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Abstract

In this paper, we propose to use deep pol-
icy networks which are trained with an
advantage actor-critic method for statisti-
cally optimised dialogue systems. First,
we show that, on summary state and ac-
tion spaces, deep Reinforcement Learn-
ing (RL) outperforms Gaussian Processes
methods. Summary state and action
spaces lead to good performance but re-
quire pre-engineering effort, RL knowl-
edge, and domain expertise. In order to
remove the need to define such summary
spaces, we show that deep RL can also be
trained efficiently on the original state and
action spaces. Dialogue systems based
on partially observable Markov decision
processes are known to require many di-
alogues to train, which makes them un-
appealing for practical deployment. We
show that a deep RL method based on an
actor-critic architecture can exploit a small
amount of data very efficiently. Indeed,
with only a few hundred dialogues col-
lected with a handcrafted policy, the actor-
critic deep learner is considerably boot-
strapped from a combination of supervised
and batch RL. In addition, convergence to
an optimal policy is significantly sped up
compared to other deep RL methods ini-
tialized on the data with batch RL. All ex-
periments are performed on a restaurant
domain derived from the Dialogue State
Tracking Challenge 2 (DSTC2) dataset.

1 Introduction

The statistical optimization of dialogue manage-
ment in dialogue systems through Reinforcement
Learning (RL) has been an active thread of re-

search for more than two decades (Levin et al.,
1997; Lemon and Pietquin, 2007; Laroche et al.,
2010; Gašić et al., 2012; Daubigney et al., 2012).
Dialogue management has been successfully mod-
elled as a Partially Observable Markov Decision
Process (POMDP) (Williams and Young, 2007;
Gašić et al., 2012), which leads to systems that can
learn from data and which are robust to noise. In
this context, a dialogue between a user and a di-
alogue system is framed as a sequential process
where, at each turn, the system has to act based on
what it has understood so far of the user’s utter-
ances.

Unfortunately, POMDP-based dialogue man-
agers have been unfit for online deployment be-
cause they typically require several thousands of
dialogues for training (Gašić et al., 2010, 2012).
Nevertheless, recent work has shown that it is pos-
sible to train a POMDP-based dialogue system on
just a few hundred dialogues corresponding to on-
line interactions with users (Gašić et al., 2013).
However, in order to do so, pre-engineering ef-
forts, prior RL knowledge, and domain expertise
must be applied. Indeed, summary state and ac-
tion spaces must be used and the set of actions
must be restricted depending on the current state
so that notoriously bad actions are prohibited.

In order to alleviate the need for a summary
state space, deep RL (Mnih et al., 2013) has
recently been applied to dialogue management
(Cuayáhuitl et al., 2015) in the context of negoti-
ations. It was shown that deep RL performed sig-
nificantly better than other heuristic or supervised
approaches. The authors performed learning over
a large action space of 70 actions and they also
had to use restricted action sets in order to learn
efficiently over this space. Besides, deep RL was
not compared to other RL methods, which we do
in this paper. In (Cuayáhuitl, 2016), a simplistic
implementation of deep Q Networks is presented,
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again with no comparison to other RL methods.
In this paper, we propose to efficiently alleviate

the need for summary spaces and restricted actions
using deep RL. We analyse four deep RL mod-
els: Deep Q Networks (DQN) (Mnih et al., 2013),
Double DQN (DDQN) (van Hasselt et al., 2015),
Deep Advantage Actor-Critic (DA2C) (Sutton
et al., 2000) and a version of DA2C initialized
with supervised learning (TDA2C)1 (similar idea
to Silver et al. (2016)). All models are trained on a
restaurant-seeking domain. We use the Dialogue
State Tracking Challenge 2 (DSTC2) dataset to
train an agenda-based user simulator (Schatzmann
and Young, 2009) for online learning and to per-
form batch RL and supervised learning.

We first show that, on summary state and ac-
tion spaces, deep RL converges faster than Gaus-
sian Processes SARSA (GPSARSA) (Gašić et al.,
2010). Then we show that deep RL enables us to
work on the original state and action spaces. Al-
though GPSARSA has also been tried on origi-
nal state space (Gašić et al., 2012), it is extremely
slow in terms of wall-clock time due to its grow-
ing kernel evaluations. Indeed, contrary to meth-
ods such as GPSARSA, deep RL performs effi-
cient generalization over the state space and mem-
ory requirements do not increase with the num-
ber of experiments. On the simple domain speci-
fied by DSTC2, we do not need to restrict the ac-
tions in order to learn efficiently. In order to re-
move the need for restricted actions in more com-
plex domains, we advocate for the use of TDA2C
and supervised learning as a pre-training step. We
show that supervised learning on a small set of
dialogues (only 706 dialogues) significantly boot-
straps TDA2C and enables us to start learning
with a policy that already selects only valid ac-
tions, which makes for a safe user experience in
deployment. Therefore, we conclude that TDA2C
is very appealing for the practical deployment of
POMDP-based dialogue systems.

