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Abstract

Conversant-independent stochastic turn-
taking (STT) models generally benefit
from additional training data. However,
conversants are patently not identical in
turn-taking style: recent research has
shown that conversant-specific models can
be used to refractively detect some conver-
sants in unseen conversations. The current
work explores an unsupervised framework
for studying turn-taking style variability.
First, within a verification framework us-
ing an information-theoretic model dis-
tance, sides cluster by conversant more of-
ten than not. Second, multi-dimensional
scaling onto low-dimensional subspaces
appears capable of preserving distance.
These observations suggest that, for many
speakers, turn-taking style as character-
ized by time-independent STT models is
a stable attribute, which may be corre-
lated with other stable speaker attributes
such as personality. The exploratory tech-
niques presented stand to benefit speaker
diarization technology, dialogue agent de-
sign, and automated psychological diag-
nosis.

1 Introduction

Turn-taking is an inherent characteristic of spoken
conversation. Among models of turn-taking (Jaffe
et al., 1967; Brady, 1969; Wilson et al., 1984;
J. Dabbs and Ruback, 1987; Laskowski, 2010;
Laskowski et al., 2011b), those labeled “stochas-
tic turn-taking models” (Wilson et al., 1984) of-
fer a particular advantage: they are independent of
the meaning of just what a “turn” might be. This
is felicitous, since researchers are in disagreement
over the definition. Instead, stochastic turn-taking

(STT) models provide a probability that a specific
participant speaks at instant t, conditioned on what
that participant and her interlocutors were doing at
specific prior instants. Whether her speaking con-
stitutes something that might be called a “turn” is
not germane to the applicability of STT models.

In their most commonly studied form (Jaffe
et al., 1967; Brady, 1969; Laskowski, 2010),
STT models condition their estimates on a history
that consists exclusively of binary speech/non-
speech variables; the extension to more com-
plex characterizations of the past have been stud-
ied (Laskowski, 2012) but comprise the minor-
ity. In this binary-feature mode of operation, STT
models ablate from conversations the overwhelm-
ing majority of the overt information contained
in them, including topic, choice of words, lan-
guage spoken, intonation, stress, voice quality,
and voice itself, leaving only speaker-attributed
chronograms (Chapple, 1949) of binary-valued
behavior. This is a strength particular to STT mod-
els: they are language-, topic-, and text- agnostic,
and therefore stand to form a universal framework
for comparison of conversational behavior, where
other methods would need to be extended to cross
language, topic, and speech usage boundaries.

Given the paucity of information contained in
chronograms, however, it is surprising that they
have been efficiently exploited in the supervised
tasks of conversation-type inference, participant-
role inference, social status inference, and even
identity inference. The current article aims to ex-
tend understanding of STT models in an unsuper-
vised way, by starting from a theoretically sound
distance metric between models of individual,
interlocutor-contextualized conversation sides. In
the space induced by these distances, experiments
and analyses are performed which aim to answer
a fundamental question: Do people behave self-
consistently, across disparate longitudinal obser-
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vations, in terms of their turn-taking preferences?
(Self-consistency within conversations was stud-
ied indirectly in (Laskowski et al., 2011b).) To
provide an answer, between-person scatter is com-
pared to within-person scatter, and accounts are
sought for both types of variability. The find-
ings reveal that models of persons are in fact self-
consistent on average, and that, therefore, both (1)
the persons they model are self-consistent, and (2)
the modeling framework presented here is capable
of capturing that self-consistency, while simulta-
neously differentiating among persons. The work
has important implications for social psychology,
diarization technology, and dialogue system de-
sign.

2 Data

The data used in this work was drawn from the
ICSI Meeting Corpus (Janin et al., 2003), which
consists of 75 multi-party meetings involving nat-
urally occurring, spontaneous speech. It has been
claimed that the meetings would have taken place
even if they were not being recorded.

DATASET as defined here is limited to all 29 of
the Bmr meetings, i.e. those held by the group of
15 researchers working on the Meeting Recorder
project at ICSI. Not all 15 persons participated in
every meeting; each of the 29 meetings was at-
tended by an average of 6.8 persons. The total
number of conversation sides in DATASET is 197.
The distribution of sides per participant is shown
in Figure 1.

me011

fe008

me013

me018

mn014

fe016

me001

mn017

mn005

me051

me022

me025

me026

me028

mn009 1
1

2
3
3

6
10

15
18
18

19
24

25
25

27

Figure 1: The number of sides in DATASET con-
tributed by each of its 15 participants.

