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Abstract

Speaker intent detection and semantic slot
filling are two critical tasks in spoken lan-
guage understanding (SLU) for dialogue
systems. In this paper, we describe a re-
current neural network (RNN) model that
jointly performs intent detection, slot fill-
ing, and language modeling. The neural
network model keeps updating the intent
prediction as word in the transcribed ut-
terance arrives and uses it as contextual
features in the joint model. Evaluation of
the language model and online SLU model
is made on the ATIS benchmarking data
set. On language modeling task, our joint
model achieves 11.8% relative reduction
on perplexity comparing to the indepen-
dent training language model. On SLU
tasks, our joint model outperforms the in-
dependent task training model by 22.3%
on intent detection error rate, with slight
degradation on slot filling F1 score. The
joint model also shows advantageous per-
formance in the realistic ASR settings with
noisy speech input.

1 Introduction

As a critical component in spoken dialogue sys-
tems, spoken language understanding (SLU) sys-
tem interprets the semantic meanings conveyed
by speech signals. Major components in SLU
systems include identifying speaker’s intent and
extracting semantic constituents from the natural
language query, two tasks that are often referred
to as intent detection and slot filling.

Intent detection can be treated as a seman-
tic utterance classification problem, and slot fill-
ing can be treated as a sequence labeling task.
These two tasks are usually processed separately
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by different models. For intent detection, a
number of standard classifiers can be applied,
such as support vector machines (SVMs) (Haffner
et al., 2003) and convolutional neural networks
(CNNs) (Xu and Sarikaya, 2013). For slot fill-
ing, popular approaches include using sequence
models such as maximum entropy Markov models
(MEMMs) (McCallum et al., 2000), conditional
random fields (CRFs) (Raymond and Riccardi,
2007), and recurrent neural networks (RNNs) (Yao
et al., 2014; Mesnil et al., 2015).

Recently, neural network based models that
jointly perform intent detection and slot filling
have been reported. Xu (2013) proposed using
CNN based triangular CRF for joint intent detec-
tion and slot filling. Guo (2014) proposed using a
recursive neural network (RecNN) that learns hi-
erarchical representations of the input text for the
joint task. Such joint models simplify SLU sys-
tems, as only one model needs to be trained and
deployed.

The previously proposed joint SLU models,
however, are unsuitable for online tasks where it
is desired to produce outputs as the input sequence
arrives. In speech recognition, instead of receiving
the transcribed text at the end of the speech, users
typically prefer to see the ongoing transcription
while speaking. In spoken language understand-
ing, with real time intent identification and seman-
tic constituents extraction, the downstream sys-
tems will be able to perform corresponding search
or query while the user dictates. The joint SLU
models proposed in previous work typically re-
quire intent and slot label predictions to be con-
ditioned on the entire transcribed word sequence.
This limits the usage of these models in the online
setting.

In this paper, we propose an RNN-based on-
line joint SLU model that performs intent detec-
tion and slot filling as the input word arrives. In
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addition, we suggest that the generated intent class
and slot labels are useful for next word prediction
in online automatic speech recognition (ASR).
Therefore, we propose to perform intent detec-
tion, slot filling, and language modeling jointly
in a conditional RNN model. The proposed joint
model can be further extended for belief track-
ing in dialogue systems when considering the dia-
logue history beyond the current utterance. More-
over, it can be used as the RNN decoder in an
end-to-end trainable sequence-to-sequence speech
recognition model (Jaitly et al., 2015).

The remainder of the paper is organized as fol-
lows. In section 2, we introduce the background
on using RNNs for intent detection, slot filling,
and language modeling. In section 3, we describe
the proposed joint online SLU-LM model and its
variations. Section 4 discusses the experiment
setup and results on ATIS benchmarking task, us-
ing both text and noisy speech inputs. Section 5
gives the conclusion.

2 Background

2.1 Intent Detection

Intent detection can be treated as a semantic ut-
terance classification problem, where the input to
the classification model is a sequence of words
and the output is the speaker intent class. Given
an utterance with a sequence of words w
(wy,ws, ..., wr), the goal of intent detection is to
assign an intent class ¢ from a pre-defined finite
set of intent classes, such that:

)

¢ = argmax P(c|w)
C

Recent neural network based intent classifica-
tion models involve using neural bag-of-words
(NBoW) or bag-of-n-grams, where words or n-
grams are mapped to high dimensional vector
space and then combined component-wise by
summation or average before being sent to the
classifier. More structured neural network ap-
proaches for utterance classification include us-
ing recursive neural network (RecNN) (Guo et
al., 2014), recurrent neural network (Ravuri and
Stolcke, 2015), and convolutional neural network
models (Collobert and Weston, 2008; Kim, 2014).
Comparing to basic NBoW methods, these mod-
els can better capture the structural patterns in the
word sequence.
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2.2 Slot Filling

A major task in spoken language understand-
ing (SLU) is to extract semantic constituents by
searching input text to fill in values for prede-
fined slots in a semantic frame (Mesnil et al.,
2015), which is often referred to as slot filling.
The slot filling task can also be viewed as assign-
ing an appropriate semantic label to each word in
the given input text. In the below example from
ATIS (Hemphill et al., 1990) corpus following
the popular in/out/begin (IOB) annotation method,
Seattle and San Diego are the from and to loca-
tions respectively according to the slot labels, and
tomorrow is the departure date. Other words in the
example utterance that carry no semantic meaning
are assigned “O” label.

tomorrow
B-depart_date

Seattle [to| San
B-fromloc| O | B-toloc
Flight

from
[¢]

show
[0)

Utterance
Slots
Intent

flights
o

Diego
I-toloc!

