
Proceedings of the 6th Workshop on South and Southeast Asian Natural Language Processing,
pages 33–43, Osaka, Japan, December 11-17 2016.

Development of a Bengali parser by cross-lingual transfer from Hindi

Ayan Das, Agnivo Saha, Sudeshna Sarkar
Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur, WB, India
ayan.das@cse.iitkgp.ernet.in

agnivo.saha@gmail.com
sudeshna@cse.iitkgp.ernet.in

Abstract

In recent years there has been a lot of interest in cross-lingual parsing for developing treebanks
for languages with small or no annotated treebanks. In this paper, we explore the development
of a cross-lingual transfer parser from Hindi to Bengali using a Hindi parser and a Hindi-Bengali
parallel corpus. A parser is trained and applied to the Hindi sentences of the parallel corpus
and the parse trees are projected to construct probable parse trees of the corresponding Bengali
sentences. Only about 14% of these trees are complete (transferred trees contain all the target
sentence words) and they are used to construct a Bengali parser. We relax the criteria of com-
pleteness to consider well-formed trees (43% of the trees) leading to an improvement. We note
that the words often do not have a one-to-one mapping in the two languages but considering sen-
tences at the chunk-level results in better correspondence between the two languages. Based on
this we present a method to use chunking as a preprocessing step and do the transfer on the chunk
trees. We find that about 72% of the projected parse trees of Bengali are now well-formed. The
resultant parser achieves significant improvement in both Unlabeled Attachment Score (UAS) as
well as Labeled Attachment Score (LAS) over the baseline word-level transferred parser.

1 Introduction

Parsing is a very important component of natural language processing. Machine learning techniques have
been applied to produce highly accurate parsers for natural languages given collections of annotated parse
trees called treebanks. However, creating treebank for a language involves a great deal of manual effort
and treebanks do not exist for a large number of the world’s languages and good quality parser learning
requires a large treebank.

In recent years there have been some interesting work on developing dependency parsers where in the
absence of treebanks, cross-lingual parsing has been used to develop a parser in a Target Language (TL)
taking advantage of an existing parser or a treebank in a different source language (SL). Some of these
systems use a parallel corpus to improve the quality of transfer parsers along with some other resources.

Though Bengali is the seventh most spoken language in the world, resources available for NLP in
Bengali are scant. A small treebank consisting of about 1300 parse trees was made available for the
participants of ICON 2009 (http://www.icon2009.in/) tool contest on parsing in Bengali in which 150
sentences were used for testing. We wish to explore the efficacy of cross-lingual parser transfer in
Indian languages by applying it on the Hindi-Bengali language pair. Though a lot of experiments in
cross-lingual parsing have been carried out in European languages, no work has been reported in Indian
language pairs.

Hindi and Bengali belong to the same family of Indo-Aryan languages and share certain basic syn-
tactic similarities. Both have the SOV sentence structure. However, there are several differences in the
morphological structure of the words and phrases between these two languages.

In this paper, we refer to a transferred tree as a “complete” tree if it is connected, projective, has root
aligned to the root word of the source tree and contains all the words in the target sentence. If the tree

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

33



has size greater than one, satisfies all other conditions of a complete tree but does not contain all the
target sentence words then it is called a “well-formed” tree. Naturally, the number of well-formed trees
is much larger than the number of complete trees and it has been found that a parser trained using the
well-formed trees is slightly more accurate than the parsers trained using complete trees.

We also show that due to the high-level syntactic similarities between between the Hindi and Bengali,
a phrase-level transfer results in more number of well-formed parse trees (72% of the projected parse
trees) than by word-level transfer (43% of the projected parse trees). The increase in number of trees
also helps in developing a better parser in TL.

Though it is challenging to develop a full parser for a language, developing a shallow parser or chunker
is relatively straightforward and can be done using simple rule-based or statistical methods. We use the
chunkers for Bengali and Hindi along with projection of Hindi parse trees to develop a Bengali parser by
phrase-level transfer. The resulting parsers improves Unlabeled Attachment Score (UAS) from 67 to 80
and Labeled Attachment Score (LAS) from 47 to 62 compared to the word level parser.

2 Related work

In this section we present the major approaches to cross-lingual syntactic transfer proposed in the litera-
ture.