In Section 2 we briefly review POMDP, RL and
GPSARSA. The value-based deep RL models in-
vestigated in this paper (DQN and DDQN) are de-
scribed in Section 3. Policy networks and DA2C
are discussed in Section 4. We then introduce the
two-stage training of DA2C in Section 5. Experi-
mental results are presented in Section 6. Finally,
Section 7 concludes the paper and makes sugges-
tions for future research.

1Teacher DA2C

2 Preliminaries

The reinforcement learning problem consists of an
environment (the user) and an agent (the system)
(Sutton and Barto, 1998). The environment is de-
scribed as a set of continuous or discrete states S
and at each state s ∈ S, the system can perform an
action from an action spaceA(s). The actions can
be continuous, but in our case they are assumed to
be discrete and finite. At time t, as a consequence
of an action At = a ∈ A(s), the state transitions
from St = s to St+1 = s′ ∈ S. In addition, a
reward signal Rt+1 = R(St, At, St+1) ∈ R pro-
vides feedback on the quality of the transition2.
The agent’s task is to maximize at each state the
expected discounted sum of rewards received after
visiting this state. For this purpose, value func-
tions are computed. The action-state value func-
tion Q is defined as:

Qπ(St, At) = Eπ[Rt+1 + γRt+2 + γ2Rt+3 + . . .

| St = s,At = a], (1)

where γ is a discount factor in [0, 1]. In this equa-
tion, the policy π specifies the system’s behaviour,
i.e., it describes the agent’s action selection pro-
cess at each state. A policy can be a deterministic
mapping π(s) = a, which specifies the action a to
be selected when state s is met. On the other hand,
a stochastic policy provides a probability distribu-
tion over the action space at each state:

π(a|s) = P[At = a|St = s]. (2)

The agent’s goal is to find a policy that maximizes
the Q-function at each state.

It is important to note that here the system does
not have direct access to the state s. Instead, it
sees this state through a perception process which
typically includes an Automatic Speech Recogni-
tion (ASR) step, a Natural Language Understand-
ing (NLU) step, and a State Tracking (ST) step.
This perception process injects noise in the state
of the system and it has been shown that mod-
elling dialogue management as a POMDP helps to
overcome this noise (Williams and Young, 2007;
Young et al., 2013).

Within the POMDP framework, the state at time
t, St, is not directly observable. Instead, the sys-
tem has access to a noisy observation Ot.3 A

2In this paper, upper-case letters are used for random vari-
ables, lower-case letters for non-random values (known or
unknown), and calligraphy letters for sets.

3Here, the representation of the user’s goal and the user’s
utterances.
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POMDP is a tuple (S,A, P,R,O, Z, γ, b0) where
S is the state space, A is the action space, P is
the function encoding the transition probability:
Pa(s, s′) = P(St+1 = s′ | St = s,At = a), R is
the reward function,O is the observation space, Z
encodes the observation probabilities Za(s, o) =
P(Ot = o | St = s,At = a), γ is a discount fac-
tor, and b0 is an initial belief state. The belief state
is a distribution over states. Starting from b0, the
state tracker maintains and updates the belief state
according to the observations perceived during the
dialogue. The dialogue manager then operates on
this belief state. Consequently, the value functions
as well as the policy of the agent are computed on
the belief states Bt:

Qπ(Bt, At) = Eπ

∑
t′≥t

γt
′−tRt′+1 | Bt, At


π(a|b) = P[At = a|Bt = b]. (3)

In this paper, we use GPSARSA as a baseline as
it has been proved to be a successful algorithm for
training POMDP-based dialogue managers (Engel
et al., 2005; Gašić et al., 2010). Formally, the Q-
function is modelled as a Gaussian process, en-
tirely defined by a mean and a kernel: Q(B,A) ∼
GP(m, (k(B,A), k(B,A))). The mean is usually
initialized at 0 and it is then jointly updated with
the covariance based on the system’s observations
(i.e., the visited belief states and actions, and the
rewards). In order to avoid intractability in the
number of experiments, we use kernel span spar-
sification (Engel et al., 2005). This technique con-
sists of approximating the kernel on a dictionary
of linearly independent belief states. This dictio-
nary is incrementally built during learning. Kernel
span sparsification requires setting a threshold on
the precision to which the kernel is computed. As
discussed in Section 6, this threshold needs to be
fine-tuned for a good tradeoff between precision
and performance.

