
Proceedings of the 6th Workshop on South and Southeast Asian Natural Language Processing,
pages 142–151, Osaka, Japan, December 11-17 2016.

Improving the Morphological Analysis of Classical Sanskrit

Oliver Hellwig
Düsseldorf University, SFB 991

ohellwig@
phil-fak.uni-duesseldorf.de

Abstract

The paper describes a new tagset for the morphological disambiguation of Sanskrit, and compares
the accuracy of two machine learning methods (CRF, deep recurrent neural networks) for this
task, with a special focus on how to model the lexicographic information. It reports a significant
improvement over previously published results.

1 Challenges of Sanskrit Linguistics and Related Research

Classical Sanskrit is a strongly inflecting Old Indo-Aryan language that developed out of earlier Vedic
dialects in the middle of the first millenium BCE. Ever since, Sanskrit has been the main medium for
transmitting the large corpus of religious, philosophical, scientific, and literary texts that shaped the
intellectual history of ancient India.

Sanskrit poses considerable challenges for NLP at the levels of tokenization, lemmatization, and mor-
phological analysis (Kulkarni and Shukla, 2009). These three steps are deeply intertwined in Sanskrit,
because single word forms (padas) are merged by a set of phonetic rules called Sandhi “connection” into
larger strings. In order to analyze a sentence at the morphological and lexical level, an NLP tool must be
able to simultaneously resolve the Sandhis, and to detect the correct morphological and lexical path in
the resulting lattice of word hypotheses. As a consequence, the tokenization of a sentence is guided by
its lexical and morphological analyses. Due to these linguistic peculiarities, morphological ambiguity is
introduced on three levels:

Inherent : Isolated Sanskrit forms are frequently ambiguous. The verbal form gacchati, for example,
has three readings as 3rdSG.PR of the verb gam ‘to go’ (“(s)he / it goes”), L.SG.M. of the present
participle of this verb (“in the going [some referent]”), and L.SG.N. of the same participle.

Sandhi : When morphologically unambiguous forms such as draupadı̄ (N.SG.F. of draupadı̄ ‘name
of a woman’) are processed with Sandhi rules, they can become ambiguous. While the sentence
draupadı̄ gacchati ‘Draupadı̄ goes’ allows only one reading of draupadı̄, the sentence draupadı̄
āgacchati ‘Draupadı̄ arrives’ is further processed by the Sandhi rule ı̄ + ā = yā, resulting in
draupadyāgacchati. When this string is analyzed with an NLP tool, the sequence -yā- can be re-
solved into (1) the “correct” source phonemes ı̄ + ā, but also into (2) i + ā, (3) ya + a, (4) ya + ā, (5)
yā + a, or (6) yā + ā, where solutions (1), (2), (5), and (6) represent lexico-morphologically, but not
necessarily semantically valid readings.1 The morphological analyzer (MA) has to decide between
three readings draupadı̄ (N.SG.), draupadi (V.SG.), and draupadyā (I.SG.), which are distinct in
their un-Sandhied, phonetically disambiguated forms.

bahuvrı̄hi compounds : Sanskrit has a highly productive class of compounds called bahuvrı̄his (“much
rice”), which form possessive expressions. Compounds of this class behave like adjectives, because
they inherit the inflectional information from their governing possessors. While the non-possessive

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http:
//creativecommons.org/licenses/by/4.0/.

1(2) “O Draupadı̄, he/she/it comes”; (5*) “With Draupadı̄ ... in the not-going”; (6) “He/she/it arrives together with Draupadı̄”

142



compound bahu-annam ‘much food’ is inflected according to the grammatical class of its final
member anna ‘food’ (neutre noun on short a), it takes over the inflectional class of the govern-
ing term strı̄ ‘woman’, when used in the bahuvrı̄hi construction bahu-annā2 strı̄ ‘a woman who
has much food’. Morphological ambiguity is introduced in constructions such as mahā-vr. ks. am
udyānam ‘big-tree + garden’, where the first element mahā-vr. ks. am has two readings:

1. possessive compound: “the garden that has (a) large tree(s)”. mahā-vr. ks. am is N. or A.SG. fol-
lowing the selected morphological information of udyānam (N. or A.SG.N.), and its gender
changes from M. to N.

