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Abstract

Arguably, spoken dialogue systems are
most often used not in hands/eyes-busy
situations, but rather in settings where a
graphical display is also available, such as
a mobile phone. We explore the use of
a graphical output modality for signalling
incremental understanding and prediction
state of the dialogue system. By visual-
ising the current dialogue state and pos-
sible continuations of it as a simple tree,
and allowing interaction with that visual-
isation (e.g., for confirmations or correc-
tions), the system provides both feedback
on past user actions and guidance on pos-
sible future ones, and it can span the con-
tinuum from slot filling to full prediction
of user intent (such as GoogleNow). We
evaluate our system with real users and re-
port that they found the system intuitive
and easy to use, and that incremental and
adaptive settings enable users to accom-
plish more tasks.

1 Introduction

Current virtual personal assistants (PAs) require
users to either formulate complex intents in one
utterance (e.g., “call Peter Miller on his mobile
phone”) or go through tedious sub-dialogues (e.g.,
“phone call” — who would you like to call? -
“Peter Miller” — I have a mobile number and a
work number. Which one do you want?). This is
not how one would interact with a human assis-
tant, where the request would be naturally struc-
tured into smaller chunks that individually get ac-
knowledged (e.g., “Can you make a connection for
me?” — sure — “with Peter Miller” - uh huh - “on
his mobile” - dialling now). Current PAs signal
ongoing understanding by displaying the state of
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the recognised speech (ASR) to the user, but not
their semantic interpretation of it. Another type
of assistant system forgoes enquiring user intent
altogether and infers likely intents from context.
GoogleNow, for example, might present traffic in-
formation to a user picking up their mobile phone
at their typical commute time. These systems dis-
play their “understanding” state, but do not allow
any type of interaction with it apart from dismiss-
ing the provided information.

In this work, we explore adding a graphical user
interface (GUT) modality that makes it possible to
see these interaction styles as extremes on a con-
tinuum, and to realise positions between these ex-
tremes and present a mixed graphical/voice en-
abled PA that can provide feedback of understand-
ing to the user incrementally as the user’s utter-
ance unfolds—allowing users to make requests in
instalments instead of fully thought-out requests.
It does this by signalling ongoing understanding
in an intuitive tree-like GUI that can be displayed
on a mobile device. We evaluate our system by di-
recting users to perform tasks using it under non-
incremental (i.e., ASR endpointing) and incremen-
tal conditions and then compare the two condi-
tions. We further compare a non-adaptive with an
adaptive (i.e., infers likely events) version of our
system. We report that the users found the inter-
face intuitive and easy to use, and that users were
able to perform tasks more efficiently with incre-
mental as well as adaptive variants of the system.

2 Related Work

This work builds upon several threads of previ-
ous research: Chai et al. (2014) addressed mis-
alignments in understanding (i.e., common ground
(Clark and Schaefer, 1989)) between robots and
humans by informing the human of the internal
system state via speech. We take this idea and ap-

Proceedings of the SIGDIAL 2016 Conference, pages 242-251,
Los Angeles, USA, 13-15 September 2016. (©2016 Association for Computational Linguistics



ply it to a PA by displaying the internal state of
the system to the user via a GUI (explained in Sec-
tion 3.5), allowing the user to determine if system
understanding has taken place—a way of providing
feedback and backchannels to the user. Dethlefs et
al. (2016) provide a good review of work that show
how backchannels facilitate grounding, feedback,
and clarifications in human spoken dialogue, and
apply an information density approach to deter-
mine when to backchannel using speech. Because
we don’t backchannel using speech here, there is
no potential overlap between the user and the sys-
tem; rather, our system can display backchannels
and ask clarifications without frustrating the user
through inadvertent overlaps.

