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Abstract
Two heuristic rules that transform Rhetor-
ical Structure Theory discourse trees into
discourse dependency trees (DDTs) have
recently been proposed (Hirao et al., 2013;
Li et al., 2014), but these rules derive
significantly different DDTs because their
conversion schemes on multinuclear re-
lations are not identical. This paper re-
veals the difference among DDT formats
with respect to the following questions:
(1) How complex are the formats from a
dependency graph theoretic point of view?
(2) Which formats are analyzed more ac-
curately by automatic parsers? (3) Which
are more suitable for text summarization
task? Experimental results showed that
Hirao’s conversion rule produces DDTs
that are more useful for text summariza-
tion, even though it derives more complex
dependency structures.

1 Introduction

Recent years have seen an increase in the use
of dependency representations throughout various
NLP applications. For the discourse analysis of
texts, dependency graph representations have also
been studied by many researchers (Prasad et al.,
2008; Muller et al., 2012; Hirao et al., 2013; Li et
al., 2014). In particular, Hirao et al. (2013) pro-
posed a current state-of-the-art text summariza-
tion method based on trimming discourse depen-
dency trees (DDTs). Dependency tree represen-
tation is the key to the formulation of the tree
trimming method (Filippova and Strube, 2008),
and dependency-based discourse syntax has fur-
ther potential to improve the modeling of a wide
range of text-based applications.

However, no large-scale corpus exists that is an-
notated with DDTs since it is expensive to manu-
ally construct such a corpus from scratch. There-
fore, Hirao et al. (2013) and Li et al. (2014)
proposed heuristic rules that automatically trans-
form RST discourse trees (RST-DTs)1 into DDTs.
However, even researchers, who cited these two
works in their papers, have ignored their dif-
ferences, probably because the authors described
only abstracts of their conversion methods. To
clarify their algorithmic differences, this paper
provides pseudocodes where the two different
methods can be described in a unified form, show-
ing that they analyze multinuclear relations differ-
ently on RST-DTs. As we show by example in
Section 4, such a slight difference can derive sig-
nificantly different DDTs.

The main purpose of this paper is to exper-
imentally reveal the differences between depen-
dency formats. By investigating the complex-
ity of their structures from the dependency graph
theoretic point of view (Kuhlmann and Nivre,
2006), we prove that the Hirao13 method, which
keeps the semantic equivalence of multinuclear
discourse units in the dependency structures, intro-
duces much more complex DDTs than Li14, while
a simple post-editing method greatly reduces the
complexity of DDTs.

This paper also compares the methods with both
intrinsic and extrinsic evaluations: (1) Which de-
pendency structures are analyzed more accurately
by automatic parsers? and (2) Which structures

1Mann and Thompson (1988)’s Rhetorical Structure The-
ory (RST), which is one of the most influential text organiza-
tion frameworks, represents discourse as a (constituent-style)
tree structure. RST was developed as the basis of annotated
corpora for the automatic analysis of text syntax, most no-
tably the RST Discourse Treebank (RST-DTB) (Carlson et
al., 2003).
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are more suitable to text summarization? We show
from experimental results that even though the Hi-
rao13 DDT format reduces performance, as mea-
sured by intrinsic evaluations, it is more useful for
text summarization. While researchers developing
discourse syntactic parsing (Soricut and Marcu,
2003; Hernault et al., 2010; Feng and Hirst, 2012;
Joty et al., 2013; Li et al., 2014) have focused
excessively on improving accuracies, our exper-
imental results emphasize the importance of ex-
trinsic evaluations since the more accurate parser
does not always lead to better performance of text-
based applications.

2 Related Work

Mann and Thompson (1988)’s Rhetorical Struc-
ture Theory (RST), which is one of the most in-
fluential text organization frameworks, represents
a discourse structure as a constituent tree. The
RST Discourse Treebank (RST-DTB) (Carlson et
al., 2003) has played a critical role in automatic
discourse analysis (Soricut and Marcu, 2003; Her-
nault et al., 2010; Feng and Hirst, 2012; Joty et
al., 2013), mainly because trees are both easy to
formalize and computationally tractable. RST dis-
course trees (RST-DTs) are also used for mod-
eling many text-based applications, such as text
summarization (Marcu, 2000) and anaphora res-
olution (Cristea et al., 1998).

