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Abstract

Using aliases to refer to public figures is one way to make fun of people, to express sarcasm,
or even to sidestep legal issues when expressing opinions on social media. However, linking an
alias back to the real name is difficult, as it entails phonemic, graphemic, and semantic chal-
lenges. In this paper, we propose a phonemic-based approach and inject semantic information to
align aliases with politicians’ Chinese formal names. The proposed approach creates an HMM
model for each name to model its phonemes and takes into account document-level pairwise mu-
tual information to capture the semantic relations to the alias. In this work we also introduce two
new datasets consisting of 167 phonemic pairs and 279 mixed pairs of aliases and formal names.
Experimental results show that the proposed approach models both phonemic and semantic in-
formation and outperforms previous work on both the phonemic and mixed datasets with the best
top-1 accuracies of 0.78 and 0.59 respectively.

1 Introduction

Due to the casual nature of social media, there exist a large number of non-standard words in text expres-
sions which make it substantially different from formal written text. It is reported in (Liu et al., 2011b)
that more than four million distinct out-of-vocabulary (OOV) tokens occur in the Edinburgh Twitter
corpus (Petrovic et al., 2010). This variation poses challenges for natural language processing (NLP)
tasks (Sproat et al., 2001). According to (Baldwin et al., 2015), on encountering the many non-standard
words, found actually to be unknown named entities, they were obliged to manually eliminate these while
normalizing the dataset. Thus, we believe that named entity matching (NEM) is an important problem in
noisy text analysis.

NEM is the task of matching the different alias names for entities back to their respective formal names.
Many applications benefit from this technique, including name transliteration (Knight and Graehl, 1998),
entity linking (Rao et al., 2013), entity clustering (Green et al., 2012), and entity identification for para-
phrase mining (Barzilay and Lee, 2003).

This task is different from most in noisy text normalization. While most work on normalization in-
cludes two parts—informal word identification and word recovery—this work is different in two ways.
First, we focus on the recovery of informal names of named entities, in contrast to the general typo and
abbreviation recovery. Second, the identification of these aliases is a named entity recognition (NER)
problem, while conventional normalization works search for every OOV words. The challenges of NEM
lie in variation, which can be attributed to many factors: nicknames, acronyms, and differences in translit-
eration. As a result, exact string matching can yield poor results. It is reported (Peng et al., 2015) that

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

61



most tokenization errors are caused by named entities in documents. It is difficult to utilize analysis tools
which depend on tokenized text. While most normalization can be achieved using features within words,
for example, (‘u’, ‘you’) and (‘2mr’, ‘tomorrow’), aliases and formal names may have no graphemic or
phonemic connections, for instance, (‘Slick Willie’, ‘Bill Clinton’).

In this paper, we propose a novel method to train word models for each named entity with full-
connected hidden Markov models (HMMs). We create two datasets of aliases and formal name pairs:
one similar-phonemic pair only dataset and one mixed dataset including both similar-phonemic and non-
similar-phonemic pairs. In both datasets, our method outperforms all of the baselines, including (Peng
et al., 2015). In the mixed dataset, some aliases have no connection with the formal name within words.
Combining our model with the statistical PMI measurement improves performance.

Our contributions are as follows. First, we propose a new method to solve the character sequence dis-
order problem for the NEM task. Second, we propose a new method for pairs of aliases and formal names
which contain no graphemic or phonetic similarity. Third, in our experiment, our method outperforms
other baselines on both datasets.

Below, we describe in Section 2 the related work for the task and in Section 3 the phonetic similarity
formula. The implementation of the word model and the proposed refined version are described in
Sections 4 and 5. The dataset collection, evaluation, and error analysis are in Section 6.

2 Related Work

Entity disambiguation is not an uncommon task. Related work such as entity coreferencing (Soon et
al., 2001; Ponzetto and Strube, 2006; Moosavi and Strube, 2014) identifies entities which are men-
tioned more than once in formal documents. The literature contains extensive discussion on the effects
of using segmentation, POS taggers, and semantic role labeling, which have achieved considerably high
resolution. However, most of those canonical technologies fail to provide accurate information in user-
generated text. Normalization on noisy text is also a highly debated topic. Most words must be nor-
malized in this task; this includes abbreviations, non-standard spellings, and phrases prevalent in social
media. Rather than considering all parts of speech, our task focuses on aliases of name entities, especially
person entities.

