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Abstract

We present a multi-modal dialogue sys-
tem for interactive learning of perceptually
grounded word meanings from a human
tutor. The system integrates an incremen-
tal, semantic parsing/generation frame-
work - Dynamic Syntax and Type Theory
with Records (DS-TTR) - with a set of vi-
sual classifiers that are learned through-
out the interaction and which ground the
meaning representations that it produces.
We use this system in interaction with a
simulated human tutor to study the ef-
fects of different dialogue policies and ca-
pabilities on accuracy of learned mean-
ings, learning rates, and efforts/costs to the
tutor. We show that the overall perfor-
mance of the learning agent is affected by
(1) who takes initiative in the dialogues;
(2) the ability to express/use their confi-
dence level about visual attributes; and (3)
the ability to process elliptical and incre-
mentally constructed dialogue turns. Ulti-
mately, we train an adaptive dialogue pol-
icy which optimises the trade-off between
classifier accuracy and tutoring costs.

1 Introduction

Identifying, classifying, and talking about objects
or events in the surrounding environment are key
capabilities for intelligent, goal-driven systems
that interact with other agents and the external
world (e.g. robots, smart spaces, and other auto-
mated systems). To this end, there has recently
been a surge of interest and significant progress
made on a variety of related tasks, including gen-
eration of Natural Language (NL) descriptions of
images, or identifying images based on NL de-
scriptions (Karpathy and Fei-Fei, 2014; Bruni et

Figure 1: Example dialogues & interactively
agreed semantic contents.
al., 2014; Socher et al., 2014; Farhadi et al., 2009;
Silberer and Lapata, 2014; Sun et al., 2013).

Our goal is to build interactive systems that can
learn grounded word meanings relating to their
perceptions of real-world objects – this is differ-
ent from previous work such as e.g. (Roy, 2002),
that learn groundings from descriptions without
any interaction, and more recent work using Deep
Learning methods (e.g. (Socher et al., 2014)).

Most of these systems rely on training data of
high quantity with no possibility of online error
correction. Furthermore, they are unsuitable for
robots and multimodal systems that need to con-
tinuously, and incrementally learn from the envi-
ronment, and may encounter objects they haven’t
seen in training data. These limitations are likely
to be alleviated if systems can learn concepts, as
and when needed, from situated dialogue with hu-
mans. Interaction with a human tutor also enables
systems to take initiative and seek the particular
information they need or lack by e.g. asking ques-
tions with the highest information gain (see e.g.
(Skocaj et al., 2011), and Fig. 1). For example, a
robot could ask questions to learn the colour of a
“square” or to request to be presented with more
“red” things to improve its performance on the
concept (see e.g. Fig. 1). Furthermore, such sys-
tems could allow for meaning negotiation in the
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form of clarification interactions with the tutor.
This setting means that the system must be

trainable from little data, compositional, adaptive,
and able to handle natural human dialogue with
all its glorious context-sensitivity and messiness
– for instance so that it can learn visual concepts
suitable for specific tasks/domains, or even those
specific to a particular user. Interactive systems
that learn continuously, and over the long run from
humans need to do so incrementally, quickly, and
with minimal effort/cost to human tutors.

In this paper, we first outline an implemented
dialogue system that integrates an incremental, se-
mantic grammar framework, especially suited to
dialogue processing – Dynamic Syntax and Type
Theory with Records (DS-TTR1 (Kempson et al.,
2001; Eshghi et al., 2012)) with visual classi-
fiers which are learned during the interaction, and
which provide perceptual grounding for the ba-
sic semantic atoms in the semantic representations
(Record Types in TTR) produced by the parser
(see Fig. 1, Fig. 2 and section 3).

We then use this system in interaction with a
simulated human tutor, to test hypotheses about
how the accuracy of learned meanings, learning
rates, and the overall cost/effort for the human tu-
tor are affected by different dialogue policies and
capabilities: (1) who takes initiative in the dia-
logues; (2) the agent’s ability to utilise their level
of uncertainty about an object’s attributes; and
(3) their ability to process elliptical as well as in-
crementally constructed dialogue turns. The re-
sults show that differences along these dimensions
have significant impact both on the accuracy of the
grounded word meanings that are learned, and the
processing effort required by the tutors.