Direct Transfer - Delexicalized parsing Direct transfer method learns a parser in SL and applies it
to TL. A direct transfer model cannot make use of lexical features or address difference in word order.
Delexicalized parsing proposed by Zeman and Resnik (2008) involves supervised training of a parser
model in on a SL treebank without using any lexical features and then applying the model directly to
parse sentences in TL. This was applied to Danish-Swedish pair. Søgaard (2011) used a similar method
for several different language pairs and found that performance varied widely (F1-score : 50%-75%)
depending upon the similarity of the language pairs. Täckström et al. (2012) used cross-lingual word
clusters obtained from a large unlabelled corpora as additional features in their delexicalized parser.
Naseem et al. (2012) proposed a method for multilingual learning to languages that exhibit significant
differences from existing resource-rich languages which selectively learns the features relevant for a tar-
get language and ties the model parameters accordingly. Täckström et al. (2013) improved performance
of delexicalized parser by incorporating selective sharing of model parameters based on typological in-
formation.

Distributed Representation Distributed representation of words as dense vector can be used to capture
cross-lingual lexical information and can be augmented with delexicalized parsers. Bilingual dictionaries
may be used to transfer lexical features. Xiao and Guo (2014) learnt language-independent word repre-
sentations to address cross-lingual dependency parsing. Duong et al. (2015) followed a similar approach
where the vectors for both the languages are learnt using a skipgram-like method in which the system
was trained to predict the POS tags of the context words instead of the words themselves.

Annotation projection Cross-lingual parser transfer by annotation projection use parallel data and
project parse trees in SL to TL through word alignment. But most translations are not word-to-word and
only partial alignments can be obtained in many cases. Hwa et al. (2005) proposed a set of projection
heuristics that make it possible to project any dependency structure through given word alignments to
a target language sentence. McDonald et al. (2011) proposed a method where a delexicalized direct
transfer parser trained in SL was used to parse some TL sentences which were in turn used to seed a
parser in TL. The target language parser so trained was used as a lexicalized parser in the space of the
target language sentences. Ma and Xia (2014) built a dependency parser by maximizing the likelihood
on parallel data and the confidence on unlabeled target language data.

Rasooli and Collins (2015) proposed a method to induce dependency parser in TL using a dependency
parser in SL and a parallel corpus. The transferred trees that consist of a subset of the words in the target
language sentence are expanded into full trees using a decoding technique. Lacroix et al. (2016) proposed
a simple alignment scheme for cross-lingual annotation projection but their performance is lower than
that of Rasooli and Collins (2015).

34



Treebank translation Tiedemann et al. (2014) and Tiedemann (2015) proposed methods for treebank
translation. They used a SMT system to obtain the phrase tables and word alignment information from
the parallel corpus and used some heuristics to translate the SL treebank to a treebank of TL. They have
shown that direct projection works quite well for some languages and significantly outperforms the direct
delexicalized transfer model.

Parsing in Hindi and Bengali language: Bharati and Sangal (1993) and Bharati et al. (2002) are some
of the first notable works on parsing of Indian languages. Nivre (2005) and Nivre (2009) have developed
supervised parsers for Indian languages such as Hindi and Bengali. Some of the work in Indian language
parsing use a chunk as unit instead of a word. Bharati et al. (2009) and Bharati et al. (2009) have proposed
a two-stage constraint-based approach where they first try to extract the intra-chunk dependencies and
resolve the inter-chunk dependencies in the second stage. Ambati et al. (2010) used disjoint sets of
dependency relations and performed the intra-chunk parsing and inter-chunk parsing separately. Some
of the major works on parsing in Bengali language appeared in ICON 2009 (http://www.icon2009.in/).
The highest UAS and LAS for Bengali were 90.32 and 84.29 respectively.

3 Objective

We aim is to explore cross-lingual transfer parser development for Indian languages. For most Indian
languages very little annotated resources are available. No annotated treebank is available in the open
source for Bengali, though a 1300 sentence treebank was made available to participants of ICON 2009
tool contest. We explore methods for transfer parsing from Hindi to Bengali due to our familiarity with
the languages and the Bengali language resources available with us. However we expect that this will
be indicative of the type of performance between other language pairs belonging to the same family. We
use a Hindi dependency treebank and a parallel Hindi-Bengali corpus to build the Bengali dependency
parser by annotation projection.