Each meeting in the ICSI Meeting Corpus con-
tains an interval of time (at the beginning or end of
the meeting) marked as Digits, used for micro-
phone calibration. This interval was excluded for

the current purposes, as it does not involve conver-
sation. Each recording was left with between 22.8
and 74.5 minutes of data, with an average of 48.4
minutes.

3 Methodology

3.1 Chronograms

From each meeting C in DATASET, a speech/non-
speech chronogram (Chapple, 1949) was con-
structed, designated by Q. Q is a matrix whose
entries are one of {�, �}, or equivalently {0, 1},
designating non-speech or speech respectively.
Rows represent the K persons participating in the
meeting, while columns represent 100-ms time
frames covering its temporal support. The aver-
age Q in DATASET thus contained K = 7 rows
and T = 29K columns.

The cell in row k and columnt t of every Q was
populated, by a value of � or �, by inspecting
the forced alignments to the manually transcribed
speech attributed to the kth speaker of the cor-
responding meeting. The transcriptions, attribu-
tions, and alignments had been made available by
ICSI in (Shriberg et al., 2004). A frame incre-
ment of 100 ms was chosen as in (Laskowski et
al., 2011b) and (Laskowski et al., 2011a); this is
shorter than the average syllable duration, ensur-
ing that no speech is missed, but longer than the
frame step of the recognizer used by ICSI for the
forced alignment. This makes the models devel-
oped in the current work robust to imprecision in
word start and end times.

3.2 Stochastic Turn-Taking Models

The models used in the current work are prob-
abilistic generative models that, given a chrono-
gram Q ∈ {�, �}K×T , provide the probability
that its kth participant will speak during its tth
frame. Participants are most commonly (Jaffe et
al., 1967; Brady, 1969; Laskowski et al., 2011b)
treated as conditionally independent (or “single-
source” in the terminology of (Jaffe et al., 1967));
namely, the probability of speaking at frame t
for participant k is independent of what the other
K − 1 participants do at frame t, but it is condi-
tioned on the joint K-participant history. The his-
tory duration, in number of most-recent contigu-
ous frames, is denoted henceforth by τ .

In multi-party conversation, the number K of
participants varies from conversation to conver-
sation, leading to a context of variable size. To
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eliminate this complication, when constructing or
accessing the model describing the kth row of
chronogram Q, the remaining K − 1 rows (rep-
resenting the kth participant’s interlocutors) are
collapsed via an inclusive-OR operation, to pro-
vide a single “all interlocutors” row. This results
in a conditioning history of τ frames of the kth
participant, and τ frames of context describing
whether any of the kth participant’s interlocutors
were speaking at instant t − τ (Laskowski et al.,
2011b).

The above method yields a history duration
which is independent of K, and lends itself eas-
ily to N -gram modeling. The elements of the
conditioning history are marshalled into a one-
dimensional order, and counts are accumulated
as elsewhere for N -grams. This results in a
maximum-likelihood (ML) model pA (q|h) for a
sequence denoted A, with q ∈ {�, �} and h the
conditioning history. In (Laskowski et al., 2011b),
such models were interpolated with lower-order
(smaller-τ ) models (Jelinek and Mercer, 1980),
yielding smoothed models p̃A (q|h). In the ab-
sence of smoothing, as in the current work, the or-
der of the elements of the (2× τ)-length history is
unimportant, provided it is fixed.

3.3 Supervised Modeling
In supervised modeling, a model A is constructed
from one or more conversation sides attributed to
the same speaker, and then that model is applied to
a conversation side B whose speaker is unknown.
In this case, a commonly used score between gen-
erative model A and sequence B is the average
negative log-likelihood of the sequence given the
model, which is also known as the conditional
cross entropy:

H (pB (q|h) |p̃A (q|h))

= −
∑
h,q

pB (h, q) log p̃A (q|h) , (1)

where pB (h, q) are the ML joint probabilities ob-
served in sequence B. Equation 1 is often normal-
ized by subtracting the conditional entropy (Cover
and Thomas, 1991),

H (pB (q|h))

= −
∑
h,q

pB (h, q) log pB (q|h) . (2)

yielding the conditional relative entropy or con-
ditional Kullback-Leibler divergence (Cover and

Thomas, 1991):

DKL (pB (q|h) ‖p̃A (q|h))

=
∑
h,q

pB (h, q) log
pB (q|h)
p̃A (q|h)

. (3)

For example, in the context of stochastic turn-
taking models, Equation 1 was successfully used
with zero-normalization of scores (Laskowski,
2014).