Though different in many ways, our work is
similar in some regards to Larsson et al. (2011),
which displays information to the user and allows
the user to navigate the display itself (e.g., by say-
ing up or down in a menu list)—functionality that
we intend to apply to our GUI in future work. Our
work is also comparable to SDS toolkits such as
IrisTK (Skantze and Moubayed, 2012) and Open-
Dial (Lison, 2015) which enable SDS designers to
visualise the internal state of their systems, though
not for end user interpretability.

Some of the work here is inspired by the Mi-
crosoft Language Understanding Intelligent Ser-
vice (LUIS) project (Williams et al., 2015). While
our system by no means achieves the scale that
LUIS does, we offer here an additional contribu-
tion of an open source LUIS-like system (with the
important addition of the graphical interface) that
is authorable (using JSON files; we leave author-
ing using a web interface like that of LUIS to fu-
ture work), extensible (affordances can be easily
added), incremental (in that respect going beyond
LUIS), trainable (i.e., can learn from examples,
but can still function well without examples), and
can learn through interacting (here we apply a user
model that learns during interaction).

3 System Description

This section introduces and describes our SDS,
which is modularised into four main components:
ASR, natural language understanding (NLU), dia-
logue management (DM), and the graphical user
interface (GUI) which, as explained below, is visu-
alised as a right-branching tree. The overall sys-
tem is represented in Figure 1. For the remain-
der of this section, each module is explained in
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turn. As each module processes input incremen-
tally (i.e., word for word), we first explain our
framework for incremental processing.
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Figure 1: Overview of system made up of ASR which takes in
a speech signal and produces transcribed words, NLU, which
takes words and produces a slots in a frame, DM which takes
slots and produces a decision for each, and the GUI which
displays the state of the system.

3.1 Incremental Dialogue

An aspect of our SDS that sets it apart from oth-
ers is the requirement that it process incrementally.
One potential concern with incremental process-
ing is regarding informativeness: why act early
when waiting might provide additional informa-
tion, resulting in better-informed decisions? The
trade off is naturalness as perceived by the user
who is interacting with the SDS. Indeed, it has
been shown that human users perceive incremen-
tal systems as being more natural than traditional,
turn-based systems (Aist et al., 2006; Skantze and
Schlangen, 2009; Skantze and Hjalmarsson, 1991;
Asri et al., 2014), offer a more human-like expe-
rience (Edlund et al., 2008) and are more satisfy-
ing to interact with than non-incremental systems
(Aist et al., 2007). Psycholinguistic research has
also shown that humans comprehend utterances
as they unfold and do not wait until the end of
an utterance to begin the comprehension process
(Tanenhaus et al., 1995; Spivey et al., 2002).

The trade-off between informativeness and nat-
uralness can be reconciled when mechanisms are
in place that allow earlier decisions to be repaired.
Such mechanisms are offered by the incremen-
tal unit (1U) framework for SDS (Schlangen and
Skantze, 2011), which we apply here. Follow-
ing Kennington et al. (2014), the 1U framework
consists of a network of processing modules. A
typical module takes input, performs some kind
of processing on that data, and produces output.
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Figure 2: Example of IU network; part-of-speech tags are
grounded into words, tags and words have same level links
with left IU; four is revoked and replaced with forty.

The data are packaged as the payload of incre-
mental units (IUs) which are passed between mod-
ules. The 1Us themselves are interconnected via
so-called same level links (SLL) and grounded-
in links (GRIN), the former allowing the linking
of IUs as a growing sequence, the latter allowing
that sequence to convey what 1Us directly affect it
(see Figure 2 for an example of incremental ASR).
Thus 1Us can be added, but can be later revoked
and replaced in light of new information. The 1U
framework can take advantage of up-to-date infor-
mation, but have the potential to function in such
a way that users perceive as more natural.

The modules explained in the remainder of this
section are implemented as 1U-modules and pro-
cess incrementally. Each will now be explained.

