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Abstract

In Cross-Language Information Retrieval, finding the appropriate translation of the source lan-
guage query has always been a difficult problem to solve. We propose a technique towards
solving this problem with the help of multilingual word clusters obtained from multilingual word
embeddings. We use word embeddings of the languages projected to a common vector space on
which a community-detection algorithm is applied to find clusters such that words that represent
the same concept from different languages fall in the same group. We utilize these multilin-
gual word clusters to perform query translation for Cross-Language Information Retrieval for
three languages - English, Hindi and Bengali. We have experimented with the FIRE 2012 and
Wikipedia datasets and have shown improvements over several standard methods like dictionary-
based method, a transliteration-based model and Google Translate.

1 Introduction

With the advancement of the Web and availability of multilingual contents, searching over the Web
is not limited only to one’s native language but is extended to other languages as well. Relevant and
adequate information may not always be available in only one particular language but may be spread
across other languages. This gives rise to the necessity of Cross-Language Information Retrieval (CLIR,
where only two languages are involved) and Multilingual Information Retrieval (MLIR, where more than
two languages are involved), where the query and the documents do not belong to a single language only.
Specifically, in CLIR, the user query is in a language different than the collection.

Since the language of the query is different from the language of the documents in CLIR and MLIR, a
translation phase is necessary. Translating documents is a tedious task. So the general standard is to trans-
late the query and we follow the query translation approach for CLIR. Common or popular approaches
for query translation include, but are not limited to, leveraging bilingual or multilingual dictionaries,
Statistical Machine Translation (SMT) systems, transliteration based models, graph-based models and
online translation systems like Bing and Google Translate.

Each of the approaches have their own advantages and disadvantages. For instance, SMTs require
parallel corpus and for languages such as Indian languages where such resources are scarce, SMTs are
not very suitable. The dictionary based approaches require substantial word pair translations and suffer
from coverage issues and data sparsity problems. We study the effectiveness of word embeddings in such
a scenario where we want to have good quality translations that can improve CLIR performance in spite
of having a scarcity in data-aligned resources.

Representing words using low dimensional vectors, called word embeddings, are now being widely
used in many Natural Language Processing tasks. Each dimension of the vector represents a latent
feature capturing useful properties. It has been seen that in the distributional space defined by the vector
dimensions, syntactically and semantically similar words are close to each other. In the multilingual
space, the objective is to have similar representations of similar words across different languages.
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However, using the translations obtained from multilingual word embeddings directly has some draw-
backs — words that are not much relevant to the source language word, may also come up as a translation.
For instance, for the word “desha” (meaning, country) in Hindi, although correct translations like “coun-
try” and “democracy” were provided, irrelevant words like “aspiration” and “kind” also showed up as
potential translations. Inclusion of such non-related words in a query greatly harms the IR performance.
To address this problem, we propose to use multilingual clustering. In multilingual clustering, words
from the same as well as across language, that more likely to represent similar concepts, fall in the
same group. We use the multilingual embeddings to build these clusters. When multilingual clusters
were used, candidate English translations besides “country” and “democracy” for our running example
“desha” were “nation” and “cities”. Our proposed method has shown significant improvements over
dictionary-based method, a transliteration-based model and Google Translate.

The rest of the paper is organized as follows: Section 2 discusses recent work in the fields of Cross-
Language Information Retrieval and Word Embeddinggs. In Section 3, we describe our proposed ap-
proach. The experimental settings and results have been covered in Section 4. Finally, we conclude in
Section 5.

2 Related Work

2.1 Word Embeddings

Mikolov et. al (2013a) proposed a neural architecture that learns word representations by predicting
neighbouring words. There are two main methods by which the distributed word representations can be
learnt. One is the Continuous Bag-of-Words (CBOW) model that combines the representations of the
surrounding words to predict the word in the middle. The second is the Skip-gram model that predicts
the context of the target word in the same sentence. GloVe or Global Vectors (Pennington et al., 2014)
is another unsupervised learning algorithm for obtaining word vectors.

2.2 Cross-lingual Vector Representations

The two major ways to learn word representations in the cross-lingual domain are to either first train the
embeddings of the words separately for the languages and then project them to a common space (Faruqui
and Dyer, 2014; Mikolov et al., 2013b) or co-learn the embeddings jointly for both monolingual and
cross-lingual domains (Gouws et al., 2015; Luong et al., 2015).