In section 4.3 we train an adaptive dialogue
strategy that finds a better trade-off between clas-
sifier accuracy and tutor cost.

2 Related work

In this section, we will present an overview of vi-
sion and language processing systems, as well as
multi-modal systems that learn to associate them.
We compare them along two main dimensions: Vi-
sual Classification methods: offline vs. online and
the kinds of representation learned/used.
Online vs. Offline Learning. A number of im-
plemented systems have shown good performance
on classification as well as NL-description of

1Download from http://dylan.sourceforge.net

novel physical objects and their attributes, either
using offline methods as in (Farhadi et al., 2009;
Lampert et al., 2014; Socher et al., 2013; Kong et
al., 2013), or through an incremental learning pro-
cess, where the system’s parameters are updated
after each training example is presented to the sys-
tem (Furao and Hasegawa, 2006; Zheng et al.,
2013; Kristan and Leonardis, 2014). For the inter-
active learning task presented here, only the latter
is appropriate, as the system is expected to learn
from its interactions with a human tutor over a pe-
riod of time. Shen & Hasegawa (2006) propose
the SOINN-SVM model that re-trains linear SVM
classifiers with data points that are clustered to-
gether with all the examples seen so far. The clus-
tering is done incrementally, but the system needs
to keep all the examples so far in memory. Kristian
& Leonardis (2014), on the other hand, propose
the oKDE model that continuously learns categor-
ical knowledge about visual attributes as probabil-
ity distributions over the categories (e.g. colours).
However, when learning from scratch, it is unre-
alistic to predefine these concept groups (e.g. that
red, blue, and green are colours). Systems need to
learn for themselves that, e.g. colour is grounded
in a specific sub-space of an object’s features. For
the visual classifiers, we therefore assume no such
category groupings here, and instead learn individ-
ual binary classifiers for each visual attribute (see
section 3.1 for details).

Distributional vs. Logical Representations.
Learning to ground natural language in percep-
tion is one of the fundamental problems in Arti-
ficial Intelligence. There are two main strands of
work that address this problem: (1) those that learn
distributional representations using Deep Learn-
ing methods: this often works by projecting vector
representations from different modalities (e.g. vi-
sion and language) into the same space in order
to be able to retrieve one from the other (Socher
et al., 2014; Karpathy and Li, 2015; Silberer and
Lapata, 2014); (2) those that attempt to ground
symbolic logical forms, obtained through seman-
tic parsing (Tellex et al., 2014; Kollar et al., 2013;
Matuszek et al., 2014) in classifiers of various en-
tities types/events/relations in a segment of an im-
age or a video. Perhaps one advantage of the latter
over the former method, is that it is strictly com-
positional, i.e. the contribution of the meaning of
an individual word, or semantic atom, to the whole
representation is clear, whereas this is hard to say
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about the distributional models. As noted, our
work also uses the latter methodology, though it is
dialogue, rather than sentence semantics that we
care about. Most similar to our work is probably
that of Kennington & Schlangen (2015) who learn
a mapping between individual words - rather than
logical atoms - and low-level visual features (e.g.
colour-values) directly. The system is composi-
tional, yet does not use a grammar (the composi-
tions are defined by hand). Further, the ground-
ings are learned from pairings of object references
in NL and images rather than from dialogue.

What sets our approach apart from others is:
a) that we use a domain-general, incremental se-
mantic grammar with principled mechanisms for
parsing and generation; b) Given the DS model
of dialogue (Eshghi et al., 2015), representations
are constructed jointly and interactively by the tu-
tor and system over the course of several turns
(see Fig. 1); c) perception and NL-semantics are
modelled in a single logical formalism (TTR); d)
we effectively induce an ontology of atomic types
in TTR, which can be combined in arbitrarily
complex ways for generation of complex descrip-
tions of arbitrarily complex visual scenes (see e.g.
(Dobnik et al., 2012) and compare this with (Ken-
nington and Schlangen, 2015), who do not use a
grammar and therefore do not have logical struc-
ture over grounded meanings).

3 System Architecture

We have developed a system to support an
attribute-based object learning process through
natural, incremental spoken dialogue interaction.
The architecture of the system is shown in Fig. 2.
The system has two main modules: a vision mod-
ule for visual feature extraction, classification, and
learning; and a dialogue system module using DS-
TTR. Below we describe these components indi-
vidually and then explain how they interact.