Hirao et al. (2013) and Li et al. (2014) intro-
duced dependency conversion methods from RST-
DTs into DDTs in which a full discourse struc-
ture is represented by head-dependent binary rela-
tions between elementary discourse units. Hirao
et al. (2013) also showed that a text summariza-
tion method, based on trimming DDTs, achieves
significant improvements against Marcu (2000)’s
method using RST-DTs.

On the other hand, some researchers argue that
trees are inadequate to account for a full dis-
course structure (Wolf and Gibson, 2005; Lee et
al., 2006; Danlos and others, 2008; Venant et al.,
2013). Segmented Discourse Representation The-
ory (SDRT) (Asher and Lascarides, 2003) rep-
resents discourse structures as logical form, and
relations function like logical operators on the
meaning of their arguments. The annotation in
the ANNODIS corpus was conducted based on
SDRT (Afantenos et al., 2012). For automatic
discourse analysis using the corpus, Muller et al.
(2012) adopted dependency tree representation to

simplify discourse parsing. They also presented a
method to automatically derive DDTs from SDR
structures.

Wolf and Gibson (2005) used a chain-graph for
representing discourse structures and annotated
135 articles from the AP Newswire and the Wall
Street Journal. The annotated corpus is called
the Discourse Graphbank. The graph represents
crossed dependency and multiple parentship dis-
course phenomena, which cannot be represented
by tree structures, but whose graph structures be-
come very complex (Egg and Redeker, 2010).

The Penn Discourse Treebank (PDTB) (Prasad
et al., 2008) is a large-scale corpus of anno-
tated discourse connectives and their arguments.
Its connective-argument structure can also rep-
resent complex discourse phenomena like multi-
ple parentship, but its objective is to annotate the
discourse relations between individual discourse
units, not full discourse structures. Unfortunately,
to the best of our knowledge, neither the Discourse
Graphbank nor the PDTB has been used for any
specific NLP applications.

3 RST Discourse Tree

RST represents a discourse as a tree structure. The
leaves of an RST discourse tree (RST-DT) cor-
respond to Elementary Discourse Units (EDUs).
Adjacent EDUs are linked by rhetorical relations,
forming larger discourse units that are also sub-
ject to this relation linking. Figure 1 shows part of
an RST-DT (wsj-0623), taken from RST-DTB, for
this text fragment:{

[The fiscal 1989 budget deficit figure came out

Friday .]e-1

}
1
,

{
[It was down a little .]e-2

}
2
,{

[The next time you hear a Member of Congress
moan about the deficit ,]e-3, [consider what
Congress did Friday .]e-4

}
3
,
{

[The Senate , 84-6

, voted to increase to $ 124,000 the ceiling on
insured mortgages from the FHA ,]e-5, [which
lost $ 4.2 billion in loan defaults last year .]e-6

}
4
,{

[Then , by voice vote , the Senate voted a pork-
barrel bill ,]e-7, [approved Thursday by the House
,]e-8, [for domestic military construction .]e-9

}
5
,{

[the Bush request to what the Senators gave

themselves :]e-10

}
6
, . . .

where each subscript at the end of square brack-
ets [] corresponds to a leaf unit (EDU) in the tree.
EDUs grouped by {} consist of a sentence that is
labeled with its index in the text.
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Figure 1: Part of discourse tree (wsj-0623) in RST-DTB: ‘S’, ‘N’ and ‘e’ stand for Satellite, Nucleus and
EDU. Each EDU is labeled with its index in the text, and EDUs grouped with {} brackets are in the same
sentence.