Faruqui and Dyer (2014) uses Canonical Correlation Analysis (CCA) that maps words from two dif-
ferent languages in to a common, shared space. (Mikolov et al., 2013a) builds a translation matrix using
linear regression that transforms the source language word vectors to the target language space. Huang
et. al (2015) constructs translation invariant word embeddings by building on (Faruqui and Dyer, 2014).
It performs matrix factorization where the matrices include a multilingual co-occurence matrix and other
matrices based on the dictionary. Gouws and Sggaard (2015) uses a task-specific dictionary, i.e., a list
of word pairs that are equivalent in some respect, depending on the task. Using a non-parallel corpora,
given a sentence in one language, for each word in the sentence, equivalent words are substituted in its
place. Then the CBOW model of the word2vec tool is employed.

Bilingual Bag-of-Words without Alignment (BilBOWA) (Gouws et al., 2015) uses monolingual
datasets coupled with sentence aligned parallel data to learn word embeddings. They utilize the Skip-
Gram model of word2vec to learn the monolingual features and a sampled bag-of-words technique for
each parallel sentence as the cross-lingual objective. Chandar et al. (2014) shows that by learning to
reconstruct the bag-of-words representations of aligned sentences, within and between languages, high-
quality word representations can be learnt. They use an auto-encoder for this purpose.

Given an alignment link between a word w; in a language /; and a word ws in another language
l2, Luong et al. (2015) uses the word w; to predict the neighbours of the word ws and vice-versa.
Klementiev et. al. (2012) induces distributed representations for a pair of languages jointly. They treat
it as a multitask learning problem where each task corresponds to a single word and task relatedness is
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derived from co-occurence statistics in bilingual parallel data, with word alignments available.

2.3 Cross-Language Information Retrieval

Hull and Grefenstette (1996), Pirkola (1998), Ballesteros and Croft (1996) perform Cross-Language
Information Retrieval through dictionary-based approaches. Littman et al. (1998) performs Latent Se-
mantic Indexing on the term-document matrix. Statistical Machine Translations have also been tried out
in (Schamoni et al., 2014; Tiire et al., 2012b; Tiire et al., 2012a; Sokolov et al., 2014). (Padariya et
al., 2008; Chinnakotla et al., 2008) use transliteration for Out-of-Vocabulary words. In this method the
dictionary-based technique is combined with a transliteration scheme in to a pageRank algorithm. We re-
port their work as one of the baselines. Herbert et al. (2011) uses Wikipedia concepts along with Google
Translate to translate the queries. By mining the cross-lingual links from the Wikipedia articles, a trans-
lation table is built. This is now coupled with translations from Google. Franco-Salvador et. al. (2014)
leverages BabelNet, a multilingual semantic network for CLIR. Hosseinzadeh Vahid et al. (2015) uses
Google and Bing to translate the queries and shows how the performances vary with translations from
two different online systems.

Bhattacharya et. al (2016) uses word embeddings for Cross-Language Information Retrieval, learning
word vectors from the document set. They also propose methods such that the query can be represented
by a vector. We present their work as a baseline. Discriminative projection approaches for documents
have also been applied to CLIR using Oriented Principal Component Analysis (OPCA), Coupled Proba-
bilistic Latent Semantic Analysis (CPLSA) (Platt et al., 2010) and learning by Siamese Neural Network
(S2Net) (Yih et al., 2011). Vuli¢ and Moens (2015) uses word embeddings for CLIR. They collect
document-aligned corpora and randomly merge and shuffle the pairs and feed them to the Skip-Gram ar-
chitecture of word2vec. This way, they obtain cross-lingual word vectors, which they combine to obtain
query vectors and document vectors. They perform IR by computing the cosine similarity between the
query and the document vectors and ranking the documents according to the similarity.

3 Proposed Framework

We follow the query translation based approach towards Cross-Language Information Retrieval from
Hindi to English and Bengali to English. We propose an approach for query translation using multilingual
word clusters obtained from word embeddings.

