Quantifying sentence complexity based on eye-tracking measures
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Abstract

Eye-tracking reading times have been attested to reflect cognitive processes underlying sentence
comprehension. However, the use of reading times in NLP applications is an underexplored area
of research. In this initial work we build an automatic system to assess sentence complexity
using automatically predicted eye-tracking reading time measures and demonstrate the efficacy
of these reading times for a well known NLP task, namely, readability assessment.

We use a machine learning model and a set of features known to be significant predictors of
reading times in order to learn per-word reading times from a corpus of English text having
reading times of human readers. Subsequently, we use the model to predict reading times for
novel text in the context of the aforementioned task. A model based only on reading times gave
competitive results compared to the systems that use extensive syntactic features to compute
linguistic complexity. Our work, to the best of our knowledge, is the first study to show that
automatically predicted reading times can successfully model the difficulty of a text and can be
deployed in practical text processing applications.

1 Introduction

Quantifying the complexity of a sentence has been one of the central goals of psycholinguistics (Gibson,
2000; Lewis, 1996; Levy, 2008). Decades of experimental research has shown us that certain kinds
of syntactic patterns are more complex than others. For example, in English, object relative clause is
generally assumed to be more difficult than the active counterpart e.g. (Gibson, 2000). Similarly center-
embeddings lead to more complexity (Lewis and Vasishth, 2005). Such experiments try to establish a
causal link between complex linguistic pattern and processing difficulty. The difficulty is manifested
in slower response of a measurable variable (e.g. reaction time, gaze duration, etc.). The eye-tracking
experimental paradigm is known to capture processing difficulty during naturalistic reading (Just and
Carpenter, 1980; Frazier and Rayner, 1982; Clifton et al., 2007).

Deploying insights from eye-movement research for Natural Language Processing (NLP) tasks is an
upcoming area of research. Previous works have used fixation durations (and saccades) as features in
their prediction models. For example, eye-movement data has been used to model translation difficulty
(Mishra et al., 2013), sentiment annotation complexity (Joshi et al., 2014), and sarcasm detection (Mishra
et al., 2016). Recent works have also incorporated eye-tracking data as features in sequence models for
part-of-speech tagging (Barrett et al., 2016; Barrett and Sggaard, 2015).

In this exploratory work, we build an automatic system to assess sentence complexity using auto-
matically predicted eye-tracking reading time measures and demonstrate the efficacy of these reading
times for READABILITY ASSESSMENT. Readability assessment is the task of automatically classifying
text into different levels of difficulty (Petersen and Ostendorf, 2009; Feng, 2010; Vajjala and Meurers,
2014). One use of such difficulty assessment could be to evaluate text simplification, e.g. to automati-
cally simplify Wikipedia text for the English L2 learners (Zhu et al., 2010; Woodsend and Lapata, 2011;
Coster and Kauchak, 2011; Wubben et al., 2012; Siddharthan and Mandya, 2014). There is also a large
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body of work that has attempted to quantify and automatically compute the complexity of a text using
various linguistic features (Kincaid et al., 1975; Flesch, 1948; Gunning, 1968; Si and Callan, 2001).
See Vajjala Balakrishna (2015) for an extensive review. Such quantification becomes necessary for tasks
such as text simplification (Siddharthan, 2014) and for L2 learners’ systems (Schwarm and Ostendorf,
2005). So far previous work in text simplification (and more generally in NLP) has not explored directly
using various eye-tracking reading time measures while quantifying linguistic complexity. Clearly, such
reading times are not available for new text and hence need to be automatically predicted. For machine
translation evaluation, Mishra et al. (2013) formulate a translation difficulty index which is computed
using eye-movement data, but they do not directly predict reading time measures.

Our work, to the best of our knowledge, is the first study to show that automatically predicted reading
times can successfully model the difficulty of a text and can be deployed in practical text processing
applications. We use a machine learning model and a set of features known to be significant predictors of
reading times in order to learn per-word reading times from a corpus of English text having reading times
of human readers. Subsequently, we use the model to predict reading times for novel text for readability
assessment. For this task, a model based only on reading times gave competitive results compared to the
systems that use extensive syntactic features. Our best-performing model, which combines learned read-
ing times with other sentence-level features, comes close to state-of-the-art results reported previously
for the dataset used in this work (Ambati et al., 2016; Vajjala and Meurers, 2016).

