translation model and a language model to generate paraphrases.
We use the default settings to create the SMT model.

4.3 Evaluation and Analysis

4.3.1 Automatic Evaluation

To quantitatively evaluate the performance of our paraphrase generation models, we use two well-known
automatic metrics for machine translation evaluation: BLEU (Papineni et al., 2002) and METEOR (Lavie
and Agarwal, 2007). Previous work has shown that these metrics can perform well for the paraphrase
recognition task (Madnani et al., 2012) and correlate well with human judgments in evaluating generated
paraphrases (Wubben et al., 2010). BLEU considers exact matching between target paraphrases and
system generated paraphrases by considering n-gram overlaps. Meanwhile, METEOR improves upon
this measure via stemming and synonymy using WordNet. We compute BLEU scores with jJBLEU
V0.1.1 (an exact reimplementation of NIST’s mteval-v13.pl without tokenization) and METEOR scores
using METEOR V1.4 with all default settings (Clark et al., 2011).

Table 1 shows the average BLEU and METEOR scores for the NCPG models considering the source
and the target paraphrases as references to the system generated paraphrases. The input/prediction level
for all models are denoted in parenthesis. Moses is the word-level statistical paraphrase generation model
trained using the Moses package. Source-Target refers to the scores computed between the source and
the target paraphrase pairs of the test set, because the source text is also a paraphrase of the target text.
This can essentially serve as an upper bound of the paraphrasing scores (Wubben et al., 2010).

Our results show that all NCPG models perform relatively better than Source-Target in terms of BLEU
scores. Similar trend is also seen for METEOR scores. We also observe that Moses obtains the highest
scores, which is expected because Moses uses an additional monolingual training corpus of 418M words
that was not used to train our NCPG models. Moreover, as BLEU and METEOR scores consider the
number of word/synonym overlaps between the source and target paraphrase pairs, our qualitative eval-
uation (reported in the next subsection) reveals that Moses often repeats the source text as the generated
target paraphrases and achieves higher scores for exact matching. This phenomenon is also evident from
the Source-Target scores, which denote that models can achieve lower BLEU/METEOR scores even
though they generate better quality paraphrases.

The results also reveal that the attention-based NCPG models mostly outperform the RNN encoder-

decoder models, and char-level NCPG models perform considerably better than their word-level coun-
terparts. Qualitative analysis revealed that word-level NCPG models largely suffered from OOV issues

*https://github.com/lisa-groundhog/GroundHog
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while char-level models could efficiently deal with this problem. This is a noteworthy achievement be-
cause our character-level models do not require language-dependent grammatical pre-processing and
they learn from efficient encoding of character sequences while being tolerant to spelling errors, a very
common occurrence in clinical documents. We hypothesize that the results of the char-level models
would further improve if pre-trained character embeddings based on a large background clinical corpus
(e.g. biomedical literature corpus such as PubMed Central®) can be used during training.

Model | BLEU | METEOR
NCPG-1 (Word) | 18.8 30.5
NCPG-1 (Char) | 31.3 32.1
NCPG-2 (Word) | 24.0 31.0
NCPG-2 (Char) | 30.1 32.3

Moses 50.2 47.0

Source-Target 14.6 26.2

Table 1: Automatic evaluation scores for all models.

4.3.2 Human Evaluation

Automatic evaluation of paraphrasing is difficult as BLEU and METEOR can capture the textual simi-
larity while disregarding the novelty of the generated paraphrases (Callison-Burch et al., 2008). Hence,
we conduct human evaluation to qualitatively evaluate the performance of our NCPG models. We use a
methodology derived from Wubben et al. (2010) for this purpose. Five judges (familiar with the clinical
domain) evaluated the quality of a randomly selected subset (2%) of the paraphrases from the test set
using three criteria: 1) semantic relatedness: whether the overall meaning is preserved in the paraphrase,
2) novelty®: if the paraphrase is considerably different from the source text, and 3) grammaticality: if the
paraphrase is syntactically correct and fluent. The judges were presented with the source and the target
text along with the system generated paraphrases. Note that, the target text is considered as one of many
candidate paraphrases of the source text. For each of the criteria, the judges assigned an integer score
between 1 (very poor) and 5 (very good) to each paraphrase. System settings and model identities were
not disclosed to the judges during evaluation.