3.1 Attribute-based Classifiers used

Yu et. al (2015a; 2015b) point out that neither
multi-label classification models nor ‘zero-shot’
learning models show acceptable performance on
attribute-based learning tasks. Here, we instead
use Logistic Regression SVM classifiers with
Stochastic Gradient Descent (SGD) (Zhang, 2004)
to incrementally learn attribute predictions.

All classifiers will output attribute-based label
sets and corresponding probabilities for novel un-

seen images by predicting binary label vectors.
We build visual feature representations to learn
classifiers for particular attributes, as explained in
the following subsections.

3.1.1 Visual Feature Representation
In contrast to previous work (Yu et al., 2015a;
Yu et al., 2015b), to reduce feature noise through
the learning process, we simplify the method of
feature extraction consisting of two base feature
categories, i.e. the colour space for colour at-
tributes, and a ‘bag of visual words’ for the object
shapes/class.

Colour descriptors, consisting of HSV colour
space values, are extracted for each pixel and then
are quantized to a 16×4×4 HSV matrix. These de-
scriptors inside the bounding box are binned into
individual histograms. Meanwhile, a bag of vi-
sual words is built in PHOW descriptors using a
visual dictionary (that is pre-defined with a hand-
made image set). These visual words will be
calculated using 2x2 blocks, a 4-pixel step size,
and quantized into 1024 k-means centres. The
feature extractor in the vision module presents a
1280-dimensional feature vector for a single train-
ing/test instance by stacking all quantized features,
as shown in Figure 2.

3.2 Dynamic Syntax and Type Theory with
Records

Dynamic Syntax (DS) a is a word-by-word incre-
mental semantic parser/generator, based around
the Dynamic Syntax (DS) grammar framework
(Cann et al., 2005) especially suited to the frag-
mentary and highly contextual nature of dialogue.
In DS, dialogue is modelled as the interactive and
incremental construction of contextual and seman-
tic representations (Eshghi et al., 2015). The con-
textual representations afforded by DS are of the
fine-grained semantic content that is jointly nego-
tiated/agreed upon by the interlocutors, as a re-
sult of processing questions and answers, clar-
ification requests, corrections, acceptances, etc.
We cannot go into any further detail due to lack
of space, but proceed to introduce Type Theory
with Records, the formalism in which the DS
contextual/semantic representations are couched,
but also that within which perception is modelled
here.

Type Theory with Records (TTR) is an ex-
tension of standard type theory shown to be use-
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Figure 2: Architecture of the teachable system

ful in semantics and dialogue modelling (Cooper,
2005; Ginzburg, 2012). TTR is particularly well-
suited to our problem here as it allows information
from various modalities, including vision and lan-
guage, to be represented within a single semantic
framework (see e.g. Larsson (2013); Dobnik et al.
(2012) who use it to model the semantics of spatial
language and perceptual classification).

In TTR, logical forms are specified as record
types (RTs), which are sequences of fields of the
form [ l : T ] containing a label l and a type T . RTs
can be witnessed (i.e. judged true) by records of
that type, where a record is a sequence of label-
value pairs [ l = v ]. We say that [ l = v ] is of type
[ l : T ] just in case v is of type T .

R1 :

 l1 : T1
l2=a : T2
l3=p(l2) : T3

 R2 :
[

l1 : T1
l2 : T2′

]
R3 : []

Figure 3: Example TTR record types

Fields can be manifest, i.e. given a singleton
type e.g. [ l : Ta ] where Ta is the type of which
only a is a member; here, we write this using the
syntactic sugar [ l=a : T ]. Fields can also be de-
pendent on fields preceding them (i.e. higher) in
the record type (see Fig. 3).

The standard subtype relation v can be defined
for record types: R1 v R2 if for all fields [ l : T2 ]
in R2, R1 contains [ l : T1 ] where T1 v T2. In Fig-
ure 3, R1 v R2 if T2 v T2′ , and both R1 and R2 are
subtypes of R3. This subtyping relation allows se-
mantic information to be incrementally specified,
i.e. record types can be indefinitely extended with
more information/constraints. For us here, this
is a key feature since it allows the system to en-

code partial knowledge about objects, and for this
knowledge (e.g. object attributes) to be extended
in a principled way, as and when this information
becomes available.