The paper is organized as follows. Section 2 provides an overview of our two-level hierarchical sys-
tem. Section 3 describes our model to automatically predict per-word reading time using a wide range
of lexical as well as syntactic features. Subsequently, Section 4 reports on our readability assessment
experiments using predicted reading times from the above model. Finally, we conclude the paper in
Section 5.

2 Approach

Our approach comprises of two modules:

1. Reading time (RT) prediction: System-1 using lexical and syntactic features to predict the reading
times (RT's) of each word in the sentence

2. Sentence level prediction: System-2 using predicted reading times (outputted by System-1) and
other sentence-level features for the task of readability assessment.

Supervised learning algorithms were employed to train both systems (1) and (2).

2.1 Motivation: Why predict RTs?

An obvious question that could be asked about our approach is ‘“Why build a two-step system?’ or ‘Why
use predicted RTs when one can use linguistic features directly?’. Several reasons present themselves in
support of our approach:

1. We would like to explore the extent to which behavioural measure of processing difficulty can be
used to predict sentential complexity.

2. It is known from the experimental psycholinguistic literature that eye-tracking RTs can reflect in-
creased linguistic complexity (Clifton et al., 2007; Vasishth et al., 2012). A model that predicts RTs
for each word in a sentence can contribute to a fine-grained picture of reading difficulty at various
points in a sentence, in contrast to sentence-level features.

3. Finally, previous works cited in the introduction have demonstrated the efficacy of using RTs for
various NLP applications. Many of these works, e.g. (Mishra et al., 2016), have used gold RTs
(reading times collected from participants). Clearly, if one needs to use RTs for large amount of
novel text, they have to be automatically predicted.
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3 System 1 - Predicting Reading Times

In this section we discuss the features that can impact reading time prediction. We do this using an abla-
tion study and using Pearson’s coefficient. Only those features which cause an increase in R? goodness
score are selected for the final model.

3.1 Data Set

The Dundee eye-tracking corpus (Kennedy, 2003) was used to train the reading time prediction system.
It has eye-movement record of 10 participants on a large collection of newspaper text. We used 2378
sentences (50597 words) from the Dundee corpus. We randomly divided the data (at sentence level, and
not word level) into training (60%), development (20%) and test (20%) splits. RTs for all the subjects
were pooled into one set.!

Our task is to predict the reading times of each word in a sentence. We will focus on 4 types of
measures — first fixation duration, first pass duration, regression path duration and total duration. Together
these measures represent the ‘early’ and ‘late’ measures and are known to reflect sentence processing
difficulty (Clifton et al., 2007). First fixation duration (FFD) is the duration of the first fixation on a
region. First pass duration (FPD) is the sum of all the fixations on a region from the time it was first
entered until it was left. Regression path duration (RPD) is the sum of all the fixations on a region from
the time it was first entered until moving to the right of the region. Toral fixation duration (TD) of a
region is the sum of all fixations on a region including re-fixations after it was left. All these measures,
of course, assume that the region in question has been fixated.

3.2 Feature Set

The features used in the model have been attested to influence lexical and syntactic processing reading
and it has been established conclusively that all these features are significant predictors of reading times
(Rayner, 1998; Juhasz and Rayner, 2003; Demberg and Keller, 2008; Clifton et al., 2007; van Schijndel
and Schuler, 2015). We use both low level predictors like word length, sentence length, word frequency
and age of acquisition (in years) as well as high level predictors like surprisal.

Word length has been taken as it is from the Dundee corpus. Sentence length is the number of words
in a sentence. Word frequency is the unigram frequency in the entire English Wikipedia text. The age
of acquisition gives the average age and standard deviation at which a word is learnt (Kuperman et al.,
2012). This reflects the familiarity of a word, which has been shown to affect lexical processing (Juhasz
and Rayner, 2006). These features have previously been shown to be helpful in predicting the difficulty
in reading (Vajjala Balakrishna, 2015). British National Corpus (BNC) (Aston and Burnard, 1998) was
used to calculate forward transition probability — P(wy|wy_1) and backward transition probability —
P(wy|wgy1) for each word.