We explore methods for transfer from Hindi to Bengali. Fully transferred projective trees have been
found to be most useful to train a parser in the target language (Lacroix et al., 2016). To increase the
amount of training data we wish to explore relaxations of this requirement so that more transferred trees
can be used without negatively impacting the quality. We also wish to explore the use of other linguistic
resources to improve the quality of the transferred trees.

4 Resources used

For our experiments, we used the Hindi HDTB treebank (ltrc.iiit.ac.in/treebank H2014/) and the UDEP
treebank (http://universaldependencies.org/). The HDTB treebank consists of 18637 parse trees and the
Hindi UDEP treebank consists of 15870 parse trees divided into training, development and testsets. In
HDTB and UDEP treebanks, Anncorra (Sharma et al., 2007) and universal dependency (McDonald et
al., 2013) tagsets are used to tag the parse trees respectively. For our experiments, we used the neural
network based parser (Saha and Sarkar, 2016).

The initial Hindi and Bengali word embeddings were obtained by running word2vec (Mikolov et
al., 2013) on Hindi Wikipedia dump corpus and FIRE 2011 (http://www.isical.ac.in/ clia/2011/) corpus
respectively.

For chunking we used the chunker developed at our institute. For testing we used the testset of 150
parse trees annotated using tagset similar to Anncorra tagset. This set of Bengali trees is the testset of the
Bengali treebank used in ICON2009 (http://www.icon2009.in/) contest to train parsers for various Indian
languages. The original dataset contains partially labeled parse trees with only inter-chunk dependency
relations and chunk information of each sentence. We completed each parse tree by manually tagging
the intra-chunk dependencies using the chunk information. We used these full trees for our experiments.

5 Proposed Method

We explore cross-lingual parser transfer by annotation projection from Hindi to Bengali by making use of
a Hindi-Bengali parallel corpus. We first developed a system that does word level annotation projection

35



as described below.

5.1 Word level annotation projection based transfer

We use word level annotation projection to project the dependencies of the parsed Hindi sentences via
the aligned parallel corpus to create a Bengali treebank on which the Bengali parser can be trained.

Word alignment of parallel corpus The parallel corpora CHB = {(h(i), b(i))}, where h(i) is a Hindi
sentence and b(i) is the corresponding Bengali sentence, contains m parallel sentence pairs. The sen-
tences in the parallel data were aligned in both directions using the GIZA++ tool and combined using
the intersection heuristic which selects only 1 : 1 alignment links. The intersect heuristic was chosen to
avoid aligning a word with multiple words which might result in the formation of cycles and multiple
links in the parse trees during the transfer. It results in more accurate but less number of alignments
resulting in non-alignment of some Bengali words.

Annotation projection The Hindi treebank (HTB) comprise of n trees {(h(i), tree(h(i)))}where h(i) is
a Hindi sentence and tree(h(i)) is the corresponding parse tree. Algorithm 1 outlines the steps for training
the Bengali parser by word-level annotation projection method. We used the following criteria to select

Algorithm 1: Training the Bengali parser by word-level annotation projection method
input : Hindi treebank HTB, Hindi-Bengali parallel corpus CHB

output: Bengali parser trained using transferred Bengali treebank

1 Use GIZA++ alignment tool on CHB to get word-aligned sentences. For (h(i), b(i)) get the

alignment A(i) = {(x, y)}, where word h
(i)
x is aligned to word b

(i)
y .

2 Train a parser using the HTB to get hindiparser
3 Initialize: Bengali treebank (BTB) = NULL
4 for each Hindi sentence h(i) in CHB do
5 Parse (hi) using hindiparser.

/* Project tree(h(i)) on b(i) using A(i) to get dep(b(i)) */

6 dep(b(i)) = Project (tree(h(i)),b(i),A(i))
/* Check if dep(b(i)) corresponds to a well-formed tree for b(i)

*/

7 If there is exactly one ROOT AND dep(b(i)) forms a well-formed connected tree AND it is
projective AND all words ∈ b(i) appear in dep(b(i))

8 Add dep(b(i)) to BTB
9 end

10 Train a parser using BTB to get a Bengali parser benparser
11 Procedure Project(tree(h(i)), b(i), A(i))
12 dep(b(i)) = NULL
13 for each dependency (head, modifier) in tree(h(i)) do
14 if ∃w1 : (head, w1) ∈ A(i) AND ∃w2 : (modifier, w2) ∈ A(i) AND w1 6= w2 then
15 Add (w1, w2) to dep(b(i))
16 end
17 end
18 return dep(b(i))

complete trees:

1. The ROOT of the target tree must be mapped to the ROOT of the source tree.

2. The transferred dependency set must form a connected projective tree.

3. Every word in the Bengali sentence appears in the tree.

36



We find that large number of trees were eliminated due to incomplete transfer because some of the
Bengali words in these sentences did not get aligned to any Hindi word. We then relax the requirement
of complete trees by removing the requirement of complete trees by replacing the criterion 3 by the
criterion that size of tree must be greater than 1 and making the corresponding change in Algorithm 1 to
obtain the well-formed trees.

