
Proceedings of the SIGDIAL 2016 Conference, pages 216–219,
Los Angeles, USA, 13-15 September 2016. c©2016 Association for Computational Linguistics

Rapid Prototyping of Form-driven Dialogue Systems
Using an Open-source Framework

Svetlana Stoyanchev
Interactions Corporation

New York, USA
sstoyanchev@interactions.com

Pierre Lison
Language Technology Group
University of Oslo, Norway

plison@ifi.uio.no

Srinivas Bangalore
Interactions Corporation

Murray Hill, USA
sbangalore@interactions.com

Abstract

Most human-machine communication for
information access through speech, text
and graphical interfaces are mediated by
forms – i.e. lists of named fields. How-
ever, deploying form-filling dialogue sys-
tems still remains a challenging task due
to the effort and skill required to author
such systems. We describe an extension
to the OpenDial framework that enables
the rapid creation of functional dialogue
systems by non-experts. The dialogue de-
signer specifies the slots and their types
as input and the tool generates a domain
specification that drives a slot-filling di-
alogue system. The presented approach
provides several benefits compared to tra-
ditional techniques based on flowcharts,
such as the use of probabilistic reasoning
and flexible grounding strategies.

1 Introduction

Dialogue systems research has witnessed the
emergence of several important innovations in
the last two decades, such as the development
of information-state architectures (Larsson and
Traum, 2000), the use of probabilistic reasoning
to handle multiple state hypotheses (Young et al.,
2013), the application of reinforcement learning to
automatically derive dialogue policies from real
or simulated interactions (Lemon and Pietquin,
2012), and the introduction of incremental pro-
cessing methods to allow for more natural con-
versational behaviours (Schlangen et al., 2010).
However, few of these innovations have so far
made their way into dialogue systems deployed
in commercial environments (Paek and Pierac-
cini, 2008; Williams, 2009). Indeed, the bulk
of currently deployed dialogue systems continue

Figure 1: Architecture overview.

to rely on traditional hand-crafted finite-state or
rule-based approaches to dialogue management
using commercial or proprietary tools generating
VoiceXML. The key reasons for this status quo
are the need for the dialogue designer to (1) retain
control over the system’s behaviour, (2) ensure
the system can scale to large numbers of users,
and (3) easily author and edit the system’s inter-
nal models. These features supersede their short-
comings. While authoring a system-initiative di-
alogue is quick and easy to maintain, authoring a
user-initiative dialogue system in VoiceXML of-
ten results in large interdependent code bases that
are increasingly difficult to maintain. Further-
more, these dialogue systems cannot capture mul-
tiple state hypotheses nor optimise the dialogue by
learning from previous interactions.

Meanwhile, various dialogue authoring frame-
works have been developed in academia to facil-
itate the development of dialogue systems by au-
thoring state update rules (Bohus and Rudnicky,
2009; P. Lison, 2015). In particular, OpenDial,
an open source dialogue system framework based
on a information-state architecture, allows system
developers to easily specify and edit dialogue be-

216



haviours, which is a crucial requirement for com-
mercial conversational applications. However, de-
signing and maintaining dialogue systems using
these tools remains a challenge.

In order to address this challenge and lower the
entry barrier for authoring dialogue systems, we
demonstrate a web-based tool that allows a user
to create a form-filling dialogue system automat-
ically by simply specifying a form template. The
architecture of the system is shown in Figure 1.
The dialogue designer using the authoring tool
specifies a form template – as a list of slots as-
sociated with their corresponding semantic types
– as input. The tool compiles the form template
into a specification to drive the dialogue manage-
ment framework, OpenDial. Natural language un-
derstanding is provided through the use of cloud-
based APIs. The authoring tool satisfies the re-
quirements of maintaining control of the dialogue
flow with the use of probabilistic modelling tech-
niques, thus allowing simple authoring of mixed-
initiative slot-filling dialogue systems.

Our target audience includes both researchers
and industry practitioners. A fully-functional spo-
ken interface to a system, such as hotel reserva-
tion, airline booking, or mortgage calculator, can
be generated using the tool by a non-expert in di-
alogue systems. The generated domain specifica-
tion can be further edited by the system developers
in order to integrate more advanced functionality
such as escalated per-field prompts or customized
language generation.

The rest of this paper is structured as follows.
The next section presents the web-based tool, the
generated OpenDial domain file, and the software
bridges to external NLU services. Section 3 de-
scribes a preliminary evaluation, while Section 4
relates the system to previous work.