3 Value-Based Deep Reinforcement
Learning

Broadly speaking, there are two main streams of
methodologies in the RL literature: value approxi-
mation and policy gradients. As suggested by their
names, the former tries to approximate the value
function whereas the latter tries to directly approx-
imate the policy. Approximations are necessary
for large or continuous belief and action spaces.

Indeed, if the belief space is large or continuous
it would not be possible to store a value for each
state in a table, so generalization over the state
space is necessary. In this context, some of the
benefits of deep RL techniques are the following:

• Generalisation over the belief space is effi-
cient and the need for summary spaces is
eliminated, normally with considerably less
wall-clock training time comparing to GP-
SARSA, for example.

• Memory requirements are limited and can be
determined in advance unlike with methods
such as GPSARSA.

• Deep architectures with several hidden layers
can be efficiently used for complex tasks and
environments.

3.1 Deep Q Networks

A Deep Q-Network (DQN) is a multi-layer neu-
ral network which maps a belief state Bt to the
values of the possible actions At ∈ A(Bt = b)
at that state, Qπ(Bt, At; wt), where wt is the
weight vector of the neural network. Neural net-
works for the approximation of value functions
have long been investigated (Bertsekas and Tsit-
siklis, 1996). However, these methods were previ-
ously quite unstable (Mnih et al., 2013). In DQN,
Mnih et al. (2013, 2015) proposed two techniques
to overcome this instability-namely experience re-
play and the use of a target network. In experi-
ence replay, all the transitions are put in a finite
pool D (Lin, 1993). Once the pool has reached
its predefined maximum size, adding a new tran-
sition results in deleting the oldest transition in
the pool. During training, a mini-batch of tran-
sitions is uniformly sampled from the pool, i.e.
(Bt, At, Rt+1, Bt+1) ∼ U(D). This method re-
moves the instability arising from strong corre-
lation between the subsequent transitions of an
episode (a dialogue). Additionally, a target net-
work with weight vector w− is used. This target
network is similar to the Q-network except that
its weights are only copied every τ steps from the
Q-network, and remain fixed during all the other
steps. The loss function for the Q-network at iter-
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ation t takes the following form:

Lt(wt) = E(Bt,At,Rt+1,Bt+1)∼U(D)

[
(
Rt+1 + γmax

a′ Qπ(Bt+1, a
′;w−t )

−Qπ(Bt, At;wt)
)2 ]

. (4)

3.2 Double DQN: Overcoming
Overestimation and Instability of DQN

The max operator in Equation 4 uses the same
value network (i.e., the target network) to se-
lect actions and evaluate them. This increases
the probability of overestimating the value of the
state-action pairs (van Hasselt, 2010; van Hasselt
et al., 2015). To see this more clearly, the target
part of the loss in Equation 4 can be rewritten as
follows:

Rt+1 + γQπ(Bt+1, argmax
a

Qπ(Bt+1, a;w−t );w−t ).

In this equation, the target network is used twice.
Decoupling is possible by using the Q-network
for action selection as follows (van Hasselt et al.,
2015):

Rt+1 + γQπ(Bt+1, argmax
a

Qπ(Bt+1, a;wt);w−t ).

Then, similarly to DQN, the Q-network is trained
using experience replay and the target network is
updated every τ steps. This new version of DQN,
called Double DQN (DDQN), uses the two value
networks in a decoupled manner, and alleviates the
overestimation issue of DQN. This generally re-
sults in a more stable learning process (van Hasselt
et al., 2015).

In the following section, we present deep RL
models which perform policy search and output a
stochastic policy rather than value approximation
with a deterministic policy.