In addition, we also added surprisal (Hale, 2001; Levy, 2008), entropy reduction (Hale, 2006), em-
bedding depth and embedding difference (Wu et al., 2010) computed by an incremental probabilistic
left-corner parser (van Schijndel et al., 2013). Surprisal models comprehension difficulty where words
which are more predictable in a given syntactic or lexical context are read faster (lower surprisal values)
compared to less predictable words (higher surprisal values). Mathematically, surprisal at word k+1,
Sk+1 = —log P(wg41|wi...wk). In our incremental left-corner probabilistic parser, strings of a lan-
guage are assumed to be generated by Probabilistic Context Free Grammars (PCFGs). So each word wy,
has a prefix probability computed by summing the probabilities of all trees T in the span of words w; to
wg. Surprisal is estimated as the difference in the prefix probabilities at successive words. Both syntactic
and lexical surprisal are standout predictive measures for reading times regardless of word class (Wu et
al., 2010).

Entropy reduction at word index = i is defined as: max{0, H; — H;_1 }, where H; is the entropy func-
tion. So, it is the reduction in (syntactic) uncertainty at the appearance of word at index = i. Embedding
depth is a quantitative measure reflecting memory load caused due to center embeddings (left branching
parse tree nodes contained within right branching ones). A weighted version of this measure obtained

"For more details regarding the Dundee corpus, kindly refer to section 2.1 in Kennedy and Pynte (2005)
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by multiplying with the parse probability is also used. Embedding difference is defined as the difference
between the embedding depth at the current beam and the previous beam (Wu et al., 2010). (Howcroft,
2015) also uses the features from Wu et al (2010) for readability assessment and shows that they induce
modest gains over other features. However, that work does not use reading times as features. In addition,
we added eight more features emitted by the left-corner parser. These represent hierarchical structure
decisions made by the parser and encode memory operations like cue activation, initiation, termination
and wait. For more details, please refer to (van Schijndel and Schuler, 2013).

3.3 Model

We used linear regression using python-sklearn (Pedregosa et al., 2011) to predict the reading times. All
features were standardized.

3.4 Experiments

Pearson’s Coefficients Study

We calculated Pearson’s coefficient for each of the features w.r.t. the four reading times, first fixation
duration, first pass duration, regression path duration, and total fixation duration. Almost all correla-
tions reported are significant at p<0.01.2. These results can be seen in Table 1. We find that most of the
features show low correlation with the 4 duration measures in question (first fixation, first pass, regres-
sion and total fixation duration). However, as expected the word length and surprisals is found to have
high positive correlation while frequency and familiarity (mean age of acquisition - AoA) have negative
correlations with RT. We move forward with the ablation study with first fixation duration, as among the
four durations features seem to be most correlated with first fixation in general.

S. Features First Fixation | First Pass (Gaze) | Regression | Total Fixation
No. Duration Duration Duration Duration
1 Word Length 0.765 0.722 0.700 0.668
2 Sentence Length -0.009 -0.008 -0.010 -0.011
3 Wikipedia Frequency -0.142 -0.133 -0.129 -0.126
4 Mean AoA (in years) 0.048 0.032 0.028 0.021
5 | Standard Dev. in AoA -0.048 -0.058 -0.059 -0.067
6 Total Surprisal 0.369 0.368 0.365 0.358
7 Lexical Surprisal 0.372 0.372 0.369 0.363
8 Syntactical Surprisal -0.067 -0.074 -0.073 -0.072
9 Entropy Reduction -0.008 -0.013 -0.008 -0.013
10 Embedding Depth 0.102 0.092 0.086 0.084
11 | Embedding Difference 0.051 0.046 0.043 0.045

Table 1: Pearson’s Correlation Coefficient of features w.r.t. different reading times.
Ablation Study