3.3 Integration
Fig. 2 shows how the various parts of the system
interact. At any point in time, the system has ac-
cess to an ontology of (object) types and attributes
encoded as a set of TTR Record Types, whose in-
dividual atomic symbols, such as ‘red’ or ‘square’
are grounded in the set of classifiers trained so far.

Given a set of individuated objects in a scene,
encoded as a TTR Record, the system can utilise
its existing ontology to output a Record Type
which maximally characterises the scene (see e.g.
Fig. 1). Dynamic Syntax operates over the same
representations, they provide a direct interface be-
tween perceptual classification and semantic pro-
cessing in dialogue: this representation acts not
only as (1) the non-linguistic (here, visual) context
of the dialogue for the resolution of e.g. definite
reference and indexicals (see (Hough and Purver,
2014)); but also as (2) the logical database from
which the system can generate utterances (descrip-
tions), ask, or answer questions about the objects -
Fig. 4 illustrates how the semantics of the answer
to a question is retrieved from the visual context
through unification (this uses the standard sub-
type checking operation within TTR).

Conversely, for concept learning, the DS-TTR
parser incrementally produces Record Types (RT),
representing the meaning jointly established by
the tutor and the system so far. In this domain,
this is ultimately one or more type judgements, i.e.
that some scene/image/object is judged to be of a
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Figure 4: Question Answering by the system

particular type, e.g. in Fig. 1 that the individuated
object, o1 is a red square. These jointly negoti-
ated type judgements then go on to provide train-
ing instances for the classifiers. In general, the
training instances are of the form, 〈O,T 〉, where
O is an image/scene segment (an object or TTR
Record), and T , a record type. T is then decom-
posed into its constituent atomic types T1 . . . Tn,
s.t.
∧

Ti = T - where
∧

is the so called meet
operation corresponding to type conjunction. The
judgements O : Ti are then used directly to train
the classifiers that ground the Ti.

4 Experimental Setup

As noted in the introduction, interactive systems
that learn continuously, and over the long run from
humans need to do so incrementally; as quickly as
possible; and with as little effort/cost to the human
tutor as possible. In addition, when learning takes
place through dialogue, the dialogue needs to be
as human-like/natural as possible.

In general, there are several different dialogue
capabilities and policies that a concept-learning
agent might adopt, and these will lead to differ-
ent outcomes for the accuracy of the learned con-
cepts/meanings, learning rates, and cost to the tu-
tor – with trade-offs between these. Our goal in
this paper is therefore an experimental study of
the effect of different dialogue policies and capa-
bilities on the overall performance of the learn-
ing agent, which, as we describe below is a mea-
sure capturing the trade-off between accuracy of
learned meanings and the cost of tutoring.

Design. We use the dialogue system outlined
above to carry out our main experiment with a
2 × 2 × 2 factorial design, i.e. with three fac-
tors each with two levels. Together, these fac-
tors determine the learner’s dialogue behaviour:
(1) Initiative (Learner/Tutor): determines who
takes initiative in the dialogues. When the tu-
tor takes initiative, s/he is the one that drives the
conversation forward, by asking questions to the
learner (e.g. “What colour is this?” or “So this
is a ....” ) or making a statement about the at-
tributes of the object. On the other hand, when
the learner has initiative, it makes statements, asks
questions, initiates topics etc. (2) Uncertainty
(+UC/-UC): determines whether the learner takes
into account, in its dialogue behaviour, its own
subjective confidence about the attributes of the
presented object. The confidence is the proba-
bility assigned by any of its attribute classifiers
of the object being a positive instance of an at-
tribute (e.g. ‘red’) - see below for how a confi-
dence threshold is used here. In +UC, the agent
will not ask a question if it is confident about the
answer, and it will hedge the answer to a tutor
question if it is not confident, e.g. “T: What is
this? L: errm, maybe a square?”. In -UC, the
agent always takes itself to know the attributes of
the given object (as given by its currently trained
classifiers), and behaves according to that assump-
tion. (3) Context-Dependency (+CD/-CD): de-
termines whether the learner can process (pro-
duce/parse) context-dependent expressions such
as short answers and incrementally constructed
turns, e.g. “T: What is this? L: a square”, or “T:
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Figure 5: Example dialogues in different conditions

So this one is ...? L: red/a circle”. This setting can
be turned off/on in the DS-TTR dialogue model.