Each discourse unit in the tree that forms a
rhetorical relation is characterized by a rhetor-
ical status: Nucleus (N), which represents the
most essential piece of information in the rela-
tion, or Satellite (S), which indicates the support-
ing information. Rhetorical relations must be ei-
ther mononuclear or multinuclear. Mononuclear
relations hold between two units with Nucleus
and Satellite, whereas multinuclear relations hold
among two or more units with Nucleus. Each unit
in a multinuclear relation has similar semantic in-
formation as the other units. Rhetorical relations
can be grouped into classes that share such rhetori-
cal meaning as “Elaboration” and “Condition”. In
Figure 1, the Satellite unit (covering e-3) and its
sibling Nucleus unit (covering e-4) are linked by a
mononuclear relation with rhetorical label “Con-
dition”, and two Nucleus units (covering e-5, e-6
and e-7, e-8, e-9) are linked by a multinuclear re-
lation with rhetorical label “Temporal”.

4 Conversions from RST-DTs to DDTs

Next, this paper discusses text-level dependency
syntax, which represents grammatical structure by
head-dependent binary relations between EDUs.
This section introduces two existing automatic
conversion methods from RST-DTs to DDTs: the
methods of Li et al. (2014) and Hirao et al. (2013).
Additionally, this paper presents a simple post-
editing method to reduce the complexity of DDTs.
The heart of these conversions closely resembles
that of constituent-to-dependency conversions for
English sentences (Yamada and Matsumoto, 2003;
Johansson and Nugues, 2007; De Marneffe and
Manning, 2008), since RST-DTs can be regarded

Algorithm 1 convert-rst-into-dep
Require: RST discourse tree: rst-dt
Ensure: discourse dependency tree: ddt
1: ddt← /0
2: for all EDU e- j in rst-dt do

3: P←
{

find-My-Top-Node(e- j) // Li14
find-Nearest-S-Ancestor(e- j) // Hirao13

4: if isRoot(P) = TRUE then
5: ℓ← Root
6: i← 0
7: else
8: ℓ← Label(P)
9: P′← Parent(P)

10: i← find-Head-EDU(P′)
11: end if
12: j← Index(e- j)
13: ddt← ddt ∪ (i, ℓ, j)
14: end for
15: Return ddt

Algorithm 2 find-My-Top-Node(e)
Require: EDU: e
Ensure: C
1: C← e
2: P← Parent(e)
3: while LeftmostNucleusChild(P) = C and

isRoot(P) = FALSE do
4: C← P
5: P← Parent(P)
6: end while
7: if isRoot(P) = TRUE then
8: C← P
9: end if

10: Return C

as Penn Treebank-style constituent trees because
EDUs and discourse units respectively correspond
to terminal and non-terminal nodes, and a rhetori-
cal relation, like a CFG-rule, forms an edge in the
tree.

4.1 Li et al. (2014)’s Method
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Algorithm 3 find-Head-EDU(P)
Require: non-terminal node: P
Ensure: i
1: while isLeaf(P) = FALSE do
2: P← LeftmostNucleusChild(P)
3: end while
4: i← Index(P)
5: Return i
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Figure 2: Discourse dependency tree produced by
Li’s method for RST discourse tree in Figure 1:
“Elabo.” is short for “Elaboration”.

Li et al. (2014)’s dependency conversion
method is based on the idea of assigning each dis-
course unit in an RST-DT a unique head selected
among the unit’s children. Traversing each non-
terminal node in a bottom-up manner, the head-
assignment procedure determines the head from
its children in the following manner: the head of
the leftmost child node with the Nucleus is the
head; if no child node is the Nucleus, the head of
the leftmost child node is the head.

The procedure was originally introduced
by Sagae (2009), and its core idea is identical as
the head-assignment rules for Penn Treebank-
style constituent trees (Magerman, 1994; Collins,
1999). Li’s conversion method uses the procedure
to assign a head to each non-terminal node of
a right-branching binarized RST-DT (Hernault
et al., 2010) and transforms the head-annotated
binary tree into a DDT.