Among those different tasks, some useful metrics can be applied to NEM given appropriate refine-
ments. Phonetic similarity is frequently applied in normalization tasks (Li and Liu, 2012; Han and
Baldwin, 2011; Xu et al., 2015). Choudhury et al. (2007) represented both non-formal words and formal
words in phonemics and word pairs are evaluated on the phonetic level using left-to-right HMM model.
Peng et al. (2015) propose a name matching system with a linear SVM model featuring string match
methods. They apply string matching at both the character and phonemic levels. Their experiments
show that adding phonetic features does improve performance.

Another assumption is that aliases contain strong contextual similarity with normal words. Liu et
al. (2012) measures the cosine similarity of the word TF-IDFs in context. Li and Liu (2014) utilize word
embeddings in their work.

3 Phonetic Similarity

Most Chinese characters can serve as meaningful words. Each Chinese character contains only one
syllable, and each syllable is composed of an initial, a final and a tone. Initial refers to the first part of the
Chinese syllable, which is a consonant. Final refers to the second part of the syllable, which is a vowel
with an optional nasal sound. While some Chinese syllables have a null initial which is denoted as ∅, each
syllable has a final. Mandarin Chinese is a tonal language. There are four main tones and one neutral
tone, each of which has a distinctive pitch contour. According to (Liu et al., 2011a), frequently misused
similar-phonemic characters have one of following features: the same sound and same tone (SS), the
same sound but different tones (SD), and similar sounds and the same tone (MS). Similar sounds can be
divided into two categories: the same initial (MS-DF) or the same final (MS-DI). Generally, MS-DI is
more common than MS-DF. Table 1 lists the four features and some examples. We apply this theory to
our word model to create a phonetic similarity character set for each character in our dictionary.
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Category Example
SS (Same sound, Same tone) (蔡[Tsai4],菜[Tsai4])

SD (Same sound, Differ in tone [2] and tone [3]) (才[Tsai2],採[Tsai3])
MS-DF (Similar sound, Differ in final [en] and final [eng] ) (人[Jen2],仍[Jeng2])
MS-DI (Similar sound, Differ in initial [b] and initial [p]) (奔[Ben1],噴[Pen1])

Table 1: Similar-phonemic features and examples

4 Left-to-right Word Model

A modified version of the word model was proposed by Choudhury et al. (2007). The main idea is to
map the formal name to its alias taking into account the graphemic and phonemic aspects. Suppose that
word W1 is composed of a sequence of characters c1c2...cl1 , where ci is a character and l1 is the length
of W1; word W2 is composed of t1t2...tl2 , where tj is a character and l2 is the length of W2 Our goal is
to measure the transition probability from W1 to W2 given the transition probability between ci and tj , i
and j are indexes of characters. As the problem is a sequence prediction problem, it can be modeled as
follows as a left-to-right HMM (Rabiner, 1989).

Each word which consists of l characters is modeled by a word model containing 2l+2 states. The state
set includes a graphemic path with l graphemic states G1, G2, ..., Gl, a phonemic path with l phonemic
states P1, P2, ..., Pl, a start state, and an end state. The start state Start is appended before G1 and
P1, and the end state End is appended after Gl and Pl; these denote the start and end of the character
sequence.

Each state S, including Start, End, Pi and Gj , consists of transition parameters, an emission charac-
ter set, and emission parameters. The transition parameters denote the probability of a transition from S
to the other states. The emission character sets define the candidate characters of S and the emission pa-
rameters denote the probability of the emission characters. The implementation details of the left-to-right
word model are described as follows.

4.1 Graphemic Path

We define each state Gi as a graphemic state and the path from Start to End through the sequence of
graphemic states as the graphemic path. For each graphemic state, we allow three types of emissions:
the original character, the deleted character, and typo, which are respectively denoted as Gi(gi), Gi(ε),
and Gi(@). In Figure 1 the process is illustrated for the word “李登輝” [Li3 Deng1 Hui1].