Tutor Simulation and Policy To run our experi-
ment on a large-scale, we have hand-crafted an In-
teractive Tutoring Simulator, which simulates the
behaviour of a human tutor2. The tutor policy is
kept constant across all conditions. Its policy is
that of an always truthful, helpful and omniscient
one: it (1) has complete access to the labels of
each object; and (2) always acts as the context of
the dialogue dictates: answers any question asked,
confirms or rejects when the learner describes an
object; and (3) always corrects the learner when it
describes an object erroneously.

Dependent Measures We now go on to describe
the dependent measures in our experiment, i.e. that
of classifier accuracy/score, tutoring cost, and the
overall performance measure which combines the
former two measures.

Confidence Threshold To determine when the
agent takes themselves to be confident in an at-
tribute prediction, we use confidence-score thresh-
olds. It consists of two values, a base threshold
(e.g. 0.5) and a positive threshold (e.g. 0.9).

If the confidences of all classifiers are under the
base threshold (i.e. the learner has no attribute la-
bel that it is confident about), the agent will ask
for information directly from the tutor via ques-
tions (e.g. “L: what is this?”).

On the other hand, if one or more classifiers
score above the base threshold, then the positive
threshold is used to judge to what extent the agent

2The experiment involves hundreds of dialogues, so run-
ning this experiment with real human tutors has proven too
costly at this juncture, though we plan to do this for a full
evaluation of our system in the future.

trusts its prediction or not. If the confidence score
of a classifier is between the positive and base
thresholds, the learner is not very confident about
its knowledge, and will check with the tutor, e.g.
“L: is this red?”. However, if the confidence score
of a classifier is above the positive threshold, the
learner is confident enough in its knowledge not to
bother verifying it with the tutor. This will lead to
less effort needed from the tutor as the learner be-
comes more confident about its knowledge. How-
ever, since a learning agent that has high confi-
dence about a prediction will not ask for assistance
from the tutor, a low positive threshold would re-
duce the chances that allow the tutor to correct the
learner’s mistakes. We therefore tested different
fixed values for the confidence threshold and this
determined a fixed 0.5 base threshold and a 0.9
positive threshold were deemed to be the most ap-
propriate values for an interactive learning process
- i.e. these values preserved good classifier accu-
racy while not requiring much effort from the tutor
- see below Section 4.3 for how an adaptive pol-
icy was learned that adjusts the agent’s confidence
threshold dynamically over time.

4.1 Evaluation Metrics
To test how the different dialogue capabilities and
strategies affect the learning process, we consider
both the cost to the tutor and the accuracy of the
learned meanings, i.e. the classifiers that ground
our colour and shape concepts.

Cost The cost measure reflects the effort needed
by a human tutor in interacting with the sys-
tem. Skocaj et. al. (2009) point out that a com-
prehensive teachable system should learn as au-
tonomously as possible, rather than involving the
human tutor too frequently. There are several pos-
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Table 1: Tutoring Cost Table
Cin f Cack Ccrt Cparsing Cproduction

1 0.25 1 0.5 1

sible costs that the tutor might incur, see Table 1:
Cin f refers to the cost of the tutor providing infor-
mation on a single attribute concept (e.g. “this is
red” or “this is a square”); Cack is the cost for a
simple confirmation (like “yes”, “right”) or rejec-
tion (such as “no”); Ccrt is the cost of correction
for a single concept (e.g. “no, it is blue” or “no, it
is a circle”). We associate a higher cost with cor-
rection of statements than that of polar questions.
This is to penalise the learning agent when it confi-
dently makes a false statement – thereby incorpo-
rating an aspect of trust in the metric (humans will
not trust systems which confidently make false
statements). And finally, parsing (Cparse) as well
as production (Cproduction) costs for tutor are taken
into account: each single word costs 0.5 when
parsed by the tutor, and 1 if generated (produc-
tion costs twice as much as parsing). These exact
values are based on intuition but are kept constant
across the experimental conditions and therefore
do not confound the results reported below.