3.2 Speech Recognition

The module that takes speech input from the user
in our SDS is the ASR component. Incremen-
tal ASR must transcribe uttered speech into words
which must be forthcoming from the ASR as early
as possible (i.e., the ASR must not wait for end-
pointing to produce output). Each module that
follows must also process incrementally, acting in
lock-step upon input as it is received. Incremen-
tal ASR is not new (Baumann et al., 2009) and
many of the current freely-accessible ASR systems
can produce output (semi-) incrementally. We opt
for Google ASR for its vocabulary coverage of our
evaluation language (German). Following, Bau-
mann et al. (2016), we package output from the
Google service into 1Us which are passed to the
NLU module, which we now explain.

3.3 Language Understanding

We approach the task of NLU as a slot-filling task
(a very common approach; see Tur et al. (2012))
where an intent is complete when all slots of a
frame are filled. The main driver of the NLU in
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our SDS is the STUM model of NLU introduced in
Kennington et al. (2013). SIUM has been used in
several systems which have reported substantial
results in various domains, languages, and tasks
(Han et al., 2015; Kennington et al., 2015; Ken-
nington and Schlangen, 2017) Though originally
a model of reference resolution, it was always in-
tended to be used for general NLU, which we do
here. The model is formalised as follows:

P(I|U) = ()Y P(UIR=r)P(R=r|I) (1)

TER

That is, P(I|U) is the probability of the in-
tent [ (i.e., a frame slot) behind the speaker’s (on-
going) utterance U. This is recovered using the
mediating variable R, a set of properties which
map between aspects of U and aspects of 1. We
opt for abstract properties here (e.g., the frame
for restaurant might be filled by a certain
type of cuisine intent such as italian which
has properties like pasta, mediterranean,
vegetarian, etc.). Properties are pre-defined
by a system designer and can match words that
might be uttered to describe the intent in question.
For P(R|I), probability is distributed uniformly
over all properties that a given intent is specified
to have. (If other information is available, more
informative priors could be used as well.) The
mapping between properties and aspects of U can
be learned from data. During application, R is
marginalised over, resulting in a distribution over
possible intents.! This occurs at each word incre-
ment, where the distribution from the previous in-
crement is combined via P(I), keeping track of
the distribution over time.

We further apply a simple rule to add in a-
priori knowledge: if some r € Rand w € U
are such that » = w (where = is string equal-
ity; e.g., an intent has the property of pasta
and the word pasta is uttered), then we set
C(U=w|R=r)=1. To allow for possible ASR
confusions, we also apply C(U=w|R=r)= 1 —
ld(w,r)/maz(len(w),len(r)), where ld is the
Levenshtein distance (but we only apply this if the
calculated value is above a threshold of 0.6; i.e.,
the two strings are mostly similar). For all other w,
C(w|r)=0. This results in a distribution C', which
we renormalise and blend with learned distribution
to yield P(U|R).

'"In Kennington et al. (2013) the authors apply Bayes’

Rule to allow P(U|R) to produce a distribution over prop-
erties, which we adopt here.



We apply an instantiation of STUM for each slot.
The candidate slots which are processed depends
on the state of the dialogue; only slots represented
by visible nodes are considered, thereby reducing
the possible frames that could be predicted. At
each word increment, the updated slots (and their
corresponding) distributions are given to the DM,
which will now be explained.

3.4 Dialogue Manager

The DM plays a crucial role in our SDS: as well
as determining how to act, the DM is called upon
to decide when to act, effectively giving the DM
the control over timing of actions rather than re-
lying on ASR endpointing—further separating our
SDS from other systems. The DM policy is based
on a confidence score derived from the NLU (in
this case, we used the distribution’s argmax value)
using thresholds for the actions (see below), set
by hand (i.e., trial and error). At each word and
resulting distribution from NLU, the DM needs to
choose one of the following:

e wait — wait for more information (i.e., for
the next word)

e select — as the NLU is confident enough,
fill the slot can with the argmax from NLU

e request —signal a (yes/no) clarification re-
quest on the current slot and the proposed
filler

e confirm — act on the confirmation of the
user; in effect, select the proposed slot
value

Though the thresholds are statically set, we ap-
plied OpenDial (Lison, 2015) as an 1U-module to
perform the task of the DM with the future goal
that these values could be adjusted through rein-
forcement learning (which OpenDial could pro-
vide). The DM processes and makes a decision
for each slot, with the assumption that only one
slot out of all that are processed will result in an
non-wait action (though this is not enforced).