4 Policy Networks and Deep Advantage
Actor-Critic (DA2C)

A policy network is a parametrized probabilistic
mapping between belief and action spaces:

πθ(a|b) = π(a|b; θ) = P(At = a|Bt = b, θt = θ),

where θ is the parameter vector (the weight vec-
tor of a neural network).4 In order to train policy

4For parametrization, we use w for value networks and θ
for policy networks.

networks, policy gradient algorithms have been
developed (Williams, 1992; Sutton et al., 2000).
Policy gradient algorithms are model-free meth-
ods which directly approximate the policy by
parametrizing it. The parameters are learnt using
a gradient-based optimization method.

We first need to define an objective function J
that will lead the search for the parameters θ. This
objective function defines policy quality. One way
of defining it is to take the average over the re-
wards received by the agent. Another way is to
compute the discounted sum of rewards for each
trajectory, given that there is a designated start
state. The policy gradient is then computed ac-
cording to the Policy Gradient Theorem (Sutton
et al., 2000).

Theorem 1 (Policy Gradient) For any differen-
tiable policy πθ(b, a) and for the average reward
or the start-state objective function, the policy
gradient can be computed as

∇θJ(θ) = Eπθ [∇θ log πθ(a|b)Qπθ(b, a)]. (5)

Policy gradient methods have been used success-
fully in different domains. Two recent examples
are AlphaGo by DeepMind (Silver et al., 2016)
and MazeBase by Facebook AI (Sukhbaatar et al.,
2016).

One way to exploit Theorem 1 is to parametrize
Qπθ(b, a) separately (with a parameter vector w)
and learn the parameter vector during training in
a similar way as in DQN. The trained Q-network
can then be used for policy evaluation in Equa-
tion 5. Such algorithms are known in general as
actor-critic algorithms, where theQ approximator
is the critic and πθ is the actor (Sutton, 1984; Barto
et al., 1990; Bhatnagar et al., 2009). This can be
achieved with two separate deep neural networks:
a Q-Network and a policy network.

However, a direct use of Equation 5 with Q as
critic is known to cause high variance (Williams,
1992). An important property of Equation 5 can
be used in order to overcome this issue: subtract-
ing any differentiable function Ba expressed over
the belief space from Qπθ will not change the gra-
dient. A good selection of Ba, which is called
the baseline, can reduce the variance dramatically
(Sutton and Barto, 1998). As a result, Equation 5
may be rewritten as follows:

∇θJ(θ) = Eπθ [∇θ log πθ(a|b)Ad(b, a)], (6)

104



where Ad(b, a) = Qπθ(b, a)−Ba(b) is called the
advantage function. A good baseline is the value
function V πθ , for which the advantage function
becomes Ad(b, a) = Qπθ(b, a) − V πθ(b). How-
ever, in this setting, we need to train two sepa-
rate networks to parametrize Qπθ and V πθ . A bet-
ter approach is to use the TD error δ = Rt+1 +
γV πθ(Bt+1)− V πθ(Bt) as advantage function. It
can be proved that the expected value of the TD
error is Qπθ(b, a) − V πθ(b). If the TD error is
used, only one network is needed, to parametrize
V πθ(Bt) = V πθ(Bt;wt). We call this network the
value network. We can use a DQN-like method to
train the value network using both experience re-
play and a target network. For a transition Bt = b,
At = a, Rt+1 = r and Bt+1 = b′, the advantage
function is calculated as in:

δt = r + γV πθ(b′;wt)− V πθ(b;wt). (7)

Because the gradient in Equation 6 is weighted by
the advantage function, it may become quite large.
In fact, the advantage function may act as a large
learning rate. This can cause the learning process
to become unstable. To avoid this issue, we add
L2 regularization to the policy objective function.
We call this method Deep Advantage Actor-Critic
(DA2C).

In the next section, we show how this architec-
ture can be used to efficiently exploit a small set
of handcrafted data.

5 Two-stage Training of the Policy
Network

By definition, the policy network provides a prob-
ability distribution over the action space. As a re-
sult and in contrast to value-based methods such
as DQN, a policy network can also be trained with
direct supervised learning (Silver et al., 2016).
Supervised training of RL agents has been well-
studied in the context of Imitation Learning (IL).
In IL, an agent learns to reproduce the behaviour
of an expert. Supervised learning of the policy was
one of the first techniques used to solve this prob-
lem (Pomerleau, 1989; Amit and Mataric, 2002).
This direct type of imitation learning requires that
the learning agent and the expert share the same
characteristics. If this condition is not met, IL can
be done at the level of the value functions rather
than the policy directly (Piot et al., 2015). In this
paper, the data that we use (DSTC2) was collected
with a dialogue system similar to the one we train

so in our case, the demonstrator and the learner
share the same characteristics.