2. non-possessive compound: “the big tree [and] the garden”. mahā-vr. ks. am should preferably be
analyzed as A.SG.M.

As in the case of Sandhi, resolving such cases correctly requires long-range contextual information.

Tagging Sanskrit texts requires a robust algorithm. Apart from the morphological disambiguities just
described, the algorithm should be able to handle texts from a wide spectrum of domains, and from
a timespan of over 2,500 years. Classical Sanskrit is generally assumed to be regulated by Pān. ini’s
grammar As.t.ādhyāyı̄ (Scharfe, 1977) on the phonetic, morphological, and – to a certain degree – the
syntactic level, and by the large dictionaries such as the Amarakośa (approx. 3.-5. c. CE) and the
Abhidhānacintāman. i (12. c. CE; see Katre (1991)) on the lexicographic level. However, the actual use
in texts may frequently diverge from such an ideal language.3

Although better explored than Middle Indo-Aryan languages (see, for instance, Alfter and Knauth
(2015)), Sanskrit is still a low-resource language from the perspective of NLP. Research on morpho-
logical disambiguation concentrates on building analyzers with a high coverage of valid word forms
(Huet, 2005; Jha et al., 2009a; Mishra, 2009). Frameworks for analyzing complete sentences either rely
on Finite State methods (Huet, 2006), or a combination of rule-based and statistical methods (Hellwig,
2015).

The present paper adopts a two-stage approach that resembles the methods proposed in Hajič and
Hladká (1998). During the first stage, Sandhis are resolved, and the most probable lexical reading is
detected using a factorized bigram language model. Morphological disambiguation, the topic of this
paper, is performed during the second stage. At this point, the algorithm has access to the most probable
lexical analysis of each word, and to the corresponding morphological reading(s) that are determined
using a rule-based morphological analyzer. The experiments reported below deal with the question of
how morphological ambiguities can be resolved in this second stage. It is important to keep in mind that
the lexical and morphological information can contain errors, if the algorithm does not select the correct
lexical reading in the first stage.

2 Method

2.1 Tag set
The inflectional morphology of a Sanskrit word can be described by five, partly incompatible categories.
Nouns, adjectives, pronouns, and verbal participles are inflected by (1) eight cases, (2) three numbers
(SG., DU., PL.), and (3) three genders (M., F., N.). Unmarked forms of these word classes are used
in compound formation. Finite verbal forms are marked for number and (4) person (1st, 2nd, 3rd), and
(5) by a complex system of tenses and modes. The rule based morphological analyzer produces fine-
grained annotations that cover these five morphological categories. Because the classification methods
used in this paper require a single output variable from a nominal scale, an obvious approach would use
the Cartesian product of the five morphological categories as target variable. However, this approach
unnecessarily complicates the learning process, because most feature combinations cannot cooccur in
the morphological analysis of a single word. As a consequence, Hellwig (2015) reduced the tag set used

2-ā is the termination the N.SG. of feminine nouns and adjectives. anna cannot show this termination in non-possessive
use.

3Examples are the dialect called Epic Sanskrit (Salomon, 1995), or the prolific use of Vedic forms in classical texts such as
the 12th century Bhāgavatapurān. a that deal with ritualistic and religious questions.

143



in morphological disambiguation by distinguishing between nominal and finite verbal inflection. While
case, number, and gender information are used for nominally inflected forms, the tense-mode axis of the
verbal system is reduced to a few coarse tense categories.

An evaluation of cooccurring morphological readings shows that this tag set can be reduced further
without creating a significant amount of collisions, i.e. distinct morphological readings that are mapped
to the same nominal output variable. This reduced tag set distinguishes the following output categories:

Tags 1-9 are occupied by finite verbal forms. Contrary to Hellwig (2015), tense and mode information
is completely discarded during morphological disambiguation. Person and number are mapped to
the first 3× 3 = 9 tag classes.