Algorithms 1-3 show the dependency conver-
sion method. For brevity, we describe it in a dif-
ferent form from Li’s original conversion process2

cited above. In Algorithm 1, the main routine iter-
atively processes every EDU in given RST-DT t to
directly find its single head rather than transform-
ing head-annotated trees into DDTs. The main
process is largely separated into three steps:

1. Algorithm 1 calls Algorithm 2 at line
3, which finds the highest non-terminal

2Unlike Li’s procedure, our algorithm can take not only
binary but also n-ary RST-DTs as inputs. To derive the same
DDTs as those produced by Li’s original method, experi-
ments were performed on right-branching binary RST-DTs.

node in t to which current processed EDU
e- j must be assigned as the head in
Sagae’s lexicalization manner. Parent(P)
and LeftmostNucleusChild(P) are respec-
tively operations that return the parent node
of node P and the leftmost child node with
the Nucleus of node P3.

2. After obtaining node P from Algorithm 2,
Algorithm 1 seeks the head EDU that is as-
signed to the parent node of P. If P is the root
node of t, we set ℓ to rhetorical label “Root”
and i to a special index 0 of virtual EDU e-0
(lines 5-6 in Algorithm 1). Otherwise, we set
ℓ← Label(P) and P′← Parent(P) (lines 8-9
in Algorithm 1), where Label(P) returns the
rhetorical label attached to node P4. Then Al-
gorithm 1 at line 10 calls Algorithm 3, which
iteratively seeks the leftmost child node with
the Nucleus in a top-down manner, starting
from P′, until it reaches terminal node e-i.
Operation Index(P) returns the index of EDU
P.

3. We attach e- j to head e-i and assign rhetori-
cal label ℓ to the dependency edge. We write
(i,ℓ, j) to denote that a dependency edge ex-
ists with rhetorical label ℓ from head e-i to
modifier e- j.

Assuming that e- j is the e-7 of the RST-DT in
Figure 1, Algorithm 2 returns the ‘N:Temporal’
node (covering e-7, e-8, e-9) since its parent node
‘N’ has the other ‘N:Temporal’ node (covering e-
5, e-6) as its leftmost Nucleus child. Starting from
the parent node ‘N’, Algorithm 3 iteratively seeks
the leftmost Nucleus child in the top-down manner
until it reaches the terminal node e-5. Finally, we
obtain a dependency edge (5,Temporal,7).

The DDT in Figure 2 is produced by this
method for the RST-DT in Figure 1. To each
EDU, we also assign ‘N’ or ‘S’ rhetorical status
of its parent node. Li’s dependency format is al-
ways projective, i.e., when all the edges are drawn
in the half-plane above the text, no two edges
cross (Kübler et al., 2009).

4.2 Hirao et al. (2013)’s Method

3If P has no Nucleus children, LeftmostNucleusChild(P)
returns the leftmost child node.

4If P does not have any rhetorical labels, Label(P) returns
a special non-rhetorical label: “Span”.
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Algorithm 4 find-Nearest-S-Ancestor(e)
Require: EDU: e
Ensure: P
1: P← Parent(e)
2: while isNucleus(P) = TRUE and

isRoot(P) = FALSE do
3: P← Parent(P)
4: end while
5: Return P
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Figure 3: Discourse dependency tree produced by
Hirao’s method for RST discourse tree in Figure 1.

Hirao et al. (2013) also proposed a dependency
conversion method for RST-DTs. The only dif-
ference between Li’s and Hirao’s methods is the
process that finds the highest non-terminal node to
which each EDU must be assigned as the head. At
line 3 of Algorithm 1, Hirao’s method calls Algo-
rithm 4, which seeks the nearest Satellite to each
EDU on the path from it to the root node of t.
Note that this head-assignment manner was origi-
nally presented in the Veins Theory (Cristea et al.,
1998).

Assuming that e- j is the e-7 in Figure 1, Algo-
rithm 4 returns the ‘S:Elaboration’ node (covering
e-5, e-6, e-7, e-8, e-9, e-10, . . . ), which is the near-
est Satellite on the path from e-7 to the root node.
Then, as well as in Li’s method, Algorithm 3 iter-
atively seeks the leftmost child node with the Nu-
cleus, starting from the parent node of the Satel-
lite, until it reaches terminal node e-4. Finally, we
obtain a dependency edge (4,Elaboration,7).