3.5 Graphical User Interface

The goal of the GUI is to intuitively inform the
user about the internal state of the ongoing under-
standing. One motivation for this is that the user
can determine if the system understood the user’s
intent before providing the user with a response
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(e.g., a list of restaurants of a certain type); i.e., if
any misunderstanding takes place, it happens be-
fore the system commits to an action and is poten-
tially more easily repaired.

The display is a right-
branching tree, where the
branches directly off the

ocall

root node display the af- Jdirections
fordances of the system
(i.e., what domains of . <food
things it can understand
and do something about). emessage
When the first tree is dis-

JSeminder

played, it represents a
state of the NLU where
none of the slots are
filled, as in Figure 3.

Figure 3: Example tree
as branching from the
root; each branch repre-
sents a system affordance
(i.e., making a phone
call, reminder, finding
a restaurant, leaving a
message, and finding a
route).

When a user verbally
selects a domain to ask
about, the tree is adjusted
to make that domain the
only one displayed and
the slots that are required for that domain are
shown as branches. The user can then fill those
slots (i.e., branches) by uttering the displayed
name, or, alternatively, by uttering the item to fill
the slot directly. For example, at a minimum, the
user could utter the name of the domain then an
item for each slot (e.g., food Thai downtown) or
the speech could be more natural (e.g., I'm quite
hungry, I am looking for some Thai food maybe in
the downtown area). Crucially, the user can also
hesitate within and between chunks, as advance-
ment is not triggered by silence thresholding, but
rather semantically. When something is uttered
that falls into the request state of the DM as
explained above, the display expands the subtree
under question and marks the item with a question
mark (see Figure 4). At this point, the user can ut-
ter any kind of confirmation. A positive confirma-
tion fills the slot with the item in question. A neg-
ative confirmation retracts the question, but leaves
the branch expanded. The expanded branches are
displayed according to their rank as given by the
NLU’s probability distribution. Though a branch
in the display can theoretically display an unlim-
ited number of children, we opted to only show 7
children; if a branch had more, the final child dis-
played as an ellipsis.

A completed branch is collapsed, visually
marking its corresponding slot as filled. At any
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Figure 4: Example tree asking for confirmation on a specific
node (in red with a question mark).

time, a user can backtrack by saying no (or equiv-
alent) or start the entire interaction over from the
beginning with a keyword, e.g., restart. To aid the
user’s attention, the node under question is marked
in red, where completed slots are represented by
outlined nodes, and filled nodes represent candi-
dates for the current slot in question (see examples
of all three in Figure 4). For cases where the sys-
tem is in the wait state for several words (during
which there is no change in the tree), the system
signals activity at each word by causing the red
node in question to temporarily change to white,
then back to red (i.e., appearing as a blinking node
to the user). Figure 5 shows a filled frame, repre-
sented as tree with one branch for each filled slot.

o food type:thai, owhere:universitat

Figure S5: Example tree where all of the slots are
filled. (i.e., domain:food, location:university,
type:thai)