Similarly to Silver et al. (2016), here, we ini-
tialize both the policy network and the value net-
work on the data. The policy network is trained by
minimising the categorical cross-entropy between
the predicted action distribution and the demon-
strated actions. The value network is trained di-
rectly through RL rather than IL to give more flex-
ibility in the kind of data we can use. Indeed,
our goal is to collect a small number of dialogues
and learn from them. IL usually assumes that the
data corresponds to expert policies. However, di-
alogues collected with a handcrafted policy or in
a Wizard-of-Oz (WoZ) setting often contain both
optimal and sub-optimal dialogues and RL can be
used to learn from all of these dialogues. Super-
vised training can also be done on these dialogues
as we show in Section 6.

Supervised actor-critic architectures following
this idea have been proposed in the past (Ben-
brahim and Franklin, 1997; Si et al., 2004); the
actor works together with a human supervisor to
gain competence on its task even if the critic’s es-
timations are poor. For instance, a human can help
a robot move by providing the robot with valid ac-
tions. We advocate for the same kind of methods
for dialogue systems. It is easy to collect a small
number of high-quality dialogues and then use su-
pervised learning on this data to teach the system
valid actions. This also eliminates the need to de-
fine restricted action sets.

In all the methods above, Adadelta will be used
as the gradient-decent optimiser, which in our
experiments works noticeably better than other
methods such as Adagrad, Adam, and RMSProp.

6 Experiments

6.1 Comparison of DQN and GPSARSA
6.1.1 Experimental Protocol
In this section, as a first argument in favour of deep
RL, we perform a comparison between GPSARSA
and DQN on simulated dialogues. We trained an
agenda-based user simulator which at each dia-
logue turn, provides one or several dialogue act(s)
in response to the latest machine act (Schatzmann
et al., 2007; Schatzmann and Young, 2009). The
dataset used for training this user-simulator is the
Dialogue State Tracking Challenge 2 (DSTC2)
(Henderson et al., 2014) dataset. State tracking
is also trained on this dataset. DSTC2 includes
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(a) Comparison of GPSARSA on summary spaces and
DQN on summary (DQN) and original spaces (DQN-no-
summary).

0 5 10 15
0

5

10

15

20

Av
er

ag
e 

di
al

og
ue

 le
ng

th

DQN
DDQN
DA2C

0 5 10 15
x1000 training dialogues

2

1

0

1

Av
er

ag
e 

re
wa

rd
s

(b) Comparison of DA2C, DQN and DDQN on original
spaces.

Figure 1: Comparison of different algorithms on simulated dialogues, without any pre-training.

dialogues with users who are searching for restau-
rants in Cambridge, UK.

In each dialogue, the user has a goal containing
constraint slots and request slots. The constraint
and request slots available in DSTC2 are listed in
Appendix A. The constraints are the slots that the
user has to provide to the system (for instance the
user is looking for a specific type of food in a given
area) and the requests are the slots that the user
must receive from the system (for instance the user
wants to know the address and phone number of
the restaurant found by the system).

Similarly, the belief state is composed of two
parts: constraints and requests. The constraint part
includes the probabilities of the top two values for
each constraint slot as returned by the state tracker
(the value might be empty with a probability zero
if the slot has not been mentioned). The request
part, on the other hand, includes the probability
of each request slot. For instance the constraint
part might be [food: (Italian, 0.85) (Indian, 0.1)
(Not mentioned, 0.05)] and the request part might
be [area: 0.95] meaning that the user is probably
looking for an Italian restaurant and that he wants
to know the area of the restaurant found by the sys-
tem. To compare DQN to GPSARSA, we work on
a summary state space (Gašić et al., 2012, 2013).
Each constraint is mapped to a one-hot vector,
with 1 corresponding to the tuple in the grid vec-

tor gc = [(1, 0), (.8, .2), (.6, .2), (.6, .4), (.4, .4)]
that minimizes the Euclidean distance to the top
two probabilities. Similarly, each request slot is
mapped to a one-hot vector according to the grid
gr = [1, .8, .6, .4, 0.]. The final belief vector,
known as the summary state, is defined as the con-
catenation of the constraint and request one-hot
vectors. Each summary state is a binary vector of
length 60 (12 one-hot vectors of length 5) and the
total number of states is 512.