10 : absolutive (gatvā ‘having gone’)

11 : infinitive (gantum ‘in order to go’)

12 : indeclinable words (adverbs, particles; cover term for tag C in the IL-POSTS tagset (Jha et al.,
2009b))

13 : nominal forms in compounds, without gender distinction

14-86 : The last 8 (case) × 3 (number) × 3 (gender) = 72 tags describe inflected nominal forms, which
are responsible for the majority of ambiguities and errors in this task (refer to Table 3).

The size of the new tagset is reduced by a factor of more than 4 when compared with the set proposed in
Hellwig (2015).

2.2 Classifiers
This paper applies two types of sequential classifiers to the task of morphological disambiguation. First,
it uses first-order Conditional Random Fields (CRF, Lafferty et al. (2001)), which have been applied suc-
cessfully, among many other fields, for various tasks in Indian NLP (Hellwig, 2015; Pandian and Geetha,
2009).4 The Viterbi decoding of the CRF has been modified in order to include the hard constraints
generated by the morphological analyzer. Given a sequence of m words, and n possible tags for each
word, the default implementation of Viterbi considers all n tags for each of the m words. The modified
version only considers the proposals of the morphological analyzer for each of the m words, setting the
output probabilities for the other options to 0.

CRFs are compared with the results obtained by using deep recurrent neural networks (NN). This paper
implements a bidirectional architecture (Schuster and Paliwal, 1997) with Long Short-Term Memory
units (LSTM, Hochreiter and Schmidhuber (1997)), which circumvent numerical problems of BPTT
(Hochreiter et al., 2001). The NN consists of the following elements:

1. A fully connected input layer with an embedding size of 70, tanh activation, and a subsequent
dropout layer with a dropout rate of 20% (Hinton et al., 2012)

2. Two bidirectional LSTM units

3. An output layer that is fully connected to the output of the second bidirectional LSTM.

The network is trained with the sentence-level log-likelihood criterion described in Collobert et al. (2011,
2530/31), by which transition probabilities between tags are integrated into the learning process. Weights
are learned using gradient descent for 25 iterations and an initial learning rate of 0.01. The first 15
iterations don’t apply any gradient descent optimization strategy, allowing the network to make large
steps towards the (local) optimum. Iterations 16-25 are performed using Adagrad (Duchi et al., 2011).

4The software package crfsuite (www.chokkan.org/software/crfsuite/) is used for learning and decoding.
Settings: optimization with L-BFGS, L1 = 1, L2 = 2, 100 iterations.

144



2.3 Features
The input layer of the NN contains at least one section in each of the following experiments. These
sections receive (1) morphological, (2, optional) lexical, and (3, optional) word semantic information
from the output of the morphological analyzer.

As mentioned above, the morphological analyzer generates at least one morphological reading for
each word in an input sequence. These readings are encoded with the new tagset (Section 2.1), and
directly used as input features for the NN. If a word has n out of 86 possible morphological readings,
the first section of the input for the NN is a vector of length 86, in which the n positions representing the
morphological readings are set to 1, and the remaining ones to 0. – For the CRF, all tags are combined
into a single factor weighted with 1.0 (e.g., tags 15, 20, and 30 are combined into morph_15_20_30).

Previous research has put a strong focus on the question of how to provide (sparse) lexical information
to machine learning methods. Therefore, this paper tests five different formats for encoding lexical
information in the second section of the input layer:

none: This setting provides an unlexicalized baseline that is used for estimating the influence of lexical
information on morphological disambiguation. No information is written in the lexical section.