Such an interface clearly shows the internal
state of the SDS and whether or not it has under-
stood the request so far. It is designed to aid the
user’s attention to the slot in question, and clearly
indicates the affordances that the system has. The
interface is currently a read-only display that is
purely speech-driven, but it could be augmented
with additional functionalities, such as tapping a
node for expansion or typing input that the system
might not yet display. It is currently implemented
as a web-based interface (using the JavaScript D3
library), allowing it to be usable as a web applica-
tion on any machine or mobile device.
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Adaptive Branching The GUI as explained af-
fords an additional straight-forward extension: in
order to move our system towards adaptivity on
the above-mentioned continuum, the GUI can be
used to signal what the system thinks the user
might say next. This is done by expanding
a branch and displaying a confirmation on that
branch, signalling that the system predicts that the
user will choose that particular branch. Alterna-
tively, if the system is confident that a user will fill
a slot with a particular value, that particular slot
can be filled without confirmation. This is dis-
played as a collapsed tree branch. A system that
perfectly predicts a user’s intent would fill an en-
tire tree (i.e., all slots) only requiring the user to
confirm once. A more careful system would con-
firm at each step (such an interaction would only
require the user to utter confirmations and nothing
else). We applied this adaptive variant of the tree
in one of our experiments explained below.

4 Experiments

In this section, we describe two experiments where
we evaluated our system. It is our primary goal
to show that our GUT is useful and signals under-
standing to the user. We also wish to show that
incremental presentation of such a GUI is more
effective than an endpointed system. We further
want to show that an adaptive system is more ef-
fective than a non-adaptive system (though both
would process incrementally). In order to best
evaluate our system, we recruited participants to
interact with our system in varied settings to com-
pare endpointed (i.e., non-incremental) and non-
adaptive as well as adaptive versions. We describe
how the data were collected from the participants,
then explain each experiment and give results.

4.1 Task & Procedure

The participants were seated at a desk and given
written instructions indicating that they were to
use the system to perform as many tasks as pos-
sible in the allotted time. Figure 6 shows some
example tasks as they would be displayed (one
at a time) to the user. A screen, tablet, and key-
board were on the desk in front of the user (see
Figure 7).> The user was instructed to convey the
task presented on the screen to the system such

>We used a Samsung 8.4 Pro tablet turned to its side to
show a larger width for the tree to grow to the right. The tablet
only showed the GUT; the SDS ran on a separate computer.



that the GUI on the tablet would have a completed
tree (e.g., as in Figure 5). When the participant
was satisfied that the system understood her intent,
she was to press space bar on the keyboard which
triggered a new task to be displayed on the screen
and reset the tree to its start state on the tablet (as
in Figure 3).

The possible task
domains were call,
which had a single
slot for name to
be filled (i.e., one
out of the 22 most

'\. Jana or Peter

‘feed the cat’

ﬁ City center, Thai

common  German 3] jana, ‘feed the cat

given names); mes-

sage which had ¥% (from) Bielefeld, (to) Berlin

a slot for name Figure 6: Examples of tasks,

and a slot for the  aspresented to each participant.

message (which, Each icon represents a_spe-
h . ked cific task domain (i.e., call, re-

when 1nvoked, minder, find a restaurant, leave

would simply fill  amessage, or directions).

in directly from the

ASR until 1 second of silence was detected); eat
which had slots for type (in this case, 6 possible
types) and location (in this case, 6 locations
based around the city of Bielefeld); route which
had slots for source city and the destination city
(which shared the same list of the top 100 most
populous German cities); and reminder which had
a slot for message.

For each task, the domain was first randomly
chosen from the 5 possible domains, and then each
slot value to be filled was randomly chosen (the
message slot for the name and message domains
was randomly selected from a list of 6 possible
“messages”, each with 2-3 words; e.g., feed the
cat, visit grandma, etc.). The system kept track of
which tasks were already presented to the partic-
ipant. At any time after the first task, the system
could choose a task that was previously presented
and present it again to the participant (with a 50%
chance) so the user would often see tasks that she
had seen before (with the assumption that humans
who use PAs often do perform similar, if not the
same, tasks more than once).

The participant was told that she would inter-
act with the system in three different phases, each
for 4 minutes, and to accomplish as many tasks
as possible in that time allotment. The partici-
pant was not told what the different phases were.
The experiments described in Sections 4.2 and
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Figure 7: Bird’s eye view of the experiment: the participant
sat at a table with a screen, tablet, and keyboard in front of
them.