Word embeddings serve as a potential tool for translation by bridging the gap between good quality
translations and scarcity of data-aligned resources, like sentence-aligned parallel corpora and bilingual
or multilingual dictionaries. Given a training corpus, word embeddings are able to generalize well over
words that occur less frequently as well. Many words in Indian languages have been borrowed from En-
glish and have been added to the vocabulary, without any English translations like “kaiMsara” (meaning,
Cancer, a disease). If a dictionary-based query translation is used for translating such terms, there is a
high probability that the translations of such words shall be missing. Word embeddings on the other hand
provide relevant translations like “cancer”,“disease”,“leukemia” for “kaiMsara”.

To obtain multilingual word embeddings for the languages such that words that are similar across these
languages have similar word vector representations, we use two state-of-the-art techniques to obtain these
embeddings. The first approach is based on (Mikolov et al., 2013a) and (Mikolov et al., 2013b). The
second approach is based on the idea of (Vuli¢ and Moens, 2015). We use these methods since they
use comparable and document-aligned corpora respectively, which are not very difficult to obtain. As
described earlier, embedding methods requiring parallel corpora are difficult to get in resource-scarce
languages. We describe the methods in Section 3.3.

In spite of multilingual embeddings being a powerful tool, translations obtained directly (by picking
the top k target language words that have the highest cosine similarity with the source word) are some-
times irrelevant to the source language word. For instance, for the Hindi word “pheMkanaa” (meaning,
throw) besides giving the correct translation “throw”, the method also came up with not-so-relevant
translations like “wash” and “splashing”. In such situations, the performance of the CLIR system is
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greatly harmed. To deal with such scenarios, we propose the use of clustering. Multilingual clustering
groups together similar words across languages that share the same concept. After the multilingual word
embeddings have been obtained, we construct a graph G = (V| E) from the word embeddings. V/, set
of vertices, represents words from the languages and F, set of edges, is formed if the cosine similarity
between any two words (or vertices) is above a particular threshold and if so, then the weight of the edge
is the cosine similarity value.

After such a graph has been constructed, we employ Louvain (Blondel et al., 2008), an efficient
community-detection algorithm that runs in O(nlogn) time. Applying Louvain on the above graph
outputs clusters that contain words from all the languages that represent the same concept. More details
on graph and cluster formation are provided in Section 3.4.

On clustering, words across languages that represent a certain concept will form dense clusters and
edges representing a high cosine similarity value but an irrelevant translation will get overshadowed.
Hence, the cluster containing “pheMkanaa” has similar and more related words like “hurl” and “dart”
instead of “wash” and “splashing”, which are now in a different cluster. These clusters are now used for
the purpose of query translation for CLIR as described in Section 3.5.

3.1 Dataset

For obtaining multilingual word embeddings, we use two different approaches requiring two kinds of
corpora: one approach requires comparable monolingual corpora for each of the three languages (En-
glish, Bengali and Hindi) and dictionaries containing Hindi-English and Bengali-English translations.
The other approach requires document-aligned corpora for the three languages. The dataset details are
as follows :

e Comparable Corpora : We have used FIRE (Forum for Information Retrieval Evaluation, developed
as a South-Asian counterpart of CLEF, TREC, NTCIR) 2012 dataset !. The documents were obtained
from the newspapers, ‘The Telegraph’ and ‘BDNews24’ for English; ‘Amar Ujala’ and ‘Navbharat
Times’ for Hindi; ‘Anandabazar Patrika’ and ‘BDNews24’ for Bengali. There were 1,427,986 English;
1,164,526 Hindi and 500,122 Bengali documents.

e Document-Aligned Corpora: We have used the Wikipedia dumps? available for download for each of
the three languages, English, Bengali and Hindi. In order to get the cross-lingual articles, we made use
of the inter-wiki links that exist in the corresponding Wikipedia pages. There were 55,949 English-
Hindi pages; 34,234 English-Bengali pages and 12,324 English-Bengali-Hindi pages.

e Cross-Language Information Retrieval: We used the FIRE 2012 queries for Hindi and Bengali for
Hindi to English and Bengali to English CLIR. There were 50 queries with topics numbered from
176-225. We used the title fields for querying.

e Other resources: We used a Hindi-English dictionary® that had 26,485 translation-pairs, Bengali-
English dictionary* containing 29,890 translation-pairs, Stopword lists® and an English Named-Entity
Recognizer®. Louvain Method for community detection algorithm (Blondel et al., 2008) was used for
clustering.