Figure 1: Graphemic path

4.2 Phonemic Path

We define l phonemic states P1 to Pl, corresponding to the pinyin of each character p1 to pl. The emission
set of each phonemic state is defined as follows. We construct the set according to the phonetic features
of pi. The emission set thus consists of all the pinyin characters that have the same sounds and tones
(SS), the same sounds but different tones (SD), or the same finals but different initials (MS-DI). Take the
character “輝” [Hui1] as example: the pinyin of “輝” is [Hui1]. Same-sound and same-tone characters
include but are not limited to “輝” [Hui1], “揮” [Hui1], “灰” [Hui1], “徽” [Hui1] and “恢” [Hui1].
Table 2 lists other similar-phonemic types and examples thereof. These similar-phonemic characters
compose the emission set of Pi. The emission probability of each character is set uniformly at the
beginning. In Figure 2 the process is illustrated for the word “李登輝” [Li3 Deng1 Hui1].
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Category Pinyin Example
SS Hui1 輝、揮、灰、徽、恢

SD
Hui2 回、迴、佪、恛、茴
Hui3 毀、悔、燬、賄、誨
Hui4 會、惠、繪、匯、檜

MS-DI
Wei1 威、萎、薇、巍、偎
Zhui1 追、錐、椎、隹、揣
Cui1 催、崔、摧、墔、墔

Table 2: Phonemic emission set of輝[Hui1]

Figure 2: Phonemic path

4.3 Crosslinkages
Most aliases are created from formal names with both similar-graphemic and similar-phonemic charac-
ters. For example “李等會” [Li3 Deng3 Hui3] and “李登輝” [Li3 Teng1 Hui1]: these share as the first
character the similar-graphemic “李” [Li3]. The second and third characters are similar-phonemic. In
order to capture this phenomenon, we model crosslinkages between the graphemic and the phonemic
paths. In Figure 3 the process is illustrated again for “李登輝” [Li3 Teng1 Hui1].

Figure 3: Graphemic and phonemic paths with crosslinks

4.4 Construction of Word HMM
Given a name w, we construct the left-to-right HMM for w as follows. First, the graphemic path is
constructed. The pinyin p for w is extracted from a dictionary to construct the phonemic path. Then
we create the phonemic emission set which collects the pinyin characters with the similar-phonemic of
the word. We construct a left-to-right HMM for each of the 72 politician names, from w1 to w72, to
create the training set. There are three model parameters, λ ≡ (A,B, π), where A is the state transition
probabilities, B is the emission probabilities, and π is the initial state distribution. We initialize the
parameters as Choudhury et al. (2007) reported in their work. For each name wj of the left-to-right
HMM, the initial state distribution π0

j is defined as

π(x) =
{

1, ifX = S0

0, otherwise
(1)

The emission probabilities for each graphemic state are Gi(gi) = 0.7, Gi(ε) = 0.2, Gi(@) = 0.1.
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The emission probabilities of the phonemic states are assigned a uniform distribution. The transition
probabilities for the edges from the start state are defined uniformly. For graphemic states, the transition
probability to the next graphemic state is set to twice the probability of the transition to the next phonemic
state. Similarly, for a phonemic state, the transition probability to another phonemic state is set to twice
the probability of the transition to a graphemic state.

4.5 Training Process

Given λ0
j , we use the Viterbi algorithm (Rabiner, 1989) to find the most likely sequences of states through

the HMM for each observation (i.e., aliases in the training set) vj
i for wj . We keep count of every

transition and emission in the HMM, which is increased by f j
i (the frequency of the variant vj

i ) if and
only if the particular transition or emission is used in the Viterbi path of vj

i . Once the process is completed
for all the variations of wj , we re-estimate the model parameters of the HMM based on the final counts
associated with each transition and emission. Add-α smoothing (Harris, 1985) is used to handle zero
counts. We denote this re-estimated model for wj by α∗j . It is possible that we lack the training data
to train word models for some politician names; for these politicians, we use the initial parameters to
predict the probability.