Figure 3 represents the DDT produced by Hi-
rao’s method for the RST-DT in Figure 1. Note
that unlike Li’s method, Hirao’s dependency for-
mat is not always projective. The dependency
edges made from the mononuclear relations are
the same as those in Figure 2, but the difference
comes from the treatment of the multinuclear re-
lations. We take as an example the “Temporal”
multinuclear relation in Figure 1 that links sen-
tences 4 (e-5 and e-6) and 5 (e-7, e-8, and e-9).
The Li14 DDT format links them with a “parent-
child” relation, while in the Hirao13 DDT format,
they have a “sibling” relation.
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Figure 4: Discourse dependency tree (DDT) ob-
tained by post-editing the DDT in Figure 3.

4.3 Post-editing Algorithm for Multi-rooted
Sentence Tree Structures

Unlike Li’s method, the dependency structures
produced by Hirao’s method often lose the single-
rooted tree structure of a sentence since Algo-
rithm 4 has no constraints that restrict the EDUs
covered by multinuclear relations to find its head
outside the sentence. For example, in Figure 3,
both EDUs e-7 and e-9 in sentence 5 have the same
head e-4 outside the sentence.

Most sentences form a single-rooted subtree in a
full-text RST-DT (Joty et al., 2013), and previous
studies on sentence-level discourse parsing were
based on this insight (Soricut and Marcu, 2003;
Sagae, 2009). To reduce the complexity of DDTs,
it is reasonable to restrict the tree structure of a
sentence to be single-rooted in a full-text DDT.

To revise a multi-rooted dependency tree struc-
ture of a sentence to a single-rooted one, we pro-
pose a simple post-editing method. Let L =
⟨e-x1, . . . ,e-xn⟩ be a multi-root list consisting of
more than two EDUs (n ≥ 2 and x1 < · · · < xn) in
identical sentence s, each of which has a head out-
side s. Next we define the post-editing process of
multi-root list L ; for each EDU e-x j (2≤ j ≤ n),
let its head be e-y j with rhetorical label ℓ j. Then
the post-editing method replaces the dependency
edge (y j, ℓ j,x j) by (x1,Label(P),x j), where P is a
child node, which covers e-x j, of the highest node
among those that cover only sentence s in the RST-
DT.

For the DDT in Figure 3, the post-editing pro-
cess for multi-root list L = ⟨e-7,e-9⟩ replaces the
edge (4,Temporal,9) by (7,Same-Unit,9). This
process makes the tree structure of sentence 5
single-rooted (Figure 4). Note that if an input de-
pendency graph structure is a tree, even after post-
editing all the multi-root lists of the input tree, the
result remains a tree structure. This post-editing
reduces the number of non-projective dependency
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Label Li14 Hirao13 M-Hirao13

Attribution 3070 3182 3176
Background 937 1176 1064

Cause 692 731 729
Comparison 300 200 246

Condition 328 344 338
Contrast 1130 838 892

Elaboration 7902 10358 9242
Enablement 568 609 603
Evaluation 419 596 501

Explanation 986 1527 1255
Joint 1990 42 593

Manner-Means 226 272 266
Root 385 385 385

Same-Unit 1404 62 1092
Span 1 0 1

Summary 223 332 289
Temporal 530 271 355

TextualOrganization 157 137 121
Topic-Change 205 401 344

Topic-Comment 336 326 297

Table 1: Rhetorical label frequencies in automati-
cally created discourse dependency corpora.

edges, even though the structure might continue to
be non-projective.

5 Experiments

5.1 Analysis of Dependency Structures

5.1.1 Dependency Label Distributions
Our experiments are based on data from the RST
Discourse Treebank (RST-DTB) (Carlson et al.,
2003)5, which consists of 385 Wall Street Journal
articles. Following previous studies on RST-DTB,
we used 18 coarse rhetorical labels. We converted
all 385 RST-DTs to DDTs using the methods in-
troduced in Section 4. Table 1 compares three dis-
tributions of 18 rhetorical labels and 2 special non-
rhetorical labels: “Span”6 and “Root”. M-Hirao13
denotes a modified version of the Hirao13 depen-
dency format by post-editing.