3.4 Unsupervised Modeling
In the unsupervised case, a score does not nor-
mally compare a sequence B to a model A, but
rather a sequence A to a sequence B (or, alter-
nately, a model trained on sequence A to a model
trained on sequence B). Because of this symme-
try, it is desirable for the score itself to be symmet-
ric; the conditional Kullback-Leibler divergence in
Equation 3 does not exhibit this quality and, ad-
ditionally, is unbounded. It is therefore custom-
ary to compute the conditional Jensen-Shannon di-
vergence (Lin, 1991), which for two equal-weight
conditional probability models pA and pB is given
by

DJS (pA (q|h) ‖pB (q|h))

≡ 1
2

DKL (pB (q|h) ‖p (q|h))

+
1
2

DKL (pA (q|h) ‖p (q|h)) . (4)

Here, p (q|h) is the “joint-source” (ie. A and B)
model; (El-Yaniv et al., 1997) showed that for
models of conditional probability, its form is

p (q|h) = λA (h) · pA (q|h)
+ λB (h) · pB (q|h) , (5)

namely that it is the linear interpolation of the two
single-source models, with weights given by their
relative probabilities of the occurrence of the con-
text h:

λA (h) =
pA (h)

pA (h) + pB (h)
(6)

λB (h) =
pB (h)

pA (h) + pB (h)
. (7)

The Jensen-Shannon distance, a score which is
both bounded and symmetric, is given by

dA,B ≡
√

DJS (pA (q|h) ‖pB (q|h)) . (8)
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Table 1: Leave-one-out (LOO) modified-KNN classification accuracies, using Jensen-Shannon distances
between STT models of individual conversation sides in DATASET. K specifies the maximal number
of neighbors; τ is the number of 100-ms frames of conditioning history. Each frame contains 2 bits of
information: whether the modeled-side participant was speaking, and whether any of that participant’s
interlocutors were speaking.

τ
K

1 2 3 4 5 6 7 8
1 0.37 0.44 0.56 0.54 0.47 0.37 0.18 0.09
3 0.36 0.53 0.51 0.55 0.48 0.37 0.16 0.09
5 0.40 0.53 0.59 0.58 0.49 0.34 0.15 0.07
7 0.40 0.54 0.59 0.57 0.49 0.33 0.16 0.07
9 0.41 0.54 0.57 0.57 0.50 0.33 0.13 0.07
11 0.43 0.55 0.59 0.57 0.52 0.33 0.15 0.08
13 0.43 0.54 0.60 0.57 0.54 0.34 0.15 0.09
15 0.45 0.54 0.60 0.58 0.54 0.35 0.18 0.10
17 0.45 0.54 0.59 0.59 0.55 0.36 0.20 0.13
19 0.45 0.55 0.60 0.58 0.54 0.38 0.21 0.13
25 0.44 0.53 0.57 0.57 0.53 0.38 0.21 0.13

3.5 Modified Nearest-Neighbor Classification

A central goal of the current work is the determi-
nation of whether two sequences, produced by the
same person in different conversations, are more
proximate than are two sequences produced by
two different persons. One answer to this question
can be provided by classifying sequences based
on their proximity, of which the formalization is
known as K-nearest neighbor classification (Fix
and Hodges, 1951). The input to the algorithm
is a symmetric, zero-diagonal distance matrix D,
whose entries are pair-wise distances.

Here, a modified version of the algorithm is em-
ployed. If the speaker g of the side being classi-
fied is known to have produced only Ng − 1 other
sides in the collection of sides under study, then
K is limited to Ng − 1 for that classification trial.
The use of such side information may be perceived
as unfair; however, the aim is diagnostic, and no
effort has been made in the current work to nor-
malize the distances in D for local density differ-
ences. In addition, it makes little sense to penal-
ize an analysis for those trials whose speakers pro-
duced no other sides in DATASET (cf. Section 2).
The results of such a diagnostic test can be use-
fully compared to the outcome of random guess-
ing under the same circumstances.