3.2 Pre-processing the Dataset

We perform the basic pre-processing tasks on the documents, like removing the html tags, sentence
boundaries and reducing all the letters to lowercase (for English). We obtain word vectors from this
document set. We count the term frequencies of the words and remove stopwords, top 50 most frequently
occurring words and words below frequency of 20 (for Wikipedia dataset), 50 (for English and Bengali

"http://fire.irsi.res.in/fire/data
https://dumps.wikimedia.org/backup-index.html
3http://ltrc.iiit.ac.in/onlineServices/Dictionaries/Dict_Frame.html
4http://www.cfilt.iitb.ac.in/Downloads.html
Shttp://www.ranks.nl/stopwords
*http://nlp.stanford.edu/software/CRF-NER. shtml
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Table 1: Statistics of the number of words (vertices) used to create word clusters, separately for FIRE

and Wikipedia Datasets
Pair Multi
English-Hindi English-Bengali English-Hindi-Bengali
English | Hindi | English | Bengali | English | Hindi | Bengali
FIRE 129,688 | 84,773 | 129,688 | 93,057 | 129,688 | 84,773 | 93,057
Wikipedia | 106,746 | 35,361 | 77,302 | 24,794 | 50,620 | 16,534 | 13,490
Table 2: Statistics of the Bilingual and Multilingual Clusters
# Levels # Clusters
English-Hindi | English-Bengali | English-Hindi | English-Bengali
Pair FIRE 5 5 403 384
Wiki 4 4 19611 20627
Multi Wiki 5 406

FIRE dataset) and 20 (for Hindi FIRE dataset). We choose these numbers so that we have balanced
number of words for the three languages. We then obtain the embeddings of the remaining words.

3.3 Obtaining Multilingual Word Embeddings

For creating multilingual word clusters using an embedding based approach, we first need to obtain mul-
tilingual word vectors. Multilingual word vectors can be obtained from parallel corpora (Gouws et al.,
2015), document-aligned corpora (Vuli¢ and Moens, 2015) and comparable corpora using a dictionary
(Mikolov et al., 2013b). Since, Hindi and Bengali are resource-scarce languages, parallel, sentence-
aligned data are scarce and insufficient to train word vector models. Hence, we use the methods involv-
ing document-aligned corpora and comparable corpora using a dictionary for obtaining word embeddings
and test their performance. We describe these two methods next.

3.3.1 Dictionary Projection based Approach using Comparable Corpora

We obtain monolingual word embeddings separately for English, Hindi and Bengali using the word2vec
(Mikolov et al., 2013a) tool available for download 7. We use the Continuous Bag-of-Words (CBOW)
variant to learn the monolingual word embeddings, as it has been shown to work faster than Skip-Gram
for large datasets.

For learning the projection function from the source languages (Hindi and Bengali) to the target lan-
guage (English), we use the linear regression method similar to (Mikolov et al., 2013b). The idea is as
follows: given a dictionary of translation word-pairs {z;, y;} whose monolingual word vectors z; € R%
— a dp- dimensional embedding, y; € R92 — a dy- dimensional embedding, are known, the objective is
to learn a translation matrix W such that the root mean square error between Wx; and y; is minimized.
Once W has been learnt, it can now be used to project the entire vocabulary of the source language to
the English space. The vectors of the words from all the three languages are now in a common vector
space and can be used for translation.

3.3.2 Learning Embeddings together in a Joint Space using Document-Aligned Corpora

Vuli¢ and Moens (2015) uses document-aligned corpora to learn bilingual embeddings. We use this
approach and extend it for obtaining multilingual embeddings together in a joint space.

Let D = {(ds;,dt, ), (dsy,dty) - - -, (ds,,dy, )} be the set of document-aligned, comparable corpora
where (ds,,d;,) denotes a pair of aligned documents in source language s and target language ¢ and
n is the number of such aligned-document pairs constituting the corpus. In order to learn bilingual
word embeddings, the first step is to merge the two document pairs (ds,, d¢,) in to a “pseudo-bilingual”

"https://code.google.com/p/word2vec
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document and remove sentence boundaries. Next, this bilingual document is randomly shuffled and is
used as training for monolingual skip-gram model of word2vec (Vuli¢ and Moens, 2015).