We also work on a summary action space and
we use the act types listed in Table 1 in Appendix
A. We add the necessary slot information as a
post processing step. For example, the request act
means that the system wants to request a slot from
the user, e.g. request(food). In this case, the se-
lection of the slot is based on min-max probabil-
ity, i.e., the most ambiguous slot (which is the slot
we want to request) is assumed to be the one for
which the value with maximum probability has the
minimum probability compared to the most cer-
tain values of the other slots. Note that this heuris-
tic approach to compute the summary state and ac-
tion spaces is a requirement to make GPSARSA
tractable; it is a serious limitation in general and
should be avoided.

As reward, we use a normalized scheme with a
reward of +1 if the dialogue finishes successfully
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before 30 turns,5 a reward of -1 if the dialogue is
not successful after 30 turns, and a reward of -0.03
for each turn. A reward of -1 is also distributed to
the system if the user hangs up. In our settings, the
user simulator hangs up every time the system pro-
poses a restaurant which does not match at least
one of his constraints.

For the deep Q-network, a Multi-Layer Percep-
tron (MLP) is used with two fully connected hid-
den layers, each having a tanh activation. The
output layer has no activation and it provides
the value for each of the summary machine acts.
The summary machine acts are mapped to orig-
inal acts using the heuristics explained previ-
ously. Both algorithms are trained with 15000
dialogues. GPSARSA is trained with ε-softmax
exploration, which, with probability 1 − ε, se-
lects an action based on the logistic distribution
P[a|b] = eQ(b,a)∑

a′ eQ(b,a′) and, with probability ε, se-
lects an action in a uniformly random way. From
our experiments, this exploration scheme works
best in terms of both convergence rate and vari-
ance. For DQN, we use a simple ε-greedy ex-
ploration which, with probability 1 − ε (same ε
as above), uniformly selects an action and, with
probability ε, selects an action maximizing the Q-
function. For both algorithms, ε is annealed to less
than 0.1 over the course of training.

In a second experiment, we remove both
summary state and action spaces for DQN, i.e.,
we do not perform the Euclidean-distance map-
ping as before but instead work directly on the
probabilities themselves. Additionally, the state
is augmented with the probability (returned by
the state tracker) of each user act (see Table 2 in
Appendix A), the dialogue turn, and the number
of results returned by the database (0 if there was
no query). Consequently, the state consists of 31
continuous values and two discrete values. The
original action space is composed of 11 actions:
offer6, select-area, select-food,
select-pricerange, request-area,
request-food, request-pricerange,
expl-conf-area, expl-conf-food,
expl-conf-pricerange, repeat. There

5A dialogue is successful if the user retrieves all the re-
quest slots for a restaurant matching all the constraints of his
goal.

6This act consists of proposing a restaurant to the user. In
order to be consistent with the DSTC2 dataset, an offer al-
ways contains the values for all the constraints understood by
the system, e.g. offer(name = Super Ramen, food = Japanese,
price range = cheap).

is no post-processing via min-max selection
anymore since the slot is part of the action, e.g.,
select-area.

The policies are evaluated after each 1000 train-
ing dialogues on 500 test dialogues without explo-
ration.

6.1.2 Results
Figure 1 illustrates the performance of DQN com-
pared to GPSARSA. In our experiments with GP-
SARSA we found that it was difficult to find a
good tradeoff between precision and efficiency.
Indeed, for low precision, the algorithm learned
rapidly but did not reach optimal behaviour,
whereas higher precision made learning extremely
slow but resulted in better end-performance. On
summary spaces, DQN outperforms GPSARSA
in terms of convergence. Indeed, GPSARSA re-
quires twice as many dialogues to converge. It
is also worth mentioning here that the wall-clock
training time of GPSARSA is considerably longer
than the one of DQN due to kernel evaluation.
The second experiment validates the fact that Deep
RL can be efficiently trained directly on the belief
state returned by the state tracker. Indeed, DQN on
the original spaces performs as well as GPSARSA
on the summary spaces.

In the next section, we train and compare the
deep RL networks previously described on the
original state and action spaces.

6.2 Comparison of the Deep RL Methods
6.2.1 Experimental Protocol
Similarly to the previous example, we work on
a restaurant domain and use the DSTC2 speci-
fications. We use ε−greedy exploration for all
four algorithms with ε starting at 0.5 and be-
ing linearly annealed at a rate of λ = 0.99995.
To speed up the learning process, the actions
select-pricerange, select-area, and
select-food are excluded from exploration.
Note that this set does not depend on the state and
is meant for exploration only. All the actions can
be performed by the system at any moment.