Here, we focus on the three underlined labels.
Even though the DDTs produced by the Hirao13
method contain more edges labeled as “Elabora-
tion”, the number of “Joint” and “Same-Unit” la-
bels, which are assigned to some multinuclear re-
lations, decreases considerably. This is because
for each EDU, Algorithm 4 in the Hirao13 method
finds a Satellite covering the EDU through multin-

5https://catalog.ldc.upenn.edu/
LDC2002T07

6In RST theory, a “Span” label may not be assigned to any
dependency edges. We suspect that the illegal “Span” label
in Table 1 might have been caused by an annotation error in
a subtree from e-7 to e-9 of the wsj-1189 file.

Property Li14 Hirao13 M-Hirao13

max path len. 10.2 8.4 8.6

nodes (depth 2) 6.5 9.6 8.6
nodes (depth 3) 14.3 22.1 20.3
nodes (depth 4) 23.3 35.0 33.3

gap degree 0 385 113 247
gap degree 1 0 260 137
gap degree 2 0 12 1

projective 385 113 247
well-nested 385 385 385

Table 2: Experimental results on average maxi-
mum path length, number of nodes within depth
x, and number of dependency structures that sat-
isfy the property described in Kuhlmann and Nivre
(2006).

uclear relations and most Satellites have the “Elab-
oration” label.

In practice, we should refine such “Elaboration”
labels by encoding in them the information of
multinuclear relations that appear on the path from
the EDU to the Satellite. However, this encod-
ing scheme has a trade-off; increasing the amount
of information encoded in an edge label reduces
the accuracy of the label prediction by automatic
parsers. In future work, we will investigate what
label encoding scheme strikes the best balance in
the trade-off.

5.1.2 Complexity of Dependency Structures
This section investigates the complexity of the de-
pendency structures produced by each conversion
method. Table 2 shows the average maximum path
length from an artificial root to a leaf EDU and the
number of nodes where depth x ∈ N. The results
clearly show that Hirao13 produces more broad
and shallow dependency tree structures than Li14.

Table 2 also displays how large a portion of the
dependency structures is allowed under projectiv-
ity, gap degree, and well-nestedness constraints.
In the dependency parsing community, it is well-
known that these three constraints create a good
balance between expressivity and complexity in
dependency analysis. These constraints were for-
mally defined (Kuhlmann and Nivre, 2006)7, and
refer to that work for details.

All of the DDTs produced by the Li14 method
are projective. Projectivity is the most popu-
lar constraint for sentence-level dependency pars-

7Unlike Kuhlmann and Nivre (2006), when calculating
the statistics in Table 2, we add an edge (0,Root, i) for ev-
ery real root EDU e-i (i≥ 1) of the DDT.
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UAS LAS

Li14 66.6 48.3
MST (Dep) Hirao13 55.0 43.1

M-Hirao13 60.5 42.8

Li14 64.7 49.0
HILDA (RST) Hirao13 57.1 46.2

M-Hirao13 62.4 49.2

Table 3: Dependency unlabeled and labeled at-
tachment scores (UAS and LAS) for MST depen-
dency and HILDA RST parsers.

ing since it offers cubic-time dynamic program-
ming algorithms for dependency parsing (Eisner,
1996; Eisner and Satta, 1999; Gómez-Rodrıguez
et al., 2008). A higher gap degree means that
the dependency trees have more complex non-
projective structures. Both the Hirao13 and M-
Hirao13 methods produce many non-projective
dependency edges, but most of the DDTs have
at most 1 gap degree and all are well-nested.
The well-nested dependency structures of the low
gap degree also allow efficient dynamic program-
ming solutions with polynominal time complexity
to dependency parsing (Gómez-Rodrıguez et al.,
2009).