Figure 1: ATIS corpus sample with intent and slot
annotation (IOB format).

Given an utterance consisting of a sequence of
words w = (w1, wa, ..., wr), the goal of slot fill-
ing is to find a sequence of semantic labels s =
(s1, 82, ..., ST), one for each word in the utterance,
such that:

2

§ = argmax P(s|w)
S

Slot filling is typically treated as a sequence la-
beling problem. Sequence models including con-
ditional random fields (Raymond and Riccardi,
2007) and RNN models (Yao et al., 2014; Mes-
nil et al., 2015; Liu and Lane, 2015) are among
the most popular methods for sequence labeling
tasks.

2.3 RNN Language Model

A language model assigns a probability to a se-
quence of words w = (wy, wa, ..., wr) following
probability distribution. In language modeling, wy
and w41 are added to the word sequence repre-
senting the beginning-of-sentence token and end-
of-sentence token. Using the chain rule, the likeli-
hood of a word sequence can be factorized as:

T+1

P(w) = H P(wi|wo, wry ..., wi—1)
t=1

3

RNN-based language models (Mikolov et al.,
2011), and the variant (Sundermeyer et al., 2012)
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Figure 2: (a) RNN language model. (b) RNN in-
tent detection model. The RNN output at last step
is used to predict the intent class. (c) RNN slot
filling model. Slot label dependencies are mod-
eled by feeding the output label of the previous
time step to the current step hidden state.

using long short-term memory (LSTM) (Hochre-
iter and Schmidhuber, 1997) have shown supe-
rior performance comparing to traditional n-gram
based models. In this work, we use an LSTM cell
as the basic RNN unit for its stronger capability
in capturing long-range dependencies in word se-
quence.

2.4 RNN for Intent Detection and Slot Filling

As illustrated in Figure 2(b), RNN intent detection
model uses the last RNN output to predict the ut-
terance intent class. This last RNN output can be
seen as a representation or embedding of the entire
utterance. Alternatively, the utterance embedding
can be obtained by taking mean of the RNN out-
puts over the sequence. This utterance embedding
is then used as input to the multinomial logistic
regression for the intent class prediction.

RNN slot filling model takes word as input and
the corresponding slot label as output at each time
step. The posterior probability for each slot label
is calculated using the softmax function over the
RNN output. Slot label dependencies can be mod-
eled by feeding the output label from the previ-
ous time step to the current step hidden state (Fig-
ure 2(c)). During model training, true label from
previous time step can be fed to current hidden
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state. During inference, only the predicted label
can be used. To bridge the gap between training
and inference, scheduled sampling method (Ben-
gio et al., 2015) can be applied. Instead of only
using previous true label, using sample from pre-
vious predicted label distribution in model train-
ing makes the model more robust by forcing it to
learn to handle its own prediction mistakes (Liu
and Lane, 2015).

3 Method

In this section we describe the joint SLU-LM
model in detail. Figure 3 gives an overview of the
proposed architecture.

3.1 Model

Let w (wo, wy,wa, ..., wr41) represent
the input word sequence, with wg and wry
being the beginning-of-sentence ((bos)) and
end-of-sentence ({eos)) tokens.  Let c
(co, 1,2, ..., c7) be the sequence of intent class
outputs at each time step. Similarly, let s
(s0, 81,82, ...,87) be the slot label sequence,
where sg is a padded slot label that maps to the
beginning-of-sentence token (bos).

Referring to the joint SLU-LM model shown in
Figure 3, for the intent model, instead of predict-
ing the intent only after seeing the entire utterance
as in the independent training intent model (Figure
2(b)), in the joint model we output intent at each
time step as input word sequence arrives. The in-
tent generated at the last step is used as the final
utterance intent prediction. The intent output from
each time step is fed back to the RNN state, and
thus the entire intent output history are modeled
and can be used as context to other tasks. It is
not hard to see that during inference, intent classes
that are predicted during the first few time steps
are of lower confidence due to the limited infor-
mation available. We describe the techniques that
can be used to ameliorate this effect in section 3.3
below. For the intent model, with both intent and
slot label connections to the RNN state, we have:

P(er|lw) = P(erlw<r, ccr, s<r) (4
For the slot filling model, at each step ¢ along the
input word sequence, we want to model the slot
label output s; as a conditional distribution over
the previous intents c.¢, previous slot labels s,
and the input word sequence up to step £. Using
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Figure 4: Joint online SLU-LM model variations. (a) Basic joint model with no conditional dependencies
on emitted intent classes and slot labels. (b) Joint model with local intent context. Next word prediction
is conditioned on the current step intent class. (c) Joint model with recurrent intent context. The entire
intent prediction history and variations are captured in the RNN state. (d) Joint model with both local

and recurrent intent context.

the chain rule, we have:
T
P(s|w) = P(so|wo) [ [ P(stlw<t, ccr, s<t)

t=1

&)
For the language model, the next word is mod-
eled as a conditional distribution over the word se-
quence together with intent and slot label sequence
up to current time step. The intent and slot label
outputs at current step, together with the intent and
slot label history that is encoded in the RNN state,
serve as context to the language model.