Learning Performance As mentioned above,
an efficient learner dialogue policy should con-
sider both classification accuracy and tutor effort
(Cost). We thus define an integrated measure – the
Overall Performance Ratio (Rper f ) – that we use to
compare the learner’s overall performance across
the different conditions:

Rper f =
∆Acc
Ctutor

i.e. the increase in accuracy per unit of the cost, or
equivalently the gradient of the curve in Fig. 4c.
We seek dialogue strategies that maximise this.

Dataset The dataset used here is comprised of
600 images of single, simple handmade objects
with a white background (see Fig.1)3. There are
nine attributes considered in this dataset: 6 colours
(black, blue, green, orange, purple and red) and 3
shapes (circle, square and triangle), with a relative
balance on the number of instances per attribute.

4.2 Evaluation and Cross-validation
In each round, the system is trained using 500
training instances, with the rest set aside for test-

3All data from this paper will be made freely available.

ing. For each training instance, the system inter-
acts (only through dialogue) with the simulated
tutor. Each dialogue about an object ends either
when both the shape and the colour of the object
are discussed and agreed upon, or when the learner
requests to be presented with the next image (this
happens only in the Learner initiative conditions).
We define a Learning Step as comprised of 10
such dialogues. At the end of each learning step,
the system is tested using the test set (100 test in-
stances).

This process is repeated 20 times, i.e. for 20
rounds/folds, each time with a different, random
500-100 split, thus resulting in 20 data-points for
cost and accuracy after every learning step. The
values reported below, including those on the plots
in Fig. 6a, 6b and 6c, correspond to averages
across the 20 folds.

4.3 Learning an Adaptive Policy for a
Dynamic Confidence Threshold

In the experiment presented above, the learning
agent’s positive confidence threshold was held
constant, at 0.9. However, since the confidence
threshold itself becomes more reliable as the agent
is exposed to more training instances, we further
hypothesised that a threshold that changes dynam-
ically over time should lead to a better trade-off

between classification accuracy and cost for the
tutor, i.e. a better Overall Performance Ratio (see
above). For example, lower positive thresholds
may be more appropriate at the later stages of
training when the agent is already performing well
with attribute classifiers which are more reliable.
This leads to different dialogue behaviours, as the
learner takes different decisions as it encounters
more training examples.

To test this hypothesis we further trained and
evaluated an adaptive policy that adjusts the learn-
ing agent’s confidence threshold as it interacts
with the tutor (in the +UC conditions only).
This optimization used a Markov Decision Pro-
cess (MDP) model and Reinforcement Learning4,
where: (1) the state space was determined by vari-

4A reviewer points out that one can handle uncertainty
in a more principled way, possibly with better results, using
POMDPs. Another reviewer points out that the policy learned
is only adapting the confidence threshold, and not the other
conditions (uncertainty, initiative, context-dependency). We
point out that we are addressing both of these limitations in
work in progress, where we feed each classifier’s outputted
confidence level as a continuous feature in a (continuous
space) MDP for full dialogue control.
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(a) Accuracy (b) Tutoring Cost

(c) Overall Performance

Figure 6: Evolution of Learning Performance

ables for the number of training instances seen so
far, and the agent’s current confidence threshold
(2) the actions were either to increase or decrease
the confidence threshold by 0.05, or keep it the
same; (3) the local reward signal was directly
proportional to the agent’s Overall Performance
Ratio over the previous Learning Step (10 train-
ing instances, see above); and (4) the SARSA al-
gorithm (Sutton and Barto, 1998) was chosen for
learning, with each episode defined as a complete
run through the 500 training instances.

5 Results

Fig. 5 shows example interactions between the
learner and the tutor in some of the experimental
conditions. Note how the system is able to deal
with (parse and generate) utterance continuations
as in T+UC+CD, short answers as in L+UC+CD,
and polar answers as in T + UC + CD.

Fig. 6a and 6b plot the progression of aver-
age Accuracy and (cumulative) Tutoring Cost for
each of the 8 conditions in our main experiment,

as the system interacts over time with the tutor
about each of the 500 training instances. The
ninth curve in red (L+UC(Adaptive)+CD) shows
the same for the learning agent with a dynamic
confidence threshold using the policy trained us-
ing Reinforcement Learning (section 4.3) - the lat-
ter is only compared below to the dark blue curve
(L+UC+CD). As noted in passing, the vertical
axes in these graphs are based on averages across
the 20 folds - recall that for Accuracy the system
was tested, in each fold, at every learning step, i.e.
after every 10 training instances.