Well-formed parse trees were obtained for 21, 554 Bengali sentences, out of which 7018 were com-
plete when HDTB treebank was used to train the Hindi parser. The percentage of fully transferred trees
largely depends upon the syntactic similarities of the languages which is evident from the fact that during
English to German transfer, only 2.4% of the trees were fully transferred (Rasooli and Collins, 2015).

Rasooli and Collins (2015) have shown that the inclusion of partial and incomplete trees degrades
performance of the parser. In English to German parsing, the German parser trained using 18000 full
trees gave an accuracy of 85.8% and a parser model trained on 968000 transferred parse trees comprising
of a mixture of full and partial trees gave an accuracy of 74%. They considered trees where a subset of
words forms a projective tree or a span of k words appear as modifiers. However, we observed that
inclusion of well-formed partial trees (according to our criteria) along with the fully transferred trees
results in increase in UAS from 66% to 67.4%. The results are shown in Table 2.

5.2 Motivation for chunk-level transfer

We hypothesize that the number of transferred trees can be increased if we can address the problem
of difference in phrase structure of the two languages. The example in Section 5.2 shows how the
chunk-level transfer can address the problem on non-alignment of some words due to difference in
phrase structure. Thus, chunk-level transfer may significantly increase the number of transferred
well-formed trees. In Table 1, we show some examples of Hindi and Bengali phrases that bring out
the difference in the structure of phrases in the two languages, which means that one to one mapping
between words is often not possible.

English phrase Hindi phrase Bengali phrase
is eating khA rAhA hAy (eat being is) khAchchhe (eating)

died mare (died) mArA jay (death happened)
due to

earthquake
bhukAmp ke dwArA

(earthquake of by)
bhumikamper fale

(earthquake-of result)

Table 1: Example phrases with English, Hindi and Bengali equivalents

English sentence (E1): “Several people got stuck due to landslide on way to KedarnAth”.
Hindi sentence (H1): “KedArnAth ke rAste mein bhuskhalan ke kAran bahut se log fAnse”
Bengali sentence (B1): “KedArnAther pathe dhaser kArane bahu lok Atke pade”

The following example illustrates the word-level and chunk-level transfer of the parse tree of H1 to
the parse tree of B1. Both H1 and B1 have the same meaning as that of E1.

B1:

H1:

(KedArnAther) (pathe) (dhaser kArane) (bahu lok) (Atke pade)

(KedArnAth ke) (rAste mein) (bhuskhalan ke kAran)(bahut se log) (fAnse)

(way-on) (many people)(landslide-of reason)B1 gloss: (stuck got)(Kedarnath-of)

H1 gloss: (Kedarnath of) (way on) (landslide of reason) (many people) (stuck-got)

Figure 1: Word alignment between B1 and H1

Figure 2 shows the parse trees for B1 and H1, and the Bengali parse tree formed after transfer via word
alignment. Note that the dependencies “Atke → pade” was not obtained in the projected tree since the

37



fAnse

bhuskhalan log

ke kAran

rAste

meinKedArnAth

ke
se

bahut

(a)

Atke

dhaser lok pade

kArane bahu

pathe

KedArnAther

(b)

Atke

pathe dhaser lok

kArane bahuKedArnAther

(c)

Figure 2: (a) Parse tree of H1 (b) Parse tree of B1 (c) Transferred Bengali word-level tree.

words “pade” was not aligned to any Hindi word. However, this problem can be eliminated by chunk-
level transfer as shown below. Figure 3 shows the chunk alignment of B1 and H1. Each parenthesized

B1:

H1:

(KedArnAther) (pathe) (dhaser kArane) (bahu lok) (Atke porde)

(KedArnAth ke) (rAste mein) (bhuskhalan ke kAran)(bahut se log) (fAnse)