T

P(w) = HP(wt+1|w§t,C§t,8§t)
i=0

3.2 Next Step Prediction

Following the model architecture in Figure 3, at
time step ¢, input to the system is the word at in-

(6)
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dex t¢ of the utterance, and outputs are the intent
class, the slot label, and the next word prediction.
The RNN state h; encodes the information of all
the words, intents, and slot labels seen previously.
The neural network model computes the outputs
through the following sequence of steps:

hy = LSTM(h¢—1, [wy, ¢t—1, St—1]) @)
P(ct|lw<y, c<t, S<¢) = IntentDist(hy) 8)
P(St‘wgt, C<ty S<t) = SlotLabelD1st(ht) (9)

P(’wH_l |’U)§t, C<t, Sgt) = WOI‘dDiSt(ht, Ct, St)
(10)

where LSTM is the recurrent neural network func-
tion that computes the hidden state h; at a step
using the previous hidden state h;_;, the em-
beddings of the previous intent output c;—; and
slot label output s;_1, and the embedding of cur-



rent input word w;. IntentDist, SlotLabelDist,
and WordDist are multilayer perceptrons (MLPs)
with softmax outputs over intents, slot labels, and
words respectively. Each of these three MLPs has
its own set of parameters. The intent and slot label
distributions are generated by the MLPs with input
being the RNN cell output. The next word distri-
bution is produced by conditioning on current step
RNN cell output together with the embeddings of
the sampled intent and sampled slot label.

3.3 Training

The network is trained to find the parameters 6
that minimise the cross-entropy of the predicted
and true distributions for intent class, slot label,
and next word jointly. The objective function also
includes an L2 regularization term R(6) over the
weights and biases of the three MLPs. This equal-
izes to finding the parameters 6 that maximize the
below objective function:

T
meax tZ; {ac log P(c*|w<t, c<t, S<t;0)
—|—C¥5 log P(S;‘f |w§ta C<ty S<ts 9)

+ay, log P(wt—H ‘wfh C<ty 5<t; 0)

~\R(6)
(11)

where c* is the true intent class and and s} is the
true slot label at time step ¢. ., as, and a,, are the
linear interpolation weights for the true intent, slot
label, and next word probabilities. During model
training, ¢; can either be the true intent or mix-
ture of true and predicted intent. During inference,
however, only predicted intent can be used. Con-
fidence of the predicted intent during the first few
time steps is likely to be low due to the limited
information available, and the confidence level is
likely to increase with the newly arriving words.
Conditioning on incorrect intent for next word pre-
diction is not desirable. To mitigate this effect,
we propose to use a schedule to increase the in-
tent contribution to the context vector along the
growing input word sequence. Specifically, during
the first k& time steps, we disable the intent con-
text completely by setting the values in the intent
vector to zeros. From step k + 1 till the last step
of the input word sequence, we gradually increase
the intent context by applying a linearly growing
scaling factor n from O to 1 to the intent vector.
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This scheduled approach is illustrated in Figure 5.

1.0

— Linear increase after step k

0.8

0.6

0.4

scaling factor (n)

0.2

0.0

0 1 . .okl ok k+1 . .
steps

L T2T1 T
Figure 5: Schedule of increasing intent contribu-
tion to the context vector along with the growing
input sequence.

3.4 Inference

For online inference, we simply take the greedy
path of our conditional model without doing
search. The model emits best intent class and slot
label at each time step conditioning on all previous
emitted symbols:

Gt = argntaxp(ct|w§t,é<t7§<t) (12)
t

8 = argrnsztixP(st]wSt,éq,éq) (13)
Many applications can benefit from this greedy in-
ference approach comparing to search based infer-
ence methods, especially those running on embed-
ded platforms that without GPUs and with limited
computational capacity. Alternatively, one can do
left-to-right beam search (Sutskever et al., 2014;
Chan et al., 2015) by maintaining a set of 3 best
partial hypotheses at each step. Efficient beam
search method for the joint conditional model is
left to explore in our future work.

3.5 Model Variations

In additional to the joint RNN model (Figure 3)
described above, we also investigate several joint
model variations for a fine-grained study of vari-
ous impacting factors on the joint SLU-LM model
performance. Designs of these model variations
are illustrated in Figure 4.

Figure 4(a) shows the design of a basic joint
SLU-LM model. At each step ¢, the predictions of
intent class, slot label, and next word are based on
a shared representation from the LSTM cell out-
put hy, and there is no conditional dependencies
on previous intent class and slot label outputs. The
single hidden layer MLP for each task introduces