Fig. 6c, on the other hand, plots Accuracy
against Tutoring Cost directly. Note that it is to
be expected that the curves should not terminate
in the same place on the x-axis since the different
conditions incur different total costs for the tutor
across the 500 training instances. The gradient of
this curve corresponds to increase in Accuracy per
unit of the Tutoring Cost. It is the gradient of the
line drawn from the beginning to the end of each
curve (tan(β) on Fig. 4c) that constitutes our main
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evaluation measure of the system’s overall perfor-
mance in each condition, and it is this measure for
which we report statistical significance results:

A between-subjects Analysis of Variance
(ANOVA) shows significant main effects of Ini-
tiative (p < 0.01; F = 448.33), Uncertainty
(p < 0.01; F = 206.06) and Context-Dependency
(p < 0.05; F = 4.31) on the system’s over-
all performance. There is also a significant
Initiative×Uncertainty interaction (p < 0.01; F =

194.31).
Keeping all other conditions constant

(L+UC+CD), there is also a significant main
effect of Confidence Threshold type (Con-
stant vs. Adaptive) on the same measure
(p < 0.01; F = 206.06). The mean gradient of the
red, adaptive curve is actually slightly lower than
its constant-threshold counter-part blue curve -
discussed below.

6 Discussion

Tutoring Cost As can be seen on Fig. 6b, the cu-
mulative cost for the tutor progresses more slowly
when the learner has initiative (L) and takes its
confidence into account in its behaviour (+UC) -
the grey, blue, and red curves. This is so because a
form of active learning is taking place: the learner
only asks a question about an attribute if it isn’t
confident enough already about that attribute. This
also explains the slight decrease in the gradients
of the curves as the agent is exposed to more and
more training instances: its subjective confidence
about its own predictions increases over time, and
thus there is progressively less need for tutoring.

Accuracy On the other hand, the L+UC curves
(grey and blue) on Fig. 6a show the slowest in-
crease in accuracy and flatten out at about 0.76.
This is because the agent’s confidence score in the
beginning is unreliable as the agent has only seen
a few training instances: in many cases it doesn’t
query the tutor or have any interaction whatsoever
with it and so there are informative examples that
it doesn’t get exposed to. In contrast to this, the
L+UC(adaptive)+CD curve (red) achieves much
better accuracy.

Comparing the gradients of the curves on Fig.
6c shows that the overall performance of the agent
on the gradient measure is significantly better than
others in the L+UC conditions (recall the signif-
icant Initiative × Uncertainty interaction). How-
ever, while the agent with an adaptive thresh-

old (red/L+UC(adaptive)+CD) achieves slightly
lower overall gradient than its constant threshold
counter-part (blue/L+UC+CD), it achieves much
higher Accuracy overall, and does this much faster
in the first 1000 units of cost (roughly the total
cost in L+UC+CD condition). We therefore con-
clude that the adaptive policy is more desirable.
Finally, the significant main effect of Context-
Dependency on the overall performance is ex-
plained by the fact in the +CD conditions, the
agent is able to process context-dependent and
incrementally constructed turns, leading to less
repetition, shorter dialogues, and therefore better
overall performance.

7 Conclusion and Future work

We have presented a multi-modal dialogue system
that learns grounded word meanings from a hu-
man tutor, incrementally, over time, and employs
a dynamic dialogue policy (optimised using Rein-
forcement Learning). The system integrates a se-
mantic grammar for dialogue (DS), and a logical
theory of types (TTR), with a set of visual classi-
fiers in which the TTR semantic representations
are grounded. We used this implemented sys-
tem to study the effect of different dialogue poli-
cies and capabilities on the overall performance
of a learning agent - a combined measure of ac-
curacy and cost. The results show that in order
to maximise its performance, the agent needs to
take initiative in the dialogues, take into account
its changing confidence about its predictions, and
be able to process natural, human-like dialogue.

Ongoing work further uses Reinforcement
Learning to learn complete, incremental dialogue
policies, i.e. which choose system output at the
lexical level (Eshghi and Lemon, 2014). To deal
with uncertainty this system takes all the classi-
fiers’ outputted confidence levels directly as fea-
tures in a continuous space MDP.
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