1

2

1

2

2

3

2

3

2

1

(way-on) (many people)(landslide-of reason)B1 gloss: (stuck got)(Kedarnath-of)

H1 gloss: (Kedarnath of) (way on) (landslide of reason) (many people) (stuck-got)

Figure 3: Chunk-level mapping between B1 and H1

set of words indicates a chunk. The numbers corresponding to each chunk indicate the number of words
in each chunk. Figure 4a and Figure 4b show the chunk-level trees which contain only the inter-chunk

(ii)rAste
mein

(iii)bhuskhalaner
ke kAran

(v)fAnse

(iv) bahut se log

(ii)KedArnAth
ke

(a)

(ii)pathe (iii)dhaser
kArane

(v) Atke pade

(iv)bahu lok

(i)KedArnAther

(b)

Figure 4: (a) Chunk-level parse tree of H1 (b) Chunk-level parse tree of B1

links. Figure 5a shows the chunk-head tree of B1 obtained by chunk level transfer. Figure 5b shows the

(ii)pathe (iii)dhaser

(v) Atke

(iv)lok

(i)KedArnAther

(a)

Atke

dhaser lok pade

kArane bahu

pathe

KedArnAther

(b)

Figure 5: (a) Bengali chunk head parse tree before expansion (b) The same tree after expansion

expanded chunk-head tree containing all the words. This shows that chunk-level transfer may alleviate
the problem arising due to non-alignment of some words.

5.3 Chunk-based annotation projection method

In this section we discuss the method for creating a Bengali transfer parser by our approach of chunking
based cross-lingual parser transfer using annotation projection. The method is described in Algorithm
2. In step 7 of Algorithm 2 we map Hindi chunk-level trees to Bengali chunk-level trees. Note that the
basic algorithm for converting the chunk-level Hindi trees to chunk-level Bengali trees using the chunk

38



Algorithm 2: Bengali chunk-level parser by chunk-level annotation projection method
input : Hindi treebank, word alignment of Hindi-Bengali parallel corpus
output: Bengali chunk-level parser

1 Chunk Alignment: Obtain chunk-alignment of the Hindi-Bengali parallel sentences (CHB) from
the corresponding word alignment by Procedure ChunkAlign ∀ sentence pairs (h(i), b(i)) ∈ CHB

2 Convert the parse trees {ht(i)} of the Hindi sentences in CHB to Hindi chunk-level parse trees
{hct(i)} by collapsing the chunks using the following heuristics applied to each dependency.

3 begin
4 If both head and modifier are chunk head, replace them by the corresponding chunk identifiers.
5 If head and modifier belongs to same chunk, ignore the dependency.
6 end
7 Transfer Hindi chunk-level parse trees {hct(i)} to Bengali chunk-level parse trees {bct(i)} using

chunk alignment obtained in Step 1.
8 Replace the Bengali chunk identifiers in each Bengali chunk tree by the corresponding chunk heads

for all trees in {bct(i)}.
9 Train the Bengali parser using chunk-head trees in {bct(i)} to get the Bengali chunk-level parser.

10 Procedure ChunkAlign(Sentence pair (h, b), set of Hindi chunks (hcset) and set of Bengali
chunks (bcset), word alignment aw = {(x, y)})

11 for each Hindi chunk hci in hcset do
12 Initialize: 1. Set of Bengali chunks to which hci is aligned map(hci) = {}
13 2. Chunk alignment (ac) of (h, b)
14 for each word wh in hci do
15 if wh aligned to a Bengali word (wb) i.e. (wh, wb) ∈ aw then
16 Add the Bengali chunk (bc) containing wb to map(hci)
17 end
18 end
19 if all words in hci aligned to words in a single Bengali chunk (bcj) then
20 Add (hci, bcj) to ac

21 else if words in hci are aligned to multiple Bengali chunks then
22 Find the chunk head head(hci)
23 if head(hci) aligned to a Bengali chunk bc then
24 Add (hci, bc) to ac

25 else
26 No map for hci

27 end
28 end
29 return ac

alignment is same as in word-level transfer (Algorithm 1) except that chunk-level transfer uses the chunk
alignment instead of the word alignment and the chunk-level trees are transferred instead of the word-
level trees. From the chunk level trees we obtain the chunk-head trees by replacing the chunk identifiers
with the corresponding chunk heads in step 8 of Algorithm 2. In step 9 of Algorithm 2 the chunk-head
trees are used to train a chunk-level parser.