The idea of document-aligned “pairs” can be readily extended to document-aligned “triplets”, where
now there are three documents (de,, dj, , dp, ) in three languages that are document-aligned. In this case,
we merge and shuffle the i*" document-triplet and obtain embeddings for words from all the three lan-
guages.

3.4 Creating Graph and obtaining Clusters

After obtaining the multilingual embeddings separately by the two methods described above, we compute
the cosine similarities between the word vectors. Now a graph G = (V, E) is constructed, where the
vertex set V represents words from both the languages and E defines the set of edges - an edge exists
between two vertices if the cosine similarity value of the word embeddings of the two vertices is greater
than or equal to a threshold of 0.5. The edge weights are the cosine similarity of the embeddings of the
connecting vertices (words).

After the graphs have been obtained, we apply the Louvain algorithm for community detection (Blon-
del et al., 2008) separately for the graphs. Given a graph, Louvain looks for small clusters, optimizing
the modularity in a local way. In the first pass, small communities are formed. In the subsequent passes,
it combines communities from the lower level to create larger sized clusters. The iteration stops once
maximum modularity is achieved. It performs hard clustering, that is, a word belongs to only one cluster.
The algorithm runs pretty fast in O(nlogn) time.

Table 1 shows word-count statistics that have been used as vertices to create clusters. “Pair” indicates
that the words (or vertices) are from two languages while “Multi” indicates that the words (or vertices)
are from three languages.

Table 2 shows the number of levels and number of clusters for each language pair on different corpora.
Since, multilingual clusters using the dictionary-based approach were not used in our experiments due
to poor performance, we do not report its statistics.

In lower levels, the number of clusters were more and words that should belong to the same cluster
were scattered in other clusters. In the topmost level of clustering, although there were some clusters that
had a large number of words and were unrelated, most of them had related words in the same cluster. On
observing the bilingual and multilingual clusters closely, we find that the bilingual clusters were mostly
small and contained words that were translations and/or transliterations of each other. For clusters that
were large, the communities were well representative of the words. Our main focus was on multilingual
clusters since the bigger objective of our work is to have an unified representation of words for Indian
Languages. Following are some examples of clusters 8 :

e FIRE Hindi-English : (inflation, mudraasphiiti, money, paise, rakama, dhanaraashi, prices, cost)

e Wikipedia Multi : (aarthika (hi), currency, economics, mudraasphiiti (bn), inflation, arthaniiti (bn),
munaaphaa (hi))

3.5 Query Translation from Word Clusters

After forming multilingual word clusters, we use them for the purpose of query translation in CLIR.
Given a query Q = q1g2 - - - ¢, in Hindi or Bengali, we first find the cluster ¢, to which the query word
q; belongs. We then extract all the English words from ¢ and pick the top ¢ most similar English words
from the cluster ¢y for the query word ¢;. We repeat this step for all the query words and append them
consecutively. Note that while the stopwords in the query are already filtered, the named-entities do not
have the embeddings because of filtering of words below the threshold frequency. These named-entities
are dealt separately, as described in the next section.

8 All non-English words have been written in ITrans using http://sanskritlibrary.org/transcodeText .
html
Hindi words have been abbreviated as ‘hi’ and Bengali words as ‘bn’.
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Table 3: Performance of the Baseline Approaches for Hindi to English and Bengali to English CLIR on
FIRE 2012 Dataset

Hindi to English CLIR | Bengali to English CLIR
MAP P5 P10 MAP P5 P10
English Monolingual 0.3218 | 0.56 0.522 | 0.3218 | 0.56 0.522
FIRE 0.2802 | 0.436 | 0.392 | 0.2368 | 0.334 | 0.318
Wikipedia | 0.1524 | 0.232 0.22 | 0.3027 | 0.448 | 0.402

Bhattacharya et al. (2016)

Dictionary 0.1691 | 0.2048 | 0.2048 | 0.134 | 0.165 | 0.132
Chinnakotla et al. (2008) 0.2236 | 0.3347 | 0.3388 | 0.18 | 0.275 | 0.232
Google Translate 0.3566 | 0.576 | 0.522 | 0.294 | 0.524 0.48