An alternative approach, consisting of applying
clustering to the distance matrix, was also tried;
the results yielded similar (albeit more difficult to

disentangle) results and are not presented due to
space constraints.

3.6 Multidimensional Scaling
Finally, multidimensional scaling (MDS; cf.
(Borg and Groenen, 2005) for example) was ap-
plied in an attempt to embed models in a low-
dimensional space and to facilitate visual analysis.
The experiments used the smacofSym() func-
tion (de Leeuw and Mair, 2009) implementation
in R.

4 Results

For a given τ ∈ [1, 2, 3, . . . , 8], each conversa-
tion side qn of the N = 197 sides in DATASET

was used to train a side-specific maximum like-
lihood (ML) model θn. The distance between ev-
ery pair of models was then computed using Equa-
tion 8, leading to a symmetric, zero-diagonal dis-
tance matrix D ∈ R197×197

+ .

4.1 Diagnostic Classification
D was then used within the modified K-nearest
neighbor participant-identity classification frame-
work described in Section 3.5. The achieved accu-
racies are shown in Table 1.

As can be seen, the highest accuracies are ob-
tained for τ ∈ [2, 3, 4, 5] with K > 7, with
an absolute maximum from among those ex-
plored of 60%, at τ = 3 and K = 15. This
is considerably in excess of 11%, the accuracy
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Table 2: LOO modified-KNN classification accuracies, using distances computed following multidimen-
sional scaling (MDS) of the distances between STT models of individual conversation sides in DATASET,
to 5 dimensions. Compare to Table 1.

τ
K

1 2 3 4 5 6 7 8
1 0.37 0.47 0.49 0.56 0.59 0.54 0.55 0.47
3 0.39 0.49 0.57 0.58 0.62 0.61 0.58 0.48
5 0.39 0.46 0.61 0.62 0.65 0.62 0.60 0.52
7 0.40 0.48 0.59 0.63 0.66 0.61 0.59 0.53
9 0.43 0.51 0.58 0.63 0.66 0.62 0.56 0.54
11 0.43 0.49 0.58 0.62 0.68 0.61 0.59 0.53
13 0.43 0.49 0.58 0.63 0.68 0.60 0.60 0.52
15 0.45 0.51 0.57 0.64 0.69 0.61 0.59 0.52
17 0.44 0.52 0.60 0.66 0.70 0.63 0.59 0.54
19 0.45 0.53 0.60 0.65 0.69 0.62 0.58 0.54
25 0.44 0.53 0.59 0.65 0.68 0.63 0.59 0.53

achieved by random guessing with the DATASET

priors. This result corroborates the findings in
(Laskowski, 2014), that participant identities can
frequently be inferred from STT models; the dif-
ference with (Laskowski, 2014) is that in the lat-
ter work, models were trained on same-person sets
of sides in a training portion of the data, rather
than on individual sides, and that the asymmet-
ric conditional cross entropy (Equation 2, with
zero-normalization) was used rather than Jensen-
Shannon divergence (Equation 4).

4.2 Diagnostic Classification after Scaling

The computed pair-wise Jensen-Shannon dis-
tances lie in a space of unknown effective dimen-
sionality; the determination of that effective di-
mensionality is one of the implicit aims of the cur-
rent work. To this end, the distances were em-
bedded in a fixed-dimensionality subspace, using
multidimensional scaling (MDS) as described in
Section 3.6. All 19306 pair-wise distances com-
prising D were then re-computed from the MDS-
derived positions, and the diagnostic experiment
of Section 4.1 was repeated. The results for a 5-
dimensional subspace are shown in Table 2.

As can be seen, relative to Table 1, MDS to 5
dimensions actually increases the attainable clas-
sification accuracy, to 70% at τ = 5 and K = 17.
This suggests that there is considerable noise in
the distance estimates, and that scaling effectively
collapses some of that variability. The accuracy-
maximizing number of dimensions, whose identi-
fication is beyond the scope of the current work,

is expected to be specific to any particular data
set. However, it is notable that for DATASET

this “elimination of unwanted variance” occurs
for the higher-complexity (τ > 2) models; dis-
tances computed using these are more likely to be
noisy that those computed using simpler models,
for fixed conversation-side durations. Since the
τ = 8 context contains the τ = 5 context, this sug-
gests that the duration of the conversations studied
here, between 22.8 and 74.5 minutes, may be in-
sufficient to infer robust long-conditioning-history
models.