5.2 Impact on Automatic Parsing Accuracy
The conversion methods introduce different com-
plexities in DDTs. This section investigates which
formats are more accurately analyzed by auto-
matic discourse parsers. For evaluation, we im-
plemented a maximum spanning tree algorithm for
discourse dependency parsing, which was recently
proposed (Muller et al., 2012; Li et al., 2014;
Yoshida et al., 2014). To compare discourse de-
pendency parsing with standard RST parsing, we
also implemented the HILDA RST parser (Her-
nault et al., 2010), which achieved 82.6/66.6/54.2
points for a standard set of RST-style evalua-
tion measures, i.e., Span, Nuclearity and Rela-
tion (Marcu, 2000).

We used a standard split of DDTs automatically
converted from RST-DTB: 347 DDTs as the train-
ing set and 38 as the test set.

Table 3 shows the evaluation results of depen-
dency parsing. The lower the complexity of the
DDT format, the higher is the dependency unla-
beled attachment score. Post-editing the Hirao13
DDTs improves the dependency attachment scores
because the intra-sentential discourse analysis is
more accurate than the inter-sentential one. In all
the DDT formats, the labeled attachment scores

are considerably worse that the unlabeled scores.
Compared with the HILDA parser, the Hirao13

and M-Hirao13 DDTs by the MST parser are less
accurate than those by the RST parser, probably
because unlike word dependency parsing, the fea-
tures defined over the EDUs are too sparse to de-
scribe complex non-projective dependency rela-
tions.

5.3 Impact on Text Summarization

Hirao et al. (2013) proposed a state-of-the-art sin-
gle text summarization method based on trim-
ming unlabeled DDTs. That can be formulated
by the Tree Knapsack Problem (TKP), which they
solved with integer linear programming. To ex-
amine which dependency structures produced by
the three conversion schemes are more suitable to
the task, we performed text summarization exper-
iments with the TKP method.

The 30 Wall Street Journal articles have a
human-made reference summary, which we used
for our evaluations. Table 4 shows the ROUGE
scores for the 30 gold-standard and auto-parse
DDTs. The auto-parse DDTs were obtained by the
MST and HILDA parsers, which were trained with
325 articles and whose hyper parameters were
tuned with 30 articles.

Hirao13 achieved the best results when we em-
ployed the gold DDTs, although the differences
between Hirao13 and the other methods were not
large. On the other hand, Hirao13 and M-Hirao13
obtained good results when we employed auto-
matic parse trees. The gains against Li14 are large.
It is remarkable that the performance with MST’s
DDTs closely approached that of the gold DDTs.
These results imply that the auto parse trees ob-
tained from Hirao13 have broad and shallow hier-
archies because important EDUs, which must be
included in a summary, can be easily extracted by
TKP. Thus, the DDTs converted by the Hirao13
rule have better tree structures for a single doc-
ument summarization even though the structures
are complex and difficult to parse. This is a signif-
icant advantage over Li’s conversion rule.

6 Summary

We evaluated two different RST-DT-to-DDT con-
version schemes from various perspectives. Ex-
perimental results show that even though the Hi-
rao13 DDT format produces more complex depen-
dency structures, it is more useful for text summa-
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Conv. R-1 w/s. R-1 wo/s. R-2 w/s. R-2 wo/s.

Li14 .347 .321 .096 .098
Gold Hirao13 .349 .333 .109 .117

M-Hirao13 .344 .322 .106 .098

Li14 .328 .292 .096 .086
MST (Dep) Hirao13 .341 .307 .106 .111

M-Hirao13 .341 .303 .107 .111

Li14 .315 .281 .083 .086
HILDA (RST) Hirao13 .326 .294 .087 .093

M-Hirao13 .315 .285 .084 .089

Table 4: ROUGE-N scores for text summarization on gold and auto-parse DDTs (N = 1,2).

rization. While studies developing discourse pars-
ing have focused on improving parser accuracies,
our experimental results identified the importance
of extrinsic evaluations over intrinsic evaluations.
In future work, we will further compare the meth-
ods by extrinsic evaluation metrics using discourse
relation labels.
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