We did an ablation study to select the best features for the model that predicts first fixation duration.
The results can be seen in Table 2. In total there were 20 features in the model. Instead of exploring
all (20!) orders, features were added incrementally based on the following rationale. At first, we added
all the low-level predictors of reading times described in previous work (Demberg and Keller, 2008). In
the case of the remaining features, we added the frequency-based predictors of reading difficulty next
and finally memory-based predictors. This distinction was based on Collin Phillips’ theory of ground-
ing (Phillips, 2013), which characterizes memory load costs as predictors of comprehension difficulty
after frequency-based costs have already been taken into account. If the goodness of the learned regres-
sion curve improved, the feature was retained in the final model®. The process helped in ascertaining the
2Except in case of sentence length w.r.t. first fixation and first pass, where p-value is 0.03 and 0.02 respectively.

3Issues related to multicollinearity have also been sidestepped in this initial analysis. We intend to address these issues in
the future work.
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relevance of individual feature in the model. We find that the word frequency, age of acquisition, total
and syntactic surprisals lead to largest increase in the goodness score. Interestingly, lexical surprisal does
not appear to be a significant contributor, probably because, word frequency already captures much of
the effect (cf. Demberg and Keller, 2008).

S.No. Features R? score | S.No. Features R? score
1 Word Length 0.267 7 Lexical Surprisal 0.575
2 Sentence Length 0.500 8 Syntactical Surprisal 0.579
3 Word Frequency 0.504 9 Entropy Reduction 0.579
4 Mean Age of Acquisition (AoA) | 0.532 10 Embedding Depth 0.580
5 Standard Deviation in AoA 0.533 11 Embedding Difference 0.580
6 Total Surprisal 0.576 12 | Hierarchical structure feats 0.585

Table 2: Ablation study done on features by adding them incrementally to the FFD regression model.

Implementation and Results

We trained our model for all the four reading times, i.e. RTs for all the subjects were pooled into one
set. The results can be seen in Table 3. R? score gives the goodness of the model. A closer look at the
predicted reading times showed that on a number of occasions the regression model predicted very low
non-zero reading times which were non-existent in the Dundee corpus. Therefore, we set a threshold (84
ms) for predicted reading times (for Fixed Fixation Duration), and any prediction less than this threshold
was reduced to 0.0 ms. The threshold was fixed on the development set. As can be seen from table 3,
using a threshold led to an improvement.

Reading Times R? score
First Fixation Duration 0.585 | 0.649 [84 ms]
First Pass (Gaze) Duration | 0.549 | 0.600 [88 ms]
Regression Path Duration | 0.521 | 0.570 [91 ms]
Total Fixation Duration 0.510 | 0.516 [98 ms]

Table 3: Performance of System 1 on different eye-tracking measures. The number inside [] shows the
threshold value.

3.5 Discussion

Predictions for first fixation duration are consistently better than other eye-tracking measures. The post
hoc addition of threshold improved the performance significantly, and we see that R? score reaches
upto 0.649 for first-fixation duration. First-fixation durations are known to reflect both low-level lexical
processing (Clifton et al., 2007) as well as syntactic processes (Vasishth et al., 2012).

We were unable to do equally well on other measures such as first pass duration, regression path
duration and total fixation duration compared to first fixation duration. So, while the current results are
promising, more experiments with regards to alternative models need to be explored. In particular, it will
be interesting to investigate if feature selection differs from one eye-movement to the other. This will
shed some light on the feature-measure mapping. In addition, alternative/additional features that could
correlate better with these measures need to be tried out. Finally, other measures such as regression
probability, etc. need to investigated. These issues will be taken up as part of future work.

4 System 2 - Readability Assessment

The task that we evaluate the system discussed in the previous section is readability assessment. The
exact task of readability assessment is the following:

Given a pair of two sentences (Sentencel, Sentence?2) identify which one belongs to standard Wikipedia
and which to simple Wikipedia. Sentence I and sentence 2 are paraphrases of the same idea.
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Vajjala and Meurers (2016) have previously built a system to accomplish this task using various lin-
guistic features. They used features produced by a non-incremental syntactic parser and found them
to be useful in the task. They also used lexical semantic properties from WordNet, features encod-
ing morphosyntactic properties of lemmas, word-level psycholinguistic features such as concreteness,
meaningfulness and imageability extracted from the MRC psycholinguistic database as well as age of
acquisition (AoA). Their model achieved an accuracy of 74.58%.