5 Fully Connected HMM

The main disadvantage of the left-to-right HMM is that it fails on prediction when there is no sequence of
similar character matches between the alias and formal name; this phenomenon is more common in this
task than in canonical normalization. For example, “菊姐” [Ju2 Jie3] is the alias of “陳菊” [Chen2 Ju2].
However, for a left-to-right HMM, the model considers similarity with character mappings between “陳
菊” [Chen2 Ju2] and “菊姐” [Ju2 Jie3] as (陳[Chen2],菊[Ju2]) and (菊[Ju2],姐[Jie3]). Even if the alias
and formal name share several identical characters, simply changing their order can fool the left-to-right
HMM. To account for this, we propose a fully connected HMM. We slightly alter the HMM model’s
parameter settings. We retain the emission parameters, which are independent of the character mapping
order. / To achieve this goal, we thus alter the λ initial parameters. The transition probabilities are
refined as follows. The transition probabilities from the start to the rest of the states, except the end, are
distributed uniformly. For graphemic states, the transition to the next graphemic state is set to 0.5, the
transition to the next phonemic state is set to 0.25, and 0.25 is distributed to the rest of the graphemic
and phonemic states. Similarly, for a phonemic state, the transition probability to next phonemic state is
set to 0.5, the transition to next graphemic state is set to 0.25, and 0.25 is distributed to the rest of the
graphemic and phonemic states. After setting all the parameters, we train the fully connected HMM the
same way we train the left-to-right HMM.

6 Experiment and Evaluation

We describe in Section 6.1 the dataset creation, and then in Section 6.2 describe the experiment settings
and in Section 6.3 the evaluation.

6.1 Experiment Dataset

279 distinct alias and formal name pairs are collected from wikiptt 1.The size of formal name set, which
is taken as the candidates for each alias recovery, is 72. From the collection of pairs, we created two
datasets: a mixed dataset and a similar-phonemic dataset. To test the power of the phonetic features em-
bedded in our word model, we built a similar-phonemic dataset, a subset of the mixed dataset containing
167 aliases and normal name pairs which were manually identified as bearing phonetic similarity. The
mixed and similar-phonemic datasets are described in Table 3.

1http://zh.pttpedia.wikia.com/wiki/PTT%E6%94%BF%E6%B2%BB%E4%BA%BA%E7%89%A9%E7%B6%
BD%E8%99%9F%E5%88%97%E8%A1%A8
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Similar-phonemic dataset Mixed dataset
Train 104 194
Test 63 85
Total 167 279

Table 3: Similar-phonemic and mixed datasets

6.2 Experiment Settings

We evaluated performance on a ranking task (the setting of (Andrews et al., 2012)). We constructed
as the candidates a set of normal names covering all of the entities referred to by aliases. The task is
to identify for each alias the best-matched name entity in the normal name set. We acquired two sets
of prior knowledge as follows. We collected 114,438 open-source character-to-pinyin mappings from
OpenFoundry 2. The list of possible initials and finals were provided by Weebly 3, a Chinese online
remote learning system.

From PTT we collected 478,579 posts discussing of politicians. PTT is a well-known Chinese-
language bulletin board system containing 20,000 boards covering a multitude of topics. Users post
their opinions on the board. Under each post, other users can add short comments. As with most user-
generated text, articles posted on PTT contain extremely short text, out-of-vocabulary tokens, and aliases.
We calculated the PMI of each alias and formal name pair at the document level, and then ranked can-
didates according to their PMI value; the inspiration for this comes from entity clustering (Green et al.,
2012), for which related entities tend to be mentioned in the same document.

The experiments were conducted on both the mixed and similar-phonemic datasets. A baseline (Base-
line) was implemented based on a statistical character-level transition model. We calculated the fre-
quency of character transitions between aliases and formal names in our training set and handled zero-
count transitions using add-α smoothing. We use the pre-trained model (Mingpipe) provided by (Peng et
al., 2015) as a comparable setting. The Fixed Order HMM setting denotes the basic left-to-right HMM
model. To account for character sequence mismatches between alias and normal name, a simple solution
is to rearrange the character order. Thus the (All sequence baseline) and (All sequence HMM) settings try
all possible character sequences for each alias with brute force and report the result of the highest match-
ing sequence. The (Fully Connected HMM) denotes a trained fully connected HMM model trained with
our dataset and the (Fully connected No training) is a non-trained version. In Tables 4 we compare the
rank-one prediction of each setting. The HMM + PMI Hybrid setting ranked candidates according to the
average of ranks of PMI and Fully Connected HMM.

6.3 Result and Discussion

In the upper part of the Table 4, we focus on phonetically similar pairs. Applying all sequence metrics
improved performance both for the baseline and the HMM model, because different aliases for same
formal names tend to contain the same character but in dissimilar order. The Mingpipe model considers
several string-matching metrics. It defeats our character-level statistical model but falls behind the basic
left-to-right HMM model. This supports our assumption that simple string matching is not the best solu-
tion for alias recovery; applying phonetic similarity can greatly improve performance. Fully connected
HMM is designed for sequence disorder pairs. It can be improved by learning from the training set, while
for different aliases for the same formal name, the trained model tends to contain the same character but
in dissimilar order. The trained HMM is hence likely to identify the name entity given the alias if the
named entity was seen in the training set. Among the 72 candidates, our proposed model achieved 0.936
at precision @ 5, which is considerably high.