2 System

We rely on OpenDial as underlying framework (P.
Lison, 2015) for dialogue management. OpenDial
has been previously used for human–robot interac-
tions, in-car driving assistants, and intelligent tu-
toring systems (Lison and Kennington, 2016). It
is also a popular platform for teaching advanced
courses on spoken dialogue systems.

2.1 Form-to-System Generation

We created a web-based tool that generates an
(XML-encoded) OpenDial dialogue domain from

a form specification. The web tool allows the di-
alogue designer to configure any number of form
fields by specifying a field name, a correspond-
ing semantic type, a natural language question for
eliciting the field value, an implicit confirmation
sentence, and a optional set of constraints between
the slots. Figure 2 illustrates the interface for
defining a form for hotel reservations with four
fields: location, arrival, duration, and departure.
Fields can also be marked as “optional”, and can
be mutually exclusive with other fields (for in-
stance, the “duration” of a hotel stay and its “end
date”). It should be noted that the NL Question and
NL Implicit Confirmation can reference the val-
ues of previous slots, such as e.g. “When are you
arriving in location”. This enables the dialogue
designer to implement implicit grounding strate-
gies. When the form is submitted, the authoring
tool generates the corresponding domain file.

2.2 Domain file

OpenDial stores domain-specific information in a
domain file, which is encoded in XML. The do-
main file specifies the following information:

• The initial dialogue state.

• A collection of domain models, which are
themselves composed of probabilistic rules.

• General configuration settings, such as set-
tings for the cloud-based NLU.

The dialogue state is represented as a Bayesian
Network, allowing for explicit capture of uncer-
tainty. For slot-filling tasks, the state variables
capture the values for each slot, the recent dia-
logue history, a list of slots that are already filled
and grounded, and a (possibly empty) set of mu-
tual exclusivity constraints between slots. This di-
alogue state is regularly updated based on user in-
puts and subsequent system responses.

The probabilistic rules are expressed as if-then-
else blocks associating logical conditions to prob-
abilistic effects (see (P. Lison, 2015) for more de-
tails). The domain file generated by the web-based
tool is composed of about fifteen rules responsi-
ble for (1) updating the slot values given the user
inputs, (2) selecting the most appropriate system
actions based on the current state, and (3) map-
ping these high-level actions to concrete system
responses. The (probability and utility) parame-
ters of these rules are initially fixed to reasonable

217



Figure 2: Form for generating a dialogue with hotel information domain.

defaults, but the user is free to modify the values
of these parameters (or estimate them from data if
such interaction data is available).

The generated dialogue domain allows for
mixed-initiative interactions where a user can
choose any order and combination of fields for fill-
ing the form, including a single turn (Figure 3a)
or in multiple turns (Figure 3b). In addition, the
dialogue manager includes correction and ground-
ing capabilities (Figure 3c). The user may interact
with the system using either text inputs or speech
(using third-party APIs such as Nuance or Curo
for speech recognition and synthesis).

2.3 Natural Language Understanding (NLU)

In slot-filling applications, the main objective of
natural language understanding is to label the user
utterance with (application-specific) semantic en-
tities. The entities identified through NLU can
then be exploited by the dialogue manager to fill
the fields of the form which in turn drives the
next response. The mapping between NLU labels
and state variables is established through the field
types specified in the form (Figure 2).

We extend OpenDial to access cloud-based
NLU services through HTTP endpoints. When
a user selects an NLU type from the list of sup-
ported services, the values in the Field Type drop-
down boxes for each field are populated with the
NL labels in the selected NLU module. To add
support for a given NLU service, we create a cor-
responding OpenDial module configured with the
service’s HTTP endpoint and session parameters.
This module processes the output json file returned
from the HTTP request to the service and extracts
assigned semantic labels.

We have implemented NLU modules for pub-
licly available cloud services from Microsoft and
Facebook1 and for a proprietary Curo NLU. This
enables dialogue designers with a range of alter-

1https://www.luis.ai/, https://wit.ai

(a) Filling the form in one turn.

(b) Filling the form with multiple turns.

(c) User correction and grounding.

Figure 3: Dialogue Examples in the hotel reserva-
tions domain.

native NLU solutions, from using the already sup-
ported cloud NLU services to implementing their
own NLU module in OpenDial.