Motivated by the incremental nature of human sentence processing, Ambati et al. (2016) use features
extracted from an incremental Combinatory Categorical Grammar (CCG) parser to achieve higher ac-
curacy on this task. Their feature set included sentence length, height of the CCG derivation, the final
number of constituents, CCG rule counts and complexity of CCG category. Their model achieved an
accuracy of 78.87%.

Our system is also motivated by human sentence processing. However, unlike Ambati et al. (2016),
we directly use predicted reading times to model complexity of a sentence. As discussed in section 3,
the model that predicts reading times is based on psycholinguistically motivated lexical and syntactic
features.

4.1 Data Set

The dataset used for evaluation is the dataset released by Ambati et al. (2016). This is a cleaned subset
of the parallel sentence pairs collected by Hwang et al. (2015). The data contains 150K sentence pairs of
standard Wikipedia (WIKI) and simple Wikipedia (SIMPLEWIKI). Ambati et al. (2016) further removed
pairs containing identical sentences which resulted in 117K clean pairs. We randomly divided the data
into training (60%), development (20%) and test (20%) splits.

4.2 Feature Set

Sentence-1 features Sentence-2 features

sentencel_word1: 169 | sentence2_wordl: 189

sentencel_word2: 110 | sentence2_word2: 309

sentencel_word3: 215 | sentence2_word3: 85

sentencel _word4: 219 | sentence2_word4: 85

Table 4: Example features in a sentence pair (each column contains the feature name and value separated
by a space). The features values are in milliseconds.

Vajjala and Meurers (2016) formulated the readability assessment task as a ranking task, instead of
a classification task. In our model we simply classify within a pair of sentences. For a sentence, we
first predict reading time for each word (using System 1). The features are of the form “Word Posi-
tion:Predicted RT”. “Word Position” is the feature name and corresponds to the position of a word in
a sentence, and predicted RT (which models first fixation duration) is its value. We define a sample as
a pair of sentences. To avoid using same feature name for each sentence we simply concatenate “sen-
tencel” or “sentence2” before all the feature names. For example, consider the following sentence pair
from the dataset:

1. With a higher humidity, the rate of evaporation is less.

2. Under conditions of high humidity, the rate of evaporation of sweat from the skin decreases.
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LR N3

Assuming the following reading times for words in the first sentence — “with: 169ms”, “a: 110ms”,
“higher: 215ms”, “humidity: 219ms”, “the: 149ms” and so on, the features for our ‘Base RT’ model are
depicted in Table 4. The features from both the sentences together are then used to train the classification
system. So the total number of features equal to twice the number of words in the longest sentence in
our corpus as we work with sentence pairs.

The ‘Base RT’ model uses only these word-level features. We also experimented with a model that
uses sentence-level features in addition to the base model features. This ‘Extended RT* model contained
the following additional features: sentence length, normalized (w.r.t. sentence length) sum of predicted
reading time of the sentence. The incremental probabilistic left-corner parser (van Schijndel et al., 2013)
was used to further add the following features: sum of total surprisal of all words, sum of lexical surprisal
of all words, sum of syntactical surprisal of all words and log of parse probability of the entire sentence.

4.3 Model

As discussed in section 4.2, the pair of sentences are represented as a multiset of its features. We use
a bag of words unigram model, except the features we use are not just words the sentences have, but
‘wordposition:predicted RT’. The model assumes that relevant properties of the syntactic structure have
already been captured by System-1 (discussed in section 3) to predict the reading time. Logistic regres-
sion classifier, using python-sklearn (Pedregosa et al., 2011) was used for the classification task. We
also experimented with SVM (Hearst et al., 1998) and SVM™ (Joachims, 2006), used by Vajjala and
Meurers (2016), but these models were unable to outperform the logistic regression model. *

4.4 Results

A 10 fold cross-validation was done to obtain the accuracies. We evaluated the model with all four
predicted durations (first fixation, first pass, regression and total). The best results were obtained with
predicted first fixation duration therefore we show only those figures in Table 5.