We further investigated each sample and compared our best model with other HMM settings. The
Fixed Order left-to-right HMM fails for samples such as (菊姐[Ju2 Jie3], 陳菊[Chen2 Ju2]), (世間

2https://www.openfoundry.org/of/download_path/cnsphone2010/2016.08.02/
CnsPhonetic2016-08_GCIN.cin.zip

3http://tzenglaoshi.weebly.com/uploads/6/9/9/2/6992410/pinyin_table.pdf
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情[Shi4 Jian1 Qing2], 王世堅[Wang2 Shi4 Jian1]) and (臭青母[Chou4 Qing1 Mu3], 周美青[Zhou1
Mei3 Qing1]). Though using the All sequence HMM setting seems to solve the problem, this setting
occasionally goes too far and mistakes (金貝勒[Jin1 Bei4 Le4], 金溥聰[Jin1 Pu3 Cong1]) for (金貝
勒[Jin1 Bei4 Le4],王金平[Wang2 Jin1 Ping2]).

In the lower part of the Table 4, we consider the mixed dataset of common aliases and normal name
pairs. The Fully connected HMM model outperforms on the mixed set, but the training process does not
yield better performance because the connections of 24 out of 85 pairs require more knowledge than our
word model has. For example, “台灣之子” [Tai2 Wan1 Zhi1 Zi3, Son of Taiwan] refers to entity “陳
水扁” [Chen2 Shui3 Bian3] because he was the first president of Taiwan who was also born in Taiwan.
“大甲王” [Da4 Jia3 Wang2, King of TaChia] refers to entity “顏清標” [Yan2 Qing1 Biao1] because he
lived in TaChia, a district located in the middle of Taiwan. These samples are corrected in the setting
HMM + PMI Hybrid.

Similar-Phonemic Dataset
Baseline Mingpipe HMM Hybrid

Baseline All sequence Mingpipe Fixed order All sequence Fully connected
Fully connected

No training
HMM+ PMI

Pre @ 1 0.29 0.32 0.37 0.62 0.65 0.78 0.68 NAN
Mixed Dataset

Baseline Mingpipe HMM Hybrid

Baseline All sequence Mingpipe Fixed order All sequence Fully connected
Fully connected

No training
HMM+ PMI

Pre @ 1 0.21 0.19 0.27 0.47 0.49 0.54 0.54 0.59

Table 4: The experiment result with similar-phonemic dataset and mixed dataset

HMM
Similar-phonemic dataset Mixed dataset
top 3 top 5 top 10 top 3 top 5 top 10

Correct 57 59 60 59 59 59
Total 63 63 63 85 85 85

Pre @ N 0.90 0.94 0.95 0.69 0.69 0.75

Table 5: Top-N HMM results

6.4 Error Analysis

We conducted an error analysis on our best setting, hoping to provide direction for others who also are
interested in alias recovery. There were 39 alias and formal name pairs which were not predicted correctly
by Fully connected HMM. Most of these errors were caused by aliases which shared no graphemic and
phonemic similarity with the formal entity names. See for instance (“大甲王” [Da4 Jia3 Wang2], “顏
清標” [Yan2 Qing1 Biao1]). Also, some politicians’ formal names share last names, especially for
politicians whose sons are also politicians; for example “馬鶴凌” [Ma3 He4 Ling2], “馬英九” [Ma3
Ying1 Jiu3]. A rare special case is when name entities share the same alias, for example (“黃敏惠”
[Huang2 Min3 Hui4], “惠惠” [Hui4 Hui4]) and (“翁啟惠” [Weng1 Qi3 Hui4], “惠惠” [Hui4 Hui4]). In
this case our model fails to distinguish the two.

7 Conclusions

In this paper, we proposed a refined HMM for alias recovery of person entities and further improved
the model with document-level PMI ranking, which has not been done previously. Both proposed mod-
els outperform previous work for both datasets. Our experiments show that considering alias recovery
merely as a sequence of character matches yields poor performance.
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