We derived two datasets from DSTC2. The first
dataset contains the 2118 dialogues of DSTC2.
We had these dialogues rated by a human expert,
based on the quality of dialogue management and
on a scale of 0 to 3. The second dataset only con-
tains the dialogues with a rating of 3 (706 dia-
logues). The underlying assumption is that these
dialogues correspond to optimal policies.
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(a) Comparison of DA2C, DQN and DDQN after batch ini-
tialization.
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(b) Comparison of DA2C and DA2C after batch initializa-
tion (batchDA2C), and TDA2C after supervised training on
expert (SupExptBatchDA2C) and non-expert data (SupFull-
BatchDA2C).

Figure 2: Comparison of different algorithms on simulated dialogues, with pre-training.

We compare the convergence rates of the deep
RL models in different settings. First, we com-
pare DQN, DDQN and DA2C without any pre-
training (Figure 1b). Then, we compare DQN,
DDQN and TDA2C with an RL initialization on
the DSTC2 dataset (Figure 2a). Finally, we focus
on the advantage actor-critic models and compare
DA2C, TDA2C, TDA2C with batch initialization
on DSTC2, and TDA2C with batch initialization
on the expert dialogues (Figure 2b).

6.2.2 Results
As expected, DDQN converges faster than DQN
on all experiments. Figure 1b shows that, with-
out any pre-training, DA2C is the one which con-
verges the fastest (6000 dialogues vs. 10000 dia-
logues for the other models). Figure 2a gives con-
sistent results and shows that, with initial train-
ing on the 2118 dialogues of DSTC2, TDA2C
converges significantly faster than the other mod-
els. Figure 2b focuses on DA2C and TDA2C.
Compared to batch training, supervised training
on DSTC2 speeds up convergence by 2000 dia-
logues (3000 dialogues vs. 5000 dialogues). In-
terestingly, there does not seem to be much dif-
ference between supervised training on the expert
data and on DSTC2. The expert data only con-
sists of 706 dialogues out of 2118 dialogues. Our
observation is that, in the non-expert data, many

of the dialogue acts chosen by the system were
still appropriate, which explains that the system
learns acceptable behavior from the entire dataset.
This shows that supervised training, even when
performed not only on optimal dialogues, makes
learning much faster and relieves the need for re-
stricted action sets. Valid actions are learnt from
the dialogues and then RL exploits the good and
bad dialogues to pursue training towards a high
performing policy.

7 Concluding Remarks

In this paper, we used policy networks for dia-
logue systems and trained them in a two-stage
fashion: supervised training and batch reinforce-
ment learning followed by online reinforcement
learning. An important feature of policy networks
is that they directly provide a probability distribu-
tion over the action space, which enables super-
vised training. We compared the results with other
deep reinforcement learning algorithms, namely
Deep Q Networks and Double Deep Q Networks.
The combination of supervised and reinforcement
learning is the main benefit of our method, which
paves the way for developing trainable end-to-end
dialogue systems. Supervised training on a small
dataset considerably bootstraps the learning pro-
cess and can be used to significantly improve the
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convergence rate of reinforcement learning in sta-
tistically optimised dialogue systems.
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A Specifications of restaurant search in
DTSC2

Constraint slots area, type of food, price range.

Request slots area, type of food, address, name,
price range, postcode, signature dish, phone
number

Table 1: Summary actions.

Action Description

Cannot
help

No restaurant in the database
matches the user’s constraints.

Confirm
Domain

Confirm that the user is looking for
a restaurant.

Explicit
Confirm

Ask the user to confirm a piece of
information.

Offer Propose a restaurant to the user.

Repeat Ask the user to repeat.

Request Request a slot from the user.

Select Ask the user to select a value
between two propositions (e.g.
select between Italian and Indian).

Table 2: User actions.

Action Description

Deny Deny a piece of information.

Null Say nothing.

Request
More

Request more options.

Confirm Ask the system to confirm
a piece of information.

Acknowledge Acknowledge.

Affirm Say yes.

Request Request a slot value.

Inform Inform the system of a slot value.

Thank you Thank the system.

Repeat Ask the system to repeat.

Request Request alternative
Alternatives restaurant options.

Negate Say no.

Bye Say goodbye to the system.

Hello Say hello to the system.

Restart Ask the system to restart
the dialogue.
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