1h: The lexical section is a sparse binary vector. The position corresponding to the current word w is set
to 1, and all other positions are set to 0. The weights of the first layer are initialized with uniformly
distributed random values from a small range around 0, and all weights in this layer are learned
during training. Lemmata that occur less than five times in the training corpus, are mapped to an
OOV entry in the input vector.

morfessor: In analogy to methods presented in Creutz et al. (2007) and Mousa et al. (2010), this setting
uses sub-lexical representations of lexemes. Each nominal lemma occurring in the training part of
the corpus and its frequency are passed to the tool Morfessor (Creutz and Lagus, 2007), and
the resulting morphemes are used instead of the full lexical information. When setting the mini-
mum length of a morpheme to two Sanskrit phonemes, Morfessor produces 11,021 morphemes
out of 66,202 nominal lemmata, which reduces the size of the lexical input space by more than
83%. A closer inspection shows that many of the proposed morphemes are meaningful from the
perspective of Sanskrit derivation morphology as, for instance, the set ati-duś-cara ‘very difficult
to perform’, ati-dur-dhara ‘very difficult to be administered’, ati-dur-dina ‘very bad weather’, and
ati-dur-jaya ‘very difficult to be conquered’. Given the quality of such segmentations, one may ex-
pect that this setting strongly improves over the non-lexicalized baseline. – Morfessor features
are fed into the NN in the same way as 1h, except that more than one position may be set to 1 in
the input vector. For CRF, each morpheme is presented as a separate input variable, such that the
original lexeme is replaced by a decomposed representation.

w2v-sparse: The lexical section of the input layer has the same form as in 1h, but the weights of the
first layer are initialized with neural word embeddings generated from the training part of the corpus
using the word2vec tool (Mikolov et al., 2011).5 The w2v embeddings are meant to accelerate
the training of the NN. – This setting is not meaningful for CRF, and no results are reported for it in
Table 1.

w2v-dense: The same w2v embeddings are used as direct inputs to the NN, instead of initializing the
embeddings as in w2v-sparse. As a consequence, the length of the lexical section equals the size of
the learned embeddings (70 in the following experiments).

In addition to morphological and lexical information, the configuration sem associates each noun w with
a distribution over 35 high-level word semantic categories S. The 35 dimensions of S are created by
collapsing the hierarchical word semantic tree, with which parts of the DCS are annotated, to 35 top-level

5Training settings of word2vec: bow, embedding size: 70, window size: 8, negative sampling, minimal corpus frequency:
3

145



categories. The collapsing process is primarily guided by the weights6 of the tree nodes, because nodes
with high weights are assumed to represent central concepts that should not be merged into higher-level
concepts. The categorization also involves a manual labeling that overrides some unsupervised weight-
based decisions7 and reorders parts of the tree.8 The final 35 categories contain top-level concepts such as
“person” (human beings, deities, animals acting like humans), “landscape” (mountains, lakes, rivers, ...),
“quantities”, or “movement”. The feature vector for w is built by collecting all semantically annotated
occurrences of w in the training part of the corpus, mapping each of the annotated concepts onto S, and
setting its corresponding position in the 35 dimension binary feature vector to 1.

2.4 Data
All data are extracted from the Digital Corpus of Sanskrit (DCS), which contains 3,987,000 tokens with
manually validated lexical and morphological annotations. The texts in the DCS cover the complete
linguistic development of classical Sanskrit starting from late Vedic texts such as the Upanis.ads (5. c.
BCE), and reaching up to Sanskrit texts from the 19. c. CE. Because morphological disambiguation
operates at an intermediate level of the processing pipeline (refer to page 2), the complete corpus is
re-analyzed, and the correct lexical and morphological analysis is stored for each word, along with its
morphological readings. These data are used in two modes. When evaluating the influence of features
and of the machine learning models, only one third of the data is used in fast mode. The final tests
described in Section 3 are run on the complete data set (full mode). Data are split into 1

10 for testing and
9
10 for testing in both modes. To make different settings comparable, the train-test split does not involve
a stochastic element.

3 Evaluation

This section reports how results are influenced by feature and model selection, and examines which
linguistic phenomena are mainly responsible for errors made by the morphological disambiguation. If
not mentioned otherwise, evaluation only considers the 42% of morphologically ambiguous forms. The
“final” accuracy rate that also considers forms with only one possible solution is clearly higher (refer to
the last row of Table 2).

Table 1 contrasts the results of CRF and LSTM for different lexicalizations in “fast mode”. Re-
markably, LSTM outperforms the CRF in all evaluation measures. A test with a higher-order CRF (not
reported) shows that the accuracy of the CRF cannot be improved relevantly when wider ranges of output
label transitions are considered, and increasing the range of input features also does not improve over the
reported results.9 So, the deep NN seems to be more appropriate for this task than a CRF.