Similar experiments were performed after MDS
scaling to each of {4, 3, 2, 1} dimensions. The re-
sults are not shown due to space constraints. A
summary of the maximum achieved accuracy in
each case is depicted in Figure 2.

The figure shows that with each reduction of di-
mensionality of the embedding subspace, by one
additional dimension, the maximum achievable
accuracy falls by an increasing amount. Although
for a one-dimensional subspace the accuracy of
35% is still considerably above chance (11%), it
is already (just) less than halfway to the accuracy
achieved without scaling (60%).

At 3 dimensions, the accuracy of 58% is almost
the same as that achieved without scaling; it oc-
curs at τ = 6 and K = 17 (not shown). This sug-
gests that the relative magnitudes of the distances
are preserved in a continuous small-dimensional
space, and may have implications for understand-
ing what STT models actually learn. For example,
each of the dimensions may be strongly correlated
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Figure 3: Positions of 197 models, each of one conversation side in DATASET, as inferred using a Jensen-
Shannon distance matrix and multidimensional scaling (MDS) to 3 dimensions. Sides produced by the
five most frequently-occurring persons (cf. Section 2) are identified explicitly, together with ellipses
representing projections of the corresponding 50% error ellipsoid.
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Figure 2: Maximum achieved LOO modified-
KNN classification accuracies, using distances
computed following MDS down to [5, 4, 3, 2, 1]
dimensions of the distances between STT mod-
els of individual conversation sides in DATASET.
The accuracies are compared to the maximum ac-
curacy achieved using unscaled distances (“orig”)
and random guessing with actual LOO priors
(“rand”).

with an independently measurable human trait or
role trait. In that case, such traits could be used to
index STT models, for both generation and recog-
nition purposes in multi-party conversational set-
tings.

4.3 Model Subspace Visualization

It is serendipitous that, for the data set under inves-
tigation, three dimensions suffice to yield a good
approximation of the accuracy achievable with-
out scaling. A three-dimensional space is con-
siderably easier to inspect visually, and to under-
stand, than are higher-dimensional spaces. Fig-
ure 3 shows the MDS-derived locations, two di-

mensions at a time. The 197 datapoints, repre-
senting models of individual conversation sides,
are seen to comprise a cloud with heterogenous,
locally clumpy density. The determinant of the to-
tal scatter matrix, given these inferred positions, is
2.74× 103.

The determinants of the between-class scatter
matrix and the within-class scatter matrix, given
the model positions shown in Figure 3, are 3.29×
103 and 2.86 × 103, respectively. It appears
from these numbers that the variability between
different-person sides is on average larger than the
variability between same-person sides, which in
turn suggests that people exhibit low variability —
even across longitudinal spans of many months —
relative to what differentiates them from others.

5 Discussion

5.1 Intra-Person Variability
It is relevant to try to determine whether the vari-
ability observed among models of the same person
are due to actual variability of behavior or to mea-
surement error. One source of measurement er-
ror could be the relative duration of conversations,
leading to unequally (under)trained models. Fig-
ure 4 depicts the five most frequent participants in
DATASET, at the same positions as in Figure 3(a),
with marker size indicative of the duration of ob-
servation.

It can be seen that, broadly, shorter-duration
conversations yield models which lie at the pe-
riphery of the error ellipses. This indicates that
— were conversations longer or models more par-
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Figure 4: Replication of Figure 3(a) with marker
size linearly proportional to the duration of con-
versation from which each side is drawn. Sides for
only the top five most frequent participants shown.

simonious — the resulting error ellipses (shown
unchanged from Figure 3(a) in Figure 4) may be
tighter, and thereby even more discriminative.

A second potential source of intra-person vari-
ability may be not just the duration of observa-
tion (i.e. the duration of conversation), but how
talkative a person is during a specific conversa-
tion. Although the models employed here make
no mathematical distinction between speaking and
not speaking, in multi-party turn-taking the av-
erage participant speaks for only a minority of
time, making speaking (versus not speaking) a dis-
tinctively marked behavior. Figure 5 is like Fig-
ure 4, but marker size is indicative of the amount
of speech observed for each side.