Model Accuracy (%)
Vajjala and Meurers, 2016 (Baseline) 74.58
Ambati et.al, 2016 (State-of-the-art) 78.87
System 2 (Base RT model) - SVMrank 73.79
System 2 (Base RT model) - Pairwise Classification 73.82
System 2 (Extended RT model) - SVMrank 75.09
System 2 (Extended RT model) - Pairwise Classification 75.21

Table 5: Performance of models with predicted first fixation duration.

Table 5 depicts 74.58% as the classification accuracy of Vajjala and Meurers (2016). It needs to
be noted that the Vajjala and Meurers (2016) paper reports an accuracy of 82.7% on their evaluation
data. The number 74.58% is taken from the Ambati et. al (2016) paper. This figure was obtained by
Ambati and colleagues as a result of running the Vajjala and Meurers code on their evaluation data®. As
mentioned before, we used the same evaluation data as Ambati et. al (2016). Hence Table 5 results are
all based on the same dataset and thus directly comparable.

4.5 Discussion

We tested our model with the both SVM™X strategy as used by Vajjala and Meurers (2016) and the
pairwise classification strategy discussed in section 4.2. In both cases, pairwise classification performs
slightly better than SVM™k,

The Base RT model using just the predicted reading times and the word positions achieves an accuracy
of 73.82%. This shows that predicted reading time alone can be successfully employed as a predictor

“Time taken by the system - Incremental Parser: The data set was divided into 100 sections and parsing was done in parallel.

Each section took almost 10 hours. Final training: Takes around 5 min for around 120K sentences pairs.
3See Footnote 7 of Ambati et al 2016
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to compute sentence complexity. Our Extended RT model achieves an accuracy of 75.21% which is
marginally better than the Vajjala and Meurers (2016) model. The Ambati et al. (2016) system is still the
best performing system. To see how much do reading times contribute to our system, we ran a model
with just sentence level features from extended model and no Base RT features, which had the accuracy
of 73.6% (1.6 points lower). This indicates that reading times do contribute to boost our model accuracy.

Note that, similar to Ambati et al. (2016), our RT prediction model (discussed in section 3) uses many
syntactic features. These features include surprisal, entropy reduction, embedding depth, embedding
difference, etc. The syntactic features in the Ambati et al. (2016) model (such as CCG rule counts, CCG
categories) are much more fine-grained in terms of the different syntactic phenomenon that they capture.
In would be very interesting to see if these fine-grained features can lead to improvement in a model that
predicts eye-movement reading measures. We plan to test this out as part of our future work. Also, our
results are based on just one eye-tracking measure, i.e. first fixation duration. Future work can try to
improve this performance by exploring multiple measures in a single model.

5 Conclusion

We used a machine learning model and a set of features known to be significant predictors of reading
times in order to learn per-word reading times from a corpus of English text having reading times of
human readers. Subsequently, we used the model to predict reading times for novel text in the context
of readability assessment. For this task, a model based only on reading times gave competitive results
compared to the systems that use extensive syntactic features.

Notwithstanding the debate on strict vs loose connection between parsing processes and eye move-
ments (Just and Carpenter, 1980) (also see, Vasishth et al., 2012), it has been conclusively established
that sentence parsing events are manifested in reading times. Since automatic quantification of complex-
ity is required in a number of NLP tasks/evaluations, models based on automatically predicted reading
times present themselves as an attractive alternatives to the current methods. Our work, to the best of
our knowledge, is the first study to show that such a model is indeed viable. We demonstrated that it
can be used to successfully model the difficulty of a text and can be deployed in practical text processing
applications. In addition to technological advances in field of NLP, we also envisage that our system
can potentially facilitate scientific inquiries in human sentence processing. Prior to running behavioural
experiments involving human subjects, our method can be used to formulate precise hypothesis by gen-
erating reading times for the test sentences.
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