Comparing the previous large and the new smaller tagset yields consistent results for CRF and
LSTM.10 While the previous tagset performs better for some low-frequency classes (higher F score),
the new tagset produces a higher overall accuracy, and requires less time for training due to its lower
dimensionality. In addition, Table 1 demonstrates the high influence of the lexical representation. While
the unlexicalized variant (none) suffers especially from low recall, the values of morfessor are clearly
closer to the lexicalized than to the unlexicalized version, indicating that this approach may turn out to be
useful for (ancient) Indian languages for which no extensive lexical resources, but large unannotated cor-
pora are available. Finally, the variants using word embeddings (w2v-sparse and -dense) produce lower
accuracy rates than the one-hot-encodings. Adding the broad word-semantic classes further improves
the accuracy of the 1h encoding, although the difference to 1h is not significant.

6The weight of a node is defined as the number of occurrences of the concept linked to the node, plus the sum of this number
for all its subnodes.

7Example: Although the node “mountain” has a very high weight, it is further collapsed into a parent node “elements of the
landscape”, which covers related concepts such as “lake” or “river”.

8Example: The subclasses of the concept “person” were widely scattered over the original tree and could, therefore, not be
subsumed automatically under one common ancestor.

9A first-order CRF with a feature window of 7 instead of 5 words produces P = 82.84, R = 64.13, and F = 68.71.
10Results for the tagset used in Hellwig (2015) have been recalculated for this paper using the same settings as for the other

experiments.

146



CRF LSTM
Lex. P R F A P R F A
morfessor 80.54 64.21 68.61 86.27 81.98 71.27 74.13 88.55
none 75.4 58.31 62.13 82.34 76.35 60.96 63.97 83.33
1h 82.79 65.47 70.04 87.56 82.39 74.98 77.06 90.49
1h (old tagset) 86.21 68.64 72.56 87.11 82.81 76.41 77.3 89.89
1h sem 80.4 65.19 69.64 87.34 81.34 76.02 77.69 90.61
w2v-sparse - - - - 78.61 71.93 73.94 89.29
w2v-dense 72.86 59.05 62.84 82.24 79.52 69.9 72.64 88.99

Table 1: Macro-average P(recision), R(ecall) and F(-score), and A(ccuracy) for all words with more than
one morphological reading, “fast mode”. Note that macro-average measures tend to overemphasize (bad)
results of small classes.

CRF LSTM
P R F A P R F A

ambiguous 84.03 69.2 73.16 88.99 80.5 75.82 77.1 90.99
overall 90.46 79.68 82.62 95.17 87.36 83.11 84.5 96.01

Table 2: Macro-average PRF and accuracy on the full training set, features: 1h. First row: Results for
ambiguous words; second row: Results for all words.

To make the results comparable with those reported for other languages, the second row of Table
2 reports the performance of the two models when trained with the 1h feature on the full data set.
Remarkably, the CRF benefits more clearly from the increased training set, although its results are clearly
worse than those of the LSTM.

Table 3, which splits the results of the best LSTM model from Table 1 according to coarse POS classes,
confirms that the correct decisions were made when reducing the size of the tagset. The class of finite
verbal forms, whose tense distinction strongly increased the size of the tagset, produce low error rates,
while infinite declinable verbal forms are in a similar error range as adjectives and nouns.