Figure 5 shows that points lying in the bot-
tom right of the figure represent low quantities
of speech per side, globally. This appears to be
true for individual speakers separately, particularly
for the top three most frequent participants (and
me013 most markedly). Since the ellipses ap-
pear cigar-shaped, fanning out from the bottom
right, these observations suggest that when given
the opportunity to speak a lot, participant models
“move” to the upper left where they may be even
further apart. They also suggest that a quantity en-
coded in the plane of the first and second MDS
dimensions (“DIM1” and “DIM2” in the figure) is
the proportion of speech produced by each person,
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Figure 5: Replication of Figure 3(a) with marker
size linearly proportional to the amount of speech
observed for each side. Sides for only the top five
most frequent participants shown.

or their “talkativity”.

5.2 Inter-Person Variability

A source of established (Laskowski et al., 2008)
variability in turn-taking models trained using the
ICSI Meeting Corpus is the relative seniority of
participants within a group. (Laskowski et al.,
2008) used the self-reported Education level.
Figure 6 retains the topology shown in Figure 3(a),
but markers represent the educational level of in-
dividual participants in DATASET. It can be seen
that students (Undergrad and Grad) occupy
exclusively the lower half in the diagram, while
Postdoc and Professor are found predomi-
nantly in the upper half, but in separate clusters.
Persons of type PhD exhibit no such leanings.

Figure 6 suggests that education level is indeed
discriminated by the STT-model topology inferred
via MDS. (Laskowski et al., 2008) observed that
despite the fact that persons of type Professor
spoke a lot, they appeared to avoid overlap with
persons of type Undergrad. Such tendencies are
most likely the result of social roles within the or-
ganization, and not of educational level per se, but
role and education level are probably very corre-
lated in an academic setting. It may be tentatively
concluded that the (“DIM 1”,“DIM 2”) plane also
encodes, in addition to each person’s “talkativity”
(cf. Subsection 5.1), their tendency to initiate and
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terminate talk in overlap.
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Figure 6: Replication of Figure 3(a) with marker
shape denoting the self-reported education level of
each side.

It should be noted that, unlike the measure-
ment of intra-person variability, the measurement
of inter-person variability is likely a function of
the size of the group of people studied. As de-
scribed in Section 2, the group considered here
consists of 15 individuals, some of which partic-
ipated in only a handful of conversations. For
larger groups, it can be expected that — if models
represent interaction styles — inter-person vari-
ability under a fixed model order and a fixed ob-
servation duration will decrease, since nothing a
priori prevents multiple individuals from interact-
ing using the same or similar-enough style. Since
intra-person variability is independent of the num-
ber of other persons considered, it is expected to
remain constant under group resizing. The ratio of
the inter-person variability to the intra-person vari-
ability is therefore likely to decrease with increas-
ingly larger group sizes, when the model complex-
ity and observational duration remain constant.

5.3 Training Speaker-Independent Models
That within-person SST-model variability can be
smaller than between-person variability, as discov-
ered in the dataset used in the current study, has
important consequences for training broad STT
models, intended to be applicable to a wide variety
of domains and conversational interaction styles.
The results presented indicate that including more

training data, without careful consideration of its
interaction-style content, may bias the model to-
wards the styles present in the training data and
therefore away from the styles in test data — since
they can be so different. In this sense, the re-
sults corroborate earlier, similar findings for do-
main and topic variability in language modeling
within automatic speech recognition.

5.4 Potential Impact and Applications

Over and above the immediate recommendations
for the training of STT models, the results ob-
tained in the current study may have several con-
sequences for at least three research areas.

An understanding of the contexts in which par-
ticipants to conversation choose to vocalize can
usefully inform the construction of speaker di-
arization systems. Current state-of-the-art diariza-
tion technology, as used in the transcription of
far-field recordings of multi-party meetings, over-
segments the temporal support of the recorded
track and then performs agglomerative hierarchi-
cal clustering using spectral or voice-print similar-
ity. The prior knowledge used in these systems
consists of minimal duration constraints on inter-
vals of single-party talk, as well as the assump-
tion that each instant is associated with exactly
one participant speaking. The detection of overlap
(or of simultaneous vocalization by more than one
speaker), where performed, is generally treated as
a post-processing step. Information regarding con-
sistent, participant-specific tendencies in the tem-
poral deployment of talk — the subject of the cur-
rent study — do not currently feature in any way
in the assumptions or priors of today’s diarization
systems.