The final parser comprises of two parts, a) a chunk-level parser and b) a chunk expander. The chunk-
expander uses a set of rules for intra-chunk expansion. For expanding the chunks we used the rules
proposed by Kosaraju et al. (2012) as well as some additional rules. At first, the chunk-level parser is
used parse the chunk-head test trees and then the chunk-expander is used to complete the intra-chunk
dependency relations.

39



5.4 Experimental results

We performed the experiments separately using two different treebanks, HDTB and UDEP. We did not
mix the two treebanks because they use different dependency relation tagset and a substantial number of
sentences are common between the two treebanks. We report only the unlabeled attachment score (UAS)
for our experiments when the Hindi parser used to parse the Hindi sentences of the parallel sentences
was trained using the UDEP treebank because the Hindi treebank (UDEP) is tagged with Universal
Dependency tagset which is different from that of the Bengali testset of 150 parse trees. We report both
UAS and LAS for our experiments when the HDTB treebank was used because the tagset used in ICON
and HDTB have some similarity.

Table 2 summarizes the results of the word-level and chunk-level transfer parser for the two treebanks.
We observe that the number of well-formed trees obtained by chunk-level transfer have increased signif-
icantly over word-level transfer. The drop in number of complete trees in chunk-level transfer is due to
the disagreement of the chunker outputs of the two languages.

It is seen that considering well-formed trees along with complete trees results in slight improvement in
result and the chunk-level annotation projection method performs significantly better than the word-level
annotation projection-based method for both the datasets used to train the initial Hindi parser.

Treebank
used

for training
Hindi parser

Method Complete trees Well-formed trees
Number

of
trees UAS LAS

Number
of

trees UAS LAS

HDTB
Word-level transfer 7018 65.7 44.7 21554 67.4 47.2
Chunk-level transfer 6679 79.3 60.1 36196 80.6 62.1

UDEP
Word-level transfer 7882 60.2 - 26827 61.0 -
Chunk-level transfer 7061 79.1 - 37323 79.4 -

Table 2: Comparison of UAS and LAS of chunk-level transfer parser with word-level transfer parser
when Hindi parser trained using HDTB and UDEP treebanks.

Table 3: Comparison of errors for the most frequent dependency tags. The entries of column 3 to
6 indicates the number of dependencies bearing the corresponding tags in the gold data that actually
appear in the parsed trees and the accuracy (in %). Rows 2-10 (k1 to k7t) are inter-chunk dependencies
and Rows 11-15 (rsym to lwg neg) are intra-chunk dependencies

Actual
Count

of
dependency

relations
Word-level

transfer (UD)

Chunk-level
transfer

followed by
expansion (UD)

Word-level
transfer (HDTB)

Chunk-level
transfer

followed by
expansion (HDTB)

k1 (doer/agent/subject) 166 122 (73.5) 128 (77.1) 119 (71.7) 129 (77.7)
main (root) 150 84 (56.4) 104 (69.8) 101 (67.3) 108 (72.5)
k2 (object) 131 98 (74.8) 102 (77.9) 98 (74.8) 103 (78.6)
vmod (Verb modifier) 111 68 (61.3) 74 (66.7) 83 (74.8) 87 (78.4)
r6 (possessive) 82 49 (59.8) 45 (54.9) 51 (62.2) 38 (46.3)
pof (part of) 59 54 (91.5) 58 (98.3) 57 (96.6) 59 (100)
k7p (Location in place) 50 32 (64.0) 41 (82.0) 33 (66.0) 37 (74.0)
ccof (conjunction of) 47 2 (4.25) 2 (4.26) 15 (31.9) 14 (29.8)
k7t (Location in time) 40 26 (65.0) 26 (65.0) 25 (62.5) 29 (72.5)
rsym (punctuation) 249 119 (47.8) 241 (98.4) 154 (61.8) 242 (98.8)

nmod adj
(adjectival noun modifier) 79 74 (93.7) 79 (100) 76 (96.2) 79 (100)
lwg vaux (auxiliary verb) 54 43 (79.6) 54 (100) 52 (96.3) 54 (100)
lwg rp (particle) 23 4 (17.4) 19 (82.6) 8 (34.8) 21 (91.3)
lwg neg (negation) 22 6 (27.3) 21 (95.4) 3 (13.6) 22 (100)

Rasooli and Collins (2015) incrementally increased the number of full trees by completing the partial

40



trees using a trained arc-eager parser model. The accuracy of the English to German transfer parser
model increased from 70.6% to 74.32% as completed full parse trees were incrementally added to the
set. Compared to the above result our method results in an increase in UAS from 67.4 to 80.6 and 61.0
to 79.4 for HDTB and UDEP respectively.