To obtain a more detailed error analysis, all instances misclassified by CRF or LSTM have been
stratified according to binned frequency classes of their lemmata.11 The resulting data in Figure 1 allow
for two interesting observations. First, the performance of CRF and LSTM differs strongly with regard
to frequency classes. Although the LSTM consistently outperforms the CRF in all frequency classes,
the error rates of the two models differ by a nearly constant factor for low (classes 1 and 2) and high
frequency words (classes 7-9). For the intermediate classes 3-6, the error rate of the LSTM decreases
appproximately linearly with the frequency class, while the error rate of the CRF increases sharply
for class 3, before decreasing for more frequent words. Note that class 3 is the first class for which
lexical information is fed into both models.12 Contrary to the CRF, the LSTM seems to benefit from this

11The frequency class of word w with an observed frequency N is given by the rounded value of log(N)/ log(5).
12Class 1 contains all hapax legomena, and class 2 words with corpus frequencies between 2 and 4 occurrences. As remarked

in Section 2.3, the experiments reported in Table 1 use a lexical frequency threshold of 5, such that class 3 is the first one for

POS A(dj.) I(nd.) N(oun) P(ron.) V.fin. V.inf.
Acc. 92.4 100 95.73 93.4 99.58 94.1

Table 3: Accuracy per coarse POS class for the best model from Table 1 for ambiguous and unambiguous
words. Numbers are subsumed under the class A. V.fin.: finite verbal forms; V.inf.: infinite verbal forms

147



F.C. Types Tokens ECRF ELSTM

2 420 420 55 51
3 788 811 109 106
4 1683 1905 319 232
5 3085 5130 757 553
6 2424 10869 1473 1131
7 793 16188 2058 1590
8 83 7169 683 549
9 11 4101 466 409
10 1 2269 338 293 0

5
10

15

Lexical frequency class

E
rr

or
s 

(p
er

ce
nt

)

1 2 3 4 5 6 7 8 9

Figure 1: Number of lexical types and tokens, and of errors (ECRF , ELSTM ) per logarithmized fre-
quency class (F.C.; basis: 5). Right side: Percentual proportion of errors per frequency class for CRF
(blue) and LSTM (red). Models = 1h from Table 1.

information right from the beginning.
The second observation concerns the high frequency classes 8 and 9, for which both classifier types

produce increasing error rates. The majority of errors in these two frequency classes is caused by a
small set of personal (tad ‘he/she/it’, gender-neutral mad ‘I’ and tvad ‘you’), demonstrative (idam ‘this’,
etad ‘this (here)’), and relative (yad ‘which’) pronouons, and by the quantifier sarva ‘all’, which is
inflected like a pronoun. A closer inspection shows that ambiguities in case and gender assignment
produce most of these errors. In 166 instances, for example, at least one of the models has made a wrong
decision between N.SG.N. and A.SG.N. for one of the pronominal forms tad, yad, etad, and idam, or for
forms such as yasmin ‘in which’, which can be analyzed either as masculine or as neuter of the locative
singular. Some of the cases in which both models propose the same wrong analysis with high confidence
values, actually give the correct reading of a misannotation in the corpus. Such results could be used for
a future semi-automatic post-correction of the data.

Most of these errors, however, are caused by long-range constructions not detected by the model. The
prose passage Vis.n. upurān. a 4.12.17 provides a – rather usual – example of such a complex construction,
where the morphological disambiguation was not able to establish the correct link between the A.SG.N. -
ratnam and its predecessor ending in -yugalam (only relevant morphological information given; words
to be linked and their morphological information are underlined):

tasmim. ś
he:L.SG.M.

ca
and

vidrute
run away:L.SG.M.

’ti-trāsa-lola-āyata-locana-yugalam.
very-fear-restless-extended-eye-pair:CO.. . . A.SG.N.

trāhi
protect:imper.

trāhi
protect

mām.
me

tāta-amba
father-mother

bhrātar
brother

ity
so

ākula-vilāpa-vidhuram.
agitated-lament-troubled:CO.-CO.-A.SG.N.

sa
he:N.SG.M.

rāja-kanyā-ratnam
king-daughter-jewel:CO.-CO.-A.SG.N.

adrāks. ı̄t
see:past, 3rd SG.

“After he (= a third person) had run away, he saw the jewel, which was the daughter of the king, whose
pair of broad eyes was rolling due to (her) excessive fear, and which13 was agitated by (her) confused
lament (stating) ‘Protect, protect me, o father, mother, brother’.”

which lexical information is available.
13This word still refers to the “jewel”.