3.6 Transliteration of Named Entities

Although most of the named-entities are filtered out in the pre-processing stage, some words like the
names of political parties, e.g., BJP, Congress in Hindi and Bengali have embeddings and so we obtain
similar words like the names of other political parties and also words like ‘government’ and ‘parliament’
in English. During our experiments, we observed that inclusion of such terms can harm the retrieval
process and so we prefer to transliterate these. Since we did not have access to any Named-Entity
Recognition (NER) tool for Hindi and Bengali, we resort to a transliteration based process similar to
(Chinnakotla et al., 2008; Padariya et al., 2008). For each Hindi/Bengali character, we construct a table
of its possible transliterations and also apply some language specific rules. Given a Hindi/Bengali query
term h, we first transliterate it using the method described above and for each word e in the list of
words returned as named entities by the NER tool for English, we apply the Minimum Edit Distance
algorithm to / and e. If we find an e within a range of O to 1.5, we treat i as a named-entity and use the
transliteration with the least distance. If no such e is returned, we consider it as a non-named entity and
use the cluster based approach to obtain translation.

4 Experiments

We used Apache Solr version 4.1 as the monolingual retrieval engine. The similarity score between
the query and the documents is the default TF-IDF Similarity °. The human relevance judgments were
available from FIRE. Each query had about 500 documents that were manually judged as relevant (1)
or non-relevant (0). We then used the trec-eval tool '° for finding the Mean Average Precision (MAP),
Precision at 5 (P5) and Precision at 10 (P10).

4.1 Baselines

In this section we describe the baseline methods we have used to compare our proposed approach.

e English Monolingual: FIRE provides corresponding queries for most Indian languages and also
English. This baseline uses the English queries for retrieval.

e Bhattacharya et al. (2016): In this approach, once the word vector of each query term projected in
the target language (v) is obtained, cosine similarity between the vector embedding of each English
word and v is computed, and the 3 best translations are picked. Although they obtained best results
when the query as a whole was represented as a vector but our method involves translation at the
cluster level and so we do not find such a comparison suitable. Hence, we report their result on
query word vectors.

e Dictionary: This is the dictionary-based method where the query word translations have been ob-
tained from the dictionary. For words that contain multiple translations, we include all of them.
’https://lucene.apache.org/core/3_5_0/api/core/org/apache/lucene/search/

Similarity.html
Yhttp://trec.nist.gov/trec_eval/
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Table 4: Performance of the Proposed Cluster-based Approach for Hindi to English and Bengali to
English CLIR on FIRE 2012 Dataset

Hindi to English CLIR | Bengali to English CLIR

Datasets Methods MAP | P5 | P10 | MAP | P5 P10
Cluster 0352 | 04503 | 0.427 | 0.3038 | 0478 | 0418
. FIRE Cluster+DT | 0362 | 0537 | 052 | 0326 | 0495 | 0.464

Pair Cluster+DT
En-Hi / jp 0452 | 0.627 | 0.578 | 0342 | 0534 | 0.49
En-Ben Cluster 0.2832 | 03760 | 0.35 | 03233 | 0468 | 043
Wikipedia | Cluster+DT | 0.324 | 0.408 | 0.386 | 0.361 | 0.482 | 0.458
Cluster+DT 042 | 0526 | 0501 | 0389 | 0517 | 0.487

+GT
Multi Cluster 03014 | 0446 | 037 | 03557 | 0476 | 0418
. | Wikipedia | Cluster+DT | 0.356 | 0.541 | 0.510 | 0.396 | 0.538 | 0.501
En-Ben-Hi

Cluster+DT+GT | 0.432 | 0.575 | 0.538 | 0.42 0.56 0.545

Named entities are handled as in Section 3.6. If the translation of a query word is not present in the
dictionary, it is ignored.

¢ (Chinnakotla et al., 2008) : The method proposed by (Chinnakotla et al., 2008) is used as a base-
line.!1.

e Google Translate : Translations of the Hindi query to English have been obtained by using Google
Translate.