Second, dialogue system design can benefit
from the results presented, particularly those sys-
tems which are conversational and whose behavior
is intended to be more natural than that of sim-
ple human-query-driven information portals. The
confirmation that humans exhibit self-consistency
in their temporal deployment of speech, which
also makes them different from other people,
means that the detection of their style and an ori-
entation to it will result in better predictions, re-
quiring fewer resolutions. If that orientation is per-
ceivable to the human user, the system may appear
to the user as more human itself. An additional di-
mension of human-likeness may be inadvertently
communicated by the system if it has its own, self-
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consistent and differentiable style, which is syn-
tonic with its designed conversational role.

Finally, the results in this study have bearing on
the design of diagnostic tools for social psychol-
ogy, the domain for which STT models were orig-
inally invented (Chapple, 1949; Jaffe et al., 1967).
(Chapple, 1949) was concerned with the measure-
ment of conversational traits correlated with work
performance, whereas (Jaffe et al., 1967) treated
clinical settings. A considerable amount of re-
search in this area had been conducted in the 1970s
and 1980s, primarily in the detection of traits or
conditions. However, the models were first-order
Markovian (corresponding to τ = 1 in the cur-
rent work) and often relying on analysis frames
as small as 20 ms. The findings presented here
indicate that useful speaker-discriminating infor-
mation is contained as far back as 500 ms (with
frames of 100 ms and τ = 5, cf. Subsection 4.2),
even when models are trained on single conver-
sations which are as short as 22 minutes long.
The obtained results may warrant a re-opening of
earlier investigations into diagnostic tools for the
health industry.

6 Conclusions

That people exhibit a degree of consistency in
their conversational behavior agrees with com-
mon sense, and should not be particularly surpris-
ing. A number of earlier works have success-
fully correlated identity with turn-taking prefer-
ences (Jurafsky et al., 2009; Grothendieck et al.,
2011). What the analyses in the current work
show — and which is surprising — is that this
consistency is present even in the very shallow
representation implicit in the so-called stochastic
turn-taking models. In this representation, words,
boundaries, durations, and prosody are markedly
absent; only the frame-level occurrence of party-
attributed speech activity is captured, and a defini-
tion of “turn” is neither needed nor used. Specifi-
cally, results indicate that, for conversations whose
duration is 40-minutes on average, longitudinally
speaker-discriminative models can be learned for
a conditioning history which is only 10 bits long:
whether the modeled speaker, and any of their in-
terlocutors, were speaking in each of the 5 most
recent 100-ms frames. The current study has
shown that under these conditions, for groups of
15 people like the ICSI Bmr group, the inferred
models exhibit greater between-person variabil-

ity than within-person variability. The conver-
stants under study appear to have behaved self-
consistently, across disparate longitudinal obser-
vations, in terms of their turn-taking preferences.

The current experiments also demonstrated that
a conversation-side embedding in three dimen-
sions approximately recovers the Jensen-Shannon
distances between 10-bit-context STT models. In
this embedding, between-person variability was
shown to be smaller for longer conversations, im-
plying that over time people can be observed
to converge on interaction styles which are even
more self-consistent. Although it is premature
to unambiguously ascribe meaning to each of the
three dimensions obtained using the ICSI Bmr
data, jointly they appear to encode: (1) the pro-
portion of conversation-time spent talking; (2) the
inclination to initiate and terminate overlap with
others; and (3) role-specific behaviors exhibited
by members of a hierarchy (with — in the current
work — positions within that hierarchy closely
correlated with self-reported education level).

The presented work suggests the possibility of
inference of speaker-characterizing conversational
interaction styles, as well as the indexing of such
interaction styles by points in an embedding space
consisting of only a few continuous dimensions.
It has immediate bearing on the training of inten-
tionally broad, speaker-independent STT models.
Finally, the work has the potential to usefully im-
pact the design of speaker diarization algorithms
for multi-human conversation settings, of human-
like conversational dialogue systems, and of diag-
nostic software for the health industry.
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