3 Evaluation

For a preliminary evaluation, we asked five re-
searchers from the lab to use the web interface and
generate a dialogue system using pre-loaded ho-
tel reservation form, evaluate it by running open-
dial as end-users, and explore the web interface by
creating new systems. All of the participants were
able to generate a hotel reservation form-filling in-

218



terface successfully. The participants were asked
to fill out the hotel reservation form using multi-
ple dialogue paths. On average the participants at-
tempted four distinct dialogue paths and success-
fully completing three of them. All of the par-
ticipants agreed that the tool provides an effec-
tive method of generating a voice interface for a
form and four of the participants indicated that
they would use it for generating spoken interfaces
in the future (one was neutral).

4 Related Work

Several web-based NLU services have been re-
cently launched by companies such as wit.ai (now
part of Facebook), Microsoft, Nuance and api.ai 2.
These services provide cloud-based solutions for
creating NLU for systems with simple web-based
interfaces and active learning capabilities. Some
of these tools have now been extended with basic
dialogue management functionalities. These plat-
forms can be employed by novices with no pro-
gramming or speech experience to author and de-
ploy spoken interfaces.

Similar to these commercial solutions, the pre-
sented authoring tool aims at lowering the entry
barrier for dialogue developers wishing to quickly
create functioning dialogue systems. Our so-
lution is intended for both dialogue system re-
searchers and commercial companies that still pre-
dominantly use VoiceXML-based platforms and
have restrictions on transferring customer data to
third-party services. We hope that both target au-
diences will benefit from the ability to deploy the
system on a proprietary server, with full control
over the dialogue flow, easy access to third-party
ASR, NLU and TTS components, and ability to
perform probabilistic reasoning and optimize dia-
logue policies from data.

5 Conclusions and Future Work

We have presented a web-based authoring tool to
facilitate the creation of slot-filling dialogue sys-
tems. Based on a simple form template, the tool
generates an XML domain file that specifies the
system behavior, while intent recognition is dele-
gated to a cloud service, either third-party or pro-
prietary. We aim at bridging the gap between spo-
ken dialogue research and conversational systems

2http://wit.ai, https://www.luis.ai, https://api.ai,
https://developer.nuance.com/mix.

deployed in the industry by providing an open-
sourced tool that combines simple authoring, full
control of the dialogue flow with the ability to op-
timize from historical interaction data.

As future work, we wish to extend the tool to
handle multiple forms and design an interface for
describing system behaviors in a multi-form sys-
tem. We also intend to use the system for research
on clarification strategies and evaluating benefits
of joint ASR and NLU processing in dialogue.

References
D. Bohus and A. Rudnicky. 2009. The RavenClaw di-

alog management framework: Architecture and sys-
tems. Computer Speech & Language, 23(3):332–
361.

S. Larsson and D. R. Traum. 2000. Information state
and dialogue management in the TRINDI dialogue
move engine toolkit. Natural Language Engineer-
ing, 6(3-4):323–340.

O. Lemon and O. Pietquin. 2012. Data-Driven Meth-
ods for Adaptive Spoken Dialogue Systems: Com-
putational Learning for Conversational Interfaces.
Springer.

P. Lison and C. Kennington. 2016. OpenDial: A
toolkit for developing spoken dialogue systems with
probabilistic rules. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (System Demonstrations), Berlin, Ger-
many.

P. Lison. 2015. A hybrid approach to dialogue man-
agement based on probabilistic rules. Computer
Speech & Language, 34(1):232 – 255.

T. Paek and R. Pieraccini. 2008. Automating spoken
dialogue management design using machine learn-
ing: An industry perspective. Speech Communica-
tions, 50(8-9):716–729.

D. Schlangen, T. Baumann, H. Buschmeier, O. Buß,
S. Kopp, G. Skantze, and R. Yaghoubzadeh. 2010.
Middleware for Incremental Processing in Conver-
sational Agents. In Proceedings of the 11th SIG-
DIAL meeting on Discourse and Dialogue.

J. D. Williams. 2009. Spoken dialogue systems:
challenges, and opportunities for research (invited
talk). In Proc IEEE Workshop on Automatic Speech
Recognition and Understanding (ASRU), Merano,
Italy.

S. Young, M. Gačić, B. Thomson, and J. D. Williams.
2013. POMDP-based statistical spoken dialog
systems: A review. Proceedings of the IEEE,
101(5):1160–1179.

219