4.3 respectively describe and report a compari-
son first between the Phase 1 and 2 (denoted as
the endpointed and incremental variants of the
system) in order to establish whether or not the
incremental variant produced better results than
the endpointed variant. We also report a com-
parison between Phase 2 and 3 (incremental and
incremental-adaptive phases). Phase 1 and Phase
3 are not directly comparable to each other as
Phase 3 is really a variant of Phase 2. Because of
this, we fixed the order of the phase presentation
for all participants. Each of these phases are de-
scribed below. Before the participant began Phase
1, they were able to try it out for up to 4 min-
utes (in Phase 1 settings) and ask for help from
the experimenter, allowing them to get used to the
Phase 1 interface before the actual experiment be-
gan. After this trial phase, the experiment began
with Phase 1.

Phase 1: Non-incremental In this phase, the
system did not appear to work incrementally; i.e.,
the system displayed tree updates after ASR end-
pointing (of 1.2 seconds—a reasonable amount of
time to expect a response from a commercial spo-
ken PA). The system displayed the ongoing ASR
on the tablet as it was recognised (as is often done
in commercial PAs). At the end of Phase 1, a pop
up window notified the user that the phase was
complete. They then moved onto Phase 2.

Phase 2: Incremental In this phase, the sys-
tem displayed the tree information incrementally
without endpointing. The ASR was no longer dis-
played; only the tree provided feedback in under-
standing, as explained in Section 3.5.

After Phase 2, a 10-question questionnaire was
displayed on the screen for the participant to fill
out comparing Phase 1 and Phase 2. For each
question, they had the choice of Phase I, Phase



2, Both, and Neither. (See Appendix for full list
of questions.) After completing the questionnaire,
they moved onto Phase 3.

Phase 3: Incremental-adaptive In this phase,
the incremental system was again presented to
the participant with an added user model that
“learned” about the user. If the user saw a task
more than once, the user model would predict
that, if the user chose that task domain again (e.g.,
route) then the system would automatically ask a
clarification using the previously filled values (ex-
cept for the message slot, which the user always
had to fill). If the user saw a task more than 3
times, the system skipped asking for clarifications
and filled in the domain slots completely, requir-
ing the user only to press the space bar to confirm
it was the correct one (i.e., to complete the task).
An example progression might be as follows: a
participant is presented with the task route from
Bielefeld to Berlin, then the user would attempt to
get the system to fill in the tree (i.e., slots) with
those values. After some interaction in other do-
mains, the user sees the same task again, and now
after indicating the intent type route, the user must
only say “yes” for each slot to confirm the sys-
tem’s prediction. Later, if the task is presented a
third time, when entering that domain (i.e, route),
the two slots would already be filled. If later a
different route task was presented, e.g., route from
Bielefeld to Hamburg, the system would already
have the two slots filled, but the user could back-
track by saying “no, to Hamburg” which would
trigger the system to fill the appropriate slot with
the corrected value. Later interactions within the
route domain would ask for a clarification on the
destination slot since it has had several possible
values given by the participant, but continue to fill
the from slot with Bielefeld.

After Phase 3, the participants were presented
with another questionnaire on the screen to fill out
with the same questions (plus two additional ques-
tions), this time comparing Phase 2 and Phase 3.
For each item, they had the choice of Phase 2,
Phase 3, Both, and Neither. At the end of the
three phases and questionnaires, the participants
were given a final questionnaire to fill out by hand
on their general impressions of the systems.

We recruited 14 participants for the evaluation.
We used the Mint tools data collection framework
(Kousidis et al., 2012) to log the interactions. Due
to some technical issues, one of the participants
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did not log interactions. We collected data from 13
participants, post-Phase 2 questionnaires from 12
participants, post-Phase 3 questionnaires from all
14 participants, and general questionnaires from
all 14 participants. In the experiments that follow,
we report objective and subjective measures to de-
termine the settings that produced superior results.