Table 2 shows the average quality scores for all models. These results demonstrate that on average, our
attention-based models (NCPG-2) outperform the NCPG-1 models, and char-level models perform better
than word-level models in terms of semantic relatedness and grammaticality while underperforming in
terms of novelty. Furthermore, our word-level NCPG models perform better than Moses in terms of
novelty (up to 22% improvement) as Moses often generates the same paraphrase as the source sequence.
These results show that on average, our proposed models perform on par with Moses and Source-Target.

Model ‘ Meaning ‘ Novelty ‘ Grammaticality | Average
NCPG-1 (Word) | 3.23 2.65 3.78 3.22
NCPG-1 (Char) 3.28 2.23 4.02 3.18
NCPG-2 (Word) | 3.18 2.90 3.84 3.31
NCPG-2 (Char) 3.36 2.30 3.95 3.20

Moses 3.83 2.38 4.06 3.42

Source-Target 3.47 2.90 4.16 3.51

Table 2: Human evaluation scores for all models.

3http://www.ncbi.nlm.nih.gov/pmc/

“Novelty is inherently dependent on semantic relatedness because new words that do not preserve the overall meaning of
the source text are undesirable.
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4.3.3 Example Paraphrases

Table 3 presents some example source and target texts with corresponding system generated paraphrases
from our models. These examples suggest that the word-level NCPG models generate better quality
clinical paraphrases similar to Moses®. Also, char-level NCPG models perform well in generating com-
parable paraphrase texts. This confirms the effectiveness of the proposed NCPG models. Note that
our curated corpus is mostly built on lexical and phrasal paraphrases. In future, we plan to construct
a sentence-level parallel clinical paraphrase corpus to test the performance of our NCPG models for
sentential paraphrasing.

Source: Target:

contagious diseases communicable diseases

Model Paraphrase

NCPG-1 (Word) habitat

NCPG-1 (Char) contact diseases

NCPG-2 (Word) an infectious disease

NCPG-2 (Char) the diseases

Moses infectious diseases

Source: Target:

secondary malignant neoplasm of spleen | secondary malignant deposit to spleen
Model Paraphrase

NCPG-1 (Word) secondary cancer of spleen
NCPG-1 (Char) separation of spleen

NCPG-2 (Word) secondary malignant neoplasm of spleen
NCPG-2 (Char) secondary malignant neoplasm
Moses metastatic ca spleen

Source: Target:

abdominal lymph node structure intraabdominal lymph node
Model Paraphrase

NCPG-1 (Word) abdominal lymph node
NCPG-1 (Char) abdominal lymph nodes
NCPG-2 (Word) abdominal lymph nodes
NCPG-2 (Char) abdominal lymph

Moses retroperitoneal node sructure

Table 3: Paraphrase examples.

5 Conclusion and Future Work

In this paper, we proposed a novel approach called neural clinical paraphrase generation by using the
monolingual NMT principles. We used an attention-based bidirectional RNN encoder-decoder frame-
work to build an end-to-end architecture to accomplish the task by considering both word-level and
char-level computations. To the best of our knowledge, this work is the first that uses attention-based
RNNs for clinical paraphrase generation and also proposes an end-to-end character-level modeling for
this task. Extensive automatic and human evaluation on a large curated parallel corpus demonstrated
that the proposed NCPG models can outperform an RNN encoder-decoder based strong baseline while
performing on par with the traditional SMT models. We also showed that character-based NCPG models
can often outperform word-level models to remedy the OOV issues while generating paraphrases. In
future, we will experiment with alternative structures for character-level RNN-based (Bojanowski et al.,
2015) neural paraphrase generation architectures, and exploit a larger monolingual clinical paraphrase
corpus to enhance the performance of our models.
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