148



Class P R F
N.SG.N. 85.35 91.00 88.09
A.SG.N. 84.26 75.39 79.58
N.PL.M. 94.18 98.27 96.18
A.SG.M. 85.54 84.55 85.04
N.SG.M. 96.25 96.18 96.22
G.SG.M. 93.46 95.55 94.50
L.SG.N. 92.12 89.38 90.73
N.SG.F. 93.61 91.83 92.72
L.SG.M. 86.92 89.69 88.28
I.PL.M. 92.62 95.09 93.84
I.SG.M. 89.88 93.04 91.43

Table 4: P, R, and F of the full LSTM model for the most frequent nominal categories. Bold numbers
are higher than the best results reported in Hellwig (2015). Note that the F score may be better than in
Hellwig (2015), even if neither P nor R are better, because Hellwig (2015) considers these values for two
models.

Each of the three compounds ending on -am can be analyzed morphologically as N.SG.N., A.SG.N., or
A.SG.M.. The morphological disambiguation has labeled the morphologically ambiguous compounds
ending on vidhuram and ratnam correctly as A.SG.N. This decision was probably supported by the fact
that the pronoun sa ‘he’ has only one morphological reading, and should therefore occupy the subject
position of the singular verb, leaving the object slots free for the two accusative compounds. However,
neither the LSTM nor the CRF were able to build the connection to the bahuvrı̄hi compound ending on
-yugalam that forms the opening bracket around the direct speech.

Contracted forms of gender neutral personal pronouns constitute another high-frequency and error
prone group. The pronouns of the first (mad ‘I’) and second person (tvad ‘you’) express their genitives
and datives by morphologically unambiguous uncontracted (mama ‘my’, mahyam ‘for me’; tava ‘your’,
tubhyam ‘for you’), and ambiguous contracted versions (me ‘my, for me’ and te ‘your, for you’). In
general, the use of dative and genitive becomes unstable in later and non-standard parts of the corpus,
which may point to the linguistic influence of Middle and New Indo-Aryan languages. The passage
Rāmāyan. a, Utt., 57.28, for example, uses the genitive to express the receiver in the verbal frame of dā ‘to
give’: bhojanam . . . mama (G.SG.!) etad dātum icchasi “You want to give me this food.” The fact
that the models are also trained on such non-standard instances may explain the high error rates for the
contracted pronouns.

Table 4 presents precision, recall, and F scores for the most frequent morphological classes. Results
are calculated from the output of the full LSTM model (Table 2). Comparing these values with the best
results reported in Table 6 from Hellwig (2015) demonstrates that the LSTM clearly outperforms the
published results, thereby setting a new standard for the morphological disambiguation of Sanskrit.

4 Conclusion

The paper has motivated and described a new tagset for the morphological disambiguation of Sanskrit,
and had a closer look at the influence of lexical representation and model selection on the accuracy
of morphological disambiguation. Using a reduced tagset, a combination of morphological, lexical,
and semantic features, and a bidirectional deep neural network, the accuracy rates for morphological
disambiguation could be improved significantly in comparison to previously published results. Future
research should concentrate on better lexical representations for the numerous low-frequency lexemes,
and on better integrating long-range linguistic structures that influence local morphological decisions.

149



References

David Alfter and Jürgen Knauth. 2015. Morphological analysis and generation for Pali. In International
Workshop on Systems and Frameworks for Computational Morphology. Springer, pages 60–71.

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from scratch. Journal of Machine Learning Research
12:2493–2537.

Mathias Creutz, Teemu Hirsimäki, Mikko Kurimo, Antti Puurula, Janne Pylkkönen, Vesa Siivola, Matti
Varjokallio, Ebru Arisoy, Murat Saraçlar, and Andreas Stolcke. 2007. Morph-based speech recogni-
tion and modeling of out-of-vocabulary words across languages. ACM Transactions on Speech and
Language Processing (TSLP) 5(1):1–27.

Mathias Creutz and Krista Lagus. 2007. Unsupervised models for morpheme segmentation and mor-
phology learning. ACM Transactions on Speech and Language Processing 4(1).

John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research 12:2121–2159.