Metrics We report the subjective results of the
participant questionnaires. We only report those
items that were statistically significant (see Ap-
pendix for a full list of the questions). We further
report objective measures for each system vari-
ant: total number of completed tasks, fully correct
frames, average frame f-score, and average time
elapsed (averages are taken over all participants
for each variant; we only used the 10 participants
who fully interacted with all three phases). Dis-
cussion is left to the end of this section.

4.2 Experiment 1: Endpointed vs.
Incremental

In this section we report the results of the
evaluation between the endpointed (i.e., non-
incremental; Phase 1) variant vs the incremental
(Phase 2) variant of our system.

Subjective Results We applied a multinomial
test of significance to the results, treating all four
possible answers as equally likely (with Bonfer-
roni correction of 10). The item The interface was
useful and easy to understand with the answer of
Both was significant (x2 (4, N =12) = 9.0, p <
.005), as was The assistant was easy and intu-
itive to use also with the answer Both (x? (4, N
=12) = 9.0, p < .005). The item I always under-
stood what the system wanted from me was also
answered Both significantly more times than other
answers (X2 (4,N=14)=9.0, p < .005), similarly
for It was sometimes unclear to me if the assis-
tant understood me with the answer of Both (x>
(4, N =12) = 10.0, p < .005). These responses
tell us that though the participants did not report
preference for either system variant, they reported
a general positive impression of the GUI (in both
variants). This is a nice result; the GUI could be
used in either system with benefit to the users.

Objective Results The endpointed (Phase 1)
and incremental (Phase 2) columns in Table 1
show the results of the objective evaluation.
Though the average time per task and fscore for
the endpointed variant are better than those of the



endpointed | incr. | adaptive
tasks 105 122 124
frames 46 46 59
fscore 0.81 0.74 0.80
time 19.1 19.6 19.5

Table 1: Objective measures for Experiments 1 & 2: count
of completed tasks, number of fully correct frames, average
fscore (over all participants), and average elapsed time per
task (over all participants).

incremental variant, the total number of tasks for
the incremental variant was higher.

Manual inspection of logs indicate that partic-
ipants took advantage of the system’s flexibility
of understanding instalments (i.e., filling frames
incrementally). This is evidenced in that partici-
pants often uttered words understood by the sys-
tem as being negative (e.g., nein/no), either as a
result of an explicit confirmation request by the
system (e.g., Thai?) or after a slot was incorrectly
filled (something very easily determined through
the GUI). This is a desired outcome of using our
system; participants were able to repair local ar-
eas of misunderstanding as they took place in-
stead of needing to correct an entire intent (i.e.,
frame). However, we cannot fully empirically
measure these tendencies given our data.

4.3 Experiment 2: Incremental vs.
Incremental-Adaptive

In this section we report results for the eval-
uation between the incremental (Phase 2) and
incremental-adaptive (henceforth just adaptive;
Phase 3) systems.

Subjective Results We applied the same signif-
icance test as Experiment 1 (with Bonferroni cor-
rection of 12). The item The interface was useful
and easy to understand was answered with Both
significantly (x? (4, N = 14) = 10.0, p < .0042),
The item I had the feeling that the assistant at-
tempted to learn about me was answered with Nei-
ther (x> (4, N = 14) = 8.0, p < .0042), though
Phase 3 was also marked (6 times). All other items
were not significant. Here again we see that there
is a general positive impression of the GUI under
all conditions. If anyone noticed that a system
variant was attempting to learn a user model at all,
they noticed that it was in Phase 3, as expected.

Objective Results The incremental (Phase 2)
and adaptive (Phase 3) columns in Table 1 show
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the results for the objective evaluation for this
experiment. There is a clear difference between
the two variants, with the adaptive showing more
completed tasks, more fully correct frames, and a
higher average fscore (all three likely due to the
fact that frames were potentially pre-filled).