4.2 Proposed Cluster-based Approach

We have experimented with various similarity thresholds and various levels of clustering and report the
best results. We experimented with the following variants of our approach :

e Cluster: In this method, we simply pick the top 3 (experimentally chosen) most similar English
words for each query term within the cluster and append them. We proportionally assign weights to
each translation of a query term according to its similarity to the query word such that the weight of
all the translations of a query term add up to 1. The named-entities were assigned a weight of 1.

e Cluster + DT: We combine translations from the dictionary as well as from the clusters. We first
take translations from the dictionary, if a translation exists. If not, we take it only from clusters.
In case translations exist in both, we assign 80% weightage to the cluster translations and 20%
weightage to the dictionary translations. '?

o Cluster + DT + GT: In this scheme, we combine translations from Google Translate as well as
with the dictionary. We assign equal weightage to Cluster words and translations from Google,
40% each, and the rest to dictionary translations.

4.3 Results

Table 3 shows the baseline results for the CLIR task for Hindi to English and Bengali to English. The
results of our proposed approached are in Table 4. For Hindi to English CLIR, dictionary-projection
method performs the best and the performance improves when it is combined with dictionary translations
and translations from Google. This is because the dictionary for Bengali-English was not as rich as
Hindi-English. For Hindi-English the number of word pair translations trained on were 8714 and for

!(Chinnakotla et al., 2008) is an improved version of (Padariya et al., 2008)
"2We experimented with other weightages like 70%-30%, 90%-10%, but the 80%-20% division gives the best results.
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Table 5: Some example queries and their performances

Translation .
Query Gloss Method Translation MAP | P5 | P10
poliyo Polio No Cluster vaccine polio 04 | 055|048
o campaign campaigns
unmuulana | eradication — : -
. .. Wiki Pair polio vaccine
abhiyaana mission o . 0.6 0.7 | 0.6
Cluster eradication mission
Wiki Multi pth 1nfect10n' 0.85 1 0.9
Cluster prevention campaign
Greece 2004 euro
griisa iuro | 2004 Greece | No Cluster banknotes 0.5 | 07 | 06
tournament champions
kaapa 2004 | Euro Cup . .
va victory victory win defeat
Jay Wiki Pair Greece 2004 Euro euro
trophy Football teams 0.6 [0.75| 0.7
Cluster . S
victory win winning
Wiki Mult Elif)etercoe iooct 09 | 1 |08
Cluster SOPHY cup ) )
champions winner

Bengali-English the number was 6012. Multilingual word clusters perform better than bilingual word
clusters when the multilingual embeddings have been learnt jointy using the Wikipedia document-aligned
corpora suggesting that when another language is incorporated, cluster information improves and words
in the clusters are more related with each other and aligned to the semantic information exhibited by the
cluster.

Multilingual and bilingual word clusters formed using Wikipedia document-aligned data perform bet-
ter for Bengali to English CLIR comapared to the dictionary-based approach using FIRE data. Multi-
lingual word clusters alone performs well when compared in terms of MAP with Google Translate and
shows improvements when combined with dictionary and Google Translate. The number of documents
in Bengali from the FIRE dataset were less and this may be a probable cause for its poor performance.

Table 5 shows two example queries. The first query is for Hindi to English CLIR and the second
query is for Bengali to English CLIR. For the first two translation methods, no translation is available for
“unmuulana” (meaning, eradication) but multilingual clustering suggests the word “prevention”. Also,
for “poliyo”, multilingual clustering comes up with more related word “infection” rather than “vaccine”
since “polio” is primarily a disease/infection and vaccination is a medication and is secondary. For the
second query, the word “Euro” is related to sports and not economics. No Cluster method wrongly pre-
dicts the context and suggests words like ‘banknotes”. On the other hand, pairwise clustering understands
that “cup” is related to some sports, “football” to be more specific. Multilingual clustering restricts to a
shorter query and hence translates to only “trophy” and “cup”.

5 Conclusion and Future Extensions

In this paper, we proposed a method to cluster semantically similar words across languages, and evaluated
it for query translation in the CLIR task. Experimental results confirm that it performs better than the
dictionary method, English monolingual and transliteration based approaches. When combined with the
dictionary and Google Translate in a hybrid model, it achieves the best performance. In future, we plan
to extend the work for other Indian languages and obtain communities containing similar concept in
multiple languages.
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