Jan Hajič and Barbora Hladká. 1998. Tagging inflective languages: Prediction of morphological cat-
egories for a rich, structured tagset. In Proceedings of the 36th Annual Meeting of the ACL. pages
483–490.

Oliver Hellwig. 2015. Morphological disambiguation of Classical Sanskrit. In Cerstin Mahlow and
Michael Piotrowski, editors, Systems and Frameworks for Computational Morphology. Springer,
Cham, pages 41–59.

Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R. Salakhutdinov.
2012. Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint
arXiv:1207.0580 .

Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, and Jürgen Schmidhuber. 2001. Gradient flow in
recurrent nets: The difficulty of learning long-term dependencies. In S. C. Kremer and J. F. Kolen,
editors, A Field Guide to Dynamical Recurrent Neural Networks.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory. Neural Computation
9(8):1735–1780.

Gérard Huet. 2005. A functional toolkit for morphological and phonological processing, application to
a Sanskrit tagger. Journal of Functional Programming 15(04):573–614.

Gérard Huet. 2006. Lexicon-directed segmentation and tagging of Sanskrit. In B. Tikkanen and H. Het-
trich, editors, Themes and Tasks in Old and Middle Indo-Aryan Linguistics, Motilal Banarsidass,
Delhi.

Girish Nath Jha, Muktanand Agrawal, Sudhir K. Mishra, Diwakar Mani, Diwakar Mishra, Manji Bhadra,
Surjit K. Singh, et al. 2009a. Inflectional morphology analyzer for Sanskrit. In Sanskrit Computational
Linguistics, Springer, pages 219–238.

Girish Nath Jha, Madhav Gopal, and Diwakar Mishra. 2009b. Annotating Sanskrit corpus: adapting
IL-POSTS. In Language and Technology Conference. Springer, pages 371–379.

Sumitra M. Katre. 1991. Lexicography of Old Indo-Aryan: Vedic and Sanskrit. In Franz Josef Haus-
mann, Oskar Reichmann, Herbert Ernst Wiegand, and Ladislav Zgusta, editors, Wörterbücher, Walter
de Gruyter, Berlin, pages 2487–2496.

Amba Kulkarni and Devanand Shukla. 2009. Sanskrit morphological analyser: Some issues. Indian
Linguistics 70(1-4):169–177.

John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In Proceedings of the Eighteenth
International Conference on Machine Learning. pages 282–289.

150



Tomáš Mikolov, Anoop Deoras, Daniel Povey, Lukáš Burget, and Jan Černockỳ. 2011. Strategies for
training large scale neural network language models. In 2011 IEEE Workshop on Automatic Speech
Recognition and Understanding (ASRU). pages 196–201.

Anand Mishra. 2009. Simulating the Pān. inian system of Sanskrit grammar. In Sanskrit Computational
Linguistics, Springer, pages 127–138.

Amr El-Desoky Mousa, M Ali Basha Shaik, Ralf Schlüter, and Hermann Ney. 2010. Sub-lexical lan-
guage models for German LVCSR. In Spoken Language Technology Workshop (SLT). pages 171–176.

S. Lakshmana Pandian and T. V. Geetha. 2009. CRF models for Tamil part of speech tagging and
chunking. In Proceedings of the 22nd International Conference on Computer Processing of Oriental
Languages. Springer-Verlag, Berlin, Heidelberg, ICCPOL ’09, pages 11–22.

Richard Salomon. 1995. On drawing socio-linguistic distinctions in Old Indo-Aryan: The question of
Ks.atriya Sanskrit and related problems. In George Erdosy, editor, The Indo-Aryans of Ancient South
Asia. Language, Material Culture and Ethnicity, Walter de Gruyter, Berlin, New York, pages 293–306.

Hartmut Scharfe. 1977. Grammatical Literature. A History of Indian Literature, Volume 5, Fasc. 2. Otto
Harrassowitz, Wiesbaden.

M. Schuster and K.K. Paliwal. 1997. Bidirectional recurrent neural networks. IEEE Transactions on
Signal Processing 45(11):2673–2681.

151