4.4 Discussion

While the responses don’t express any preference
for a particular system variant, the overall impres-
sion of the GUT was positive. The objective mea-
sures show that there are gains to be made when
the system signals understanding at a more fine-
grained interval than at the utterance level, due to
the higher number of completed tasks and locally-
made repairs. There are further gains to be made
when the system applies simple user modelling
(i.e., adaptivity) by attempting to predict what the
user might want to do in a chosen domain, de-
creasing the possibility of user error and allow-
ing the system to accurately and quickly complete
more tasks. Participants also didn’t just get used
to the system over time, as the average time per
episode was fairly similar in all three phases.

The open-ended questionnaire sheds additional
light. Most of the suggestions for improvement
related to ASR misrecognition and speed (i.e., not
about the system itself). Two participants sug-
gested an ability to add “free input” or select alter-
natives from the tree. Two participants suggested
that the system be more responsive (i.e., in wait
states), and give more feedback (i.e., backchan-
nels) more often. For those participants that ex-
pressed preference to the non-incremental system
(Phase 1), none of them had used a speech-based
PA before, whereas those that expressed prefer-
ence to the incremental versions (Phases 2 and
3) use them regularly. We conjecture that people
without SDS experience equate understanding with
ASR, whereas those that are more familiar with
PAs know that perfect ASR doesn’t translate to per-
fect understanding—hence the need for a GUI. A
potential remedy would be to display ASR with the
tree, signalling understanding despite ASR errors.

5 Conclusion & Future Work

Given the results and analysis, we conclude that an
intuitive presentation that signals a system’s ongo-
ing understanding benefits end users who perform
simple tasks which might be performed by a PA.
The GUI that we provided, using a right-branching



tree, worked well; indeed, the participants who
used it found it intuitive and easy to understand.
There are gains to be made when the system sig-
nals understanding at finer-grained levels than just
at the end of a pre-formulated utterance. There are
further gains to be made when a PA attempts to
learn (even a rudimentary) user model to predict
what the user might want to do next. The adap-
tivity moves our system from one extreme of the
continuum-simple slot filling—closer towards the
extreme that is fully predictive, with the additional
benefit of being able to easily correct mistakes in
the predictions.

For future work, we intend to provide simple
authoring tools for the system to make building
simple PAs using our GUI easy. We want to im-
prove the NLU and scale to larger domains.® We
also plan on implementing this as a standalone ap-
plication that could be run on a mobile device,
which could actually perform the tasks. It would
further be beneficial to compare the GUI with a
system that responds with speech (i.e., without a
GUI). Lastly, we will investigate using touch as an
additional input modality to select between possi-
ble alternatives that are offered by the system.
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Appendix

The following questions were asked on both ques-
tionnaires foﬁowing Phase 2 and Phase 3 (com-
paring the two most latest used system versions;
as translated into English):

e The interface was useful and easy to understand.
e The assistant was easy and intuitive to use.
e The assistant understood what I wanted to say.
e [ always understood what the system wanted from me.
e The assistant made many mistakes.

e The assistant did not respond while I spoke.

3Kennington and Schlangen (2017) showed that our cho-
sen NLU approach can scale fairly well, but the GUI has
some limits when applied to larger domains with thousands
of items. We leave improved scaling to future work.
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It was sometimes unclear to me if the assistant under-
stood me.

The assistant responded while I spoke.
The assistant sometimes did things that I did not expect.

When the assistant made mistakes, it was easy for me
to correct them.

In addition to the above 10 questions, the follow-
ing were also asked on the questionnaire following
Phase 3:

e | had the feeling that the assistant attempted to learn
about me.

e | had the feeling that the assistant made incorrect
guesses.

The following questions were used on the general
questionnaire:

e Iregularly use personal assistants such as Siri, Cortana,
Google now or Amazon Echo: Yes/No

I have never used a speech-based personal assistant:
Yes/No

What was your general impression of our personal as-
sistants?

Would you use one of these assistants on a smart phone
or tablet if it were available? If yes, which one?

Do you have suggestions that you think would help us
improve our assistants?

If you have used other speech-based interfaces before,
do you prefer this interface?
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