6 Error analysis

We analyzed the errors in dependency relations of the parse trees obtained by parsing the test sentences
based on the number of dependency relations in the gold data that actually appear in the trees parsed
by our parser. Table 3 summarizes the accuracies of the most frequent inter-chunk and intra-chunk
dependency tags. We observe that the parser trained using the HDTB treebank identifies the “conjunct
of” dependencies more accurately than the parser trained using UDEP treebank due to difference in
annotation scheme of Anncorra and UDEP. However, the overall performance of the transferred parsers
on the “ccof” relations is poor. We need to investigate further on this issue. The possessive/genitive
(r6) dependencies are better identified by word-level transferred parser. For the proper identification
of possessive/genitive relations the inflectional informations are essential which can be obtained from
the modifiers. In case of chunk-level transfer, we are using embeddings and features of the chunk-head
only, which may not be sufficient to capture the necessary information. We also observe that the rule-
based expansion of chunks helps to identify the intra-chunk relations more accurately than by word-level
transfer.

From the data we observed that disagreement between the Hindi and Bengali chunkers, disagreement
between Hindi chunker and parser outputs and error in word alignment are some of the major sources
of error resulting in multiple links, cycles, partial trees and non-projectivity. We shall give a detailed
discussion of the errors in an extended version of the paper.

7 Conclusion

This work is a basic exercise on the development of a Bengali parser without using any Bengali treebank.
We have shown that a Bengali parser of fair accuracy can be developed by cross-lingual transfer from
Hindi language using a Hindi treebank and a Hindi-Bengali parallel corpus. We have also shown that
chunk-level transfer parser outperforms the word-level transfer parser in terms of both UAS and LAS
and it increases the number of transferred well-formed trees on two different datasets.

References
Bharat Ram Ambati, Samar Husain, Sambhav Jain, Dipti Misra Sharma, and Rajeev Sangal. 2010. Two methods to

incorporate ’local morphosyntactic’ features in hindi dependency parsing. In Proceedings of the NAACL HLT
2010 First Workshop on Statistical Parsing of Morphologically-Rich Languages, pages 22–30, Los Angeles,
CA, USA, June. Association for Computational Linguistics.

Akshar Bharati and Rajeev Sangal. 1993. Parsing free word order languages in the paninian framework. In
Proceedings of the 31st Annual Meeting on Association for Computational Linguistics, ACL ’93, pages 105–
111, Stroudsburg, PA, USA. Association for Computational Linguistics.

Akshar Bharati, Rajeev Sangal, and T Papi Reddy. 2002. A constraint based parser using integer programming.
Proc. of ICON.

Akshar Bharati, Samar Husain, Meher Vijay, Kalyan Deepak, Dipti Misra Sharma, and Rajeev Sangal. 2009.
Constraint based hybrid approach to parsing indian languages. In Proceedings of the 23rd PACLIC, pages
614–621, Hong Kong, December. City University of Hong Kong.

Long Duong, Trevor Cohn, Steven Bird, and Paul Cook. 2015. Cross-lingual transfer for unsupervised dependency
parsing without parallel data. In Proceedings of the Nineteenth Conference on Computational Natural Language
Learning, pages 113–122, Beijing, China, July. Association for Computational Linguistics.

Rebecca Hwa, Philip Resnik, Amy Weinberg, Clara Cabezas, and Okan Kolak. 2005. Bootstrapping parsers via
syntactic projection across parallel texts. Natural Language Engineering, 11:11–311.

41



Prudhvi Kosaraju, Bharat Ram Ambati, Samar Husain, Dipti Misra Sharma, and Rajeev Sangal. 2012. Intra-
chunk dependency annotation : Expanding hindi inter-chunk annotated treebank. In Proceedings of the Sixth
Linguistic Annotation Workshop, pages 49–56, Jeju, Republic of Korea, July. Association for Computational
Linguistics.

Ophélie Lacroix, Lauriane Aufrant, Guillaume Wisniewski, and François Yvon. 2016. Frustratingly easy cross-
lingual transfer for transition-based dependency parsing. In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages
1058–1063, San Diego, California, June. Association for Computational Linguistics.

Xuezhe Ma and Fei Xia. 2014. Unsupervised dependency parsing with transferring distribution via parallel
guidance and entropy regularization. In Proceedings of the 52nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pages 1337–1348, Baltimore, Maryland, June. Association for
Computational Linguistics.

Ryan McDonald, Slav Petrov, and Keith Hall. 2011. Multi-source transfer of delexicalized dependency parsers.
In Proceedings of the Conference on Empirical Methods in Natural Language Processing, EMNLP ’11, pages
62–72, Stroudsburg, PA, USA. Association for Computational Linguistics.

Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-Brundage, Yoav Goldberg, Dipanjan Das, Kuzman Ganchev,
Keith Hall, Slav Petrov, Hao Zhang, Oscar Täckström, Claudia Bedini, Núria Bertomeu Castelló, and Jungmee
Lee. 2013. Universal dependency annotation for multilingual parsing. In Proceedings of the 51st Annual Meet-
ing of the Association for Computational Linguistics (Volume 2: Short Papers), pages 92–97, Sofia, Bulgaria,
August. Association for Computational Linguistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013. Distributed representations of
words and phrases and their compositionality. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and
K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 26, pages 3111–3119. Curran
Associates, Inc.

Tahira Naseem, Regina Barzilay, and Amir Globerson. 2012. Selective sharing for multilingual dependency
parsing. In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Long
Papers - Volume 1, ACL ’12, pages 629–637, Stroudsburg, PA, USA. Association for Computational Linguistics.

Joakim Nivre. 2005. Dependency grammar and dependency parsing. Technical report, Vxj University.

Joakim Nivre. 2009. Parsing indian languages with MaltParser. In Proceedings of the ICON09 NLP Tools Contest:
Indian Language Dependency Parsing, pages 12–18.

Mohammad Sadegh Rasooli and Michael Collins. 2015. Density-driven cross-lingual transfer of dependency
parsers. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages
328–338, Lisbon, Portugal, September. Association for Computational Linguistics.

Agnivo Saha and Sudeshna Sarkar. 2016. Enhancing neural network based dependency parsing using morpholog-
ical information for hindi. In 17th International Conference on Intelligent Text Processing and Computational
Linguistics (CICLing), Konya, Turkey, April. Springer.

D.M. Sharma, Sangal R., L. Bai, R. Begam, and K. Ramakrishnamacharyulu. 2007. Anncorra : Treebanks for
indian languages, annotation guidelines (manuscript).

Anders Søgaard. 2011. Data point selection for cross-language adaptation of dependency parsers.

Oscar Täckström, Ryan McDonald, and Jakob Uszkoreit. 2012. Cross-lingual word clusters for direct transfer of
linguistic structure. In Proceedings of the 2012 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, NAACL HLT ’12, pages 477–487, Stroudsburg,
PA, USA. Association for Computational Linguistics.

Oscar Täckström, Ryan T. McDonald, and Joakim Nivre. 2013. Target language adaptation of discriminative
transfer parsers. In Human Language Technologies: Conference of the North American Chapter of the Asso-
ciation of Computational Linguistics, Proceedings, June 9-14, 2013, Westin Peachtree Plaza Hotel, Atlanta,
Georgia, USA, pages 1061–1071.

Jörg Tiedemann, Željko Agić, and Joakim Nivre. 2014. Treebank translation for cross-lingual parser induction. In
Proceedings of the Eighteenth Conference on Computational Natural Language Learning, pages 130–140, Ann
Arbor, Michigan, June. Association for Computational Linguistics.

42



Jörg Tiedemann. 2015. Improving the cross-lingual projection of syntactic dependencies. In Proceedings of the
20th Nordic Conference of Computational Linguistics (NODALIDA 2015), pages 191–199, Vilnius, Lithuania,
May. Linköping University Electronic Press, Sweden.

Min Xiao and Yuhong Guo. 2014. Distributed word representation learning for cross-lingual dependency parsing.
In Proceedings of the Conference on Natural Language Learning (CoNLL).

D. Zeman and Philip Resnik. 2008. Cross-language parser adaptation between related languages. NLP for Less
Privileged Languages, pages 35 – 35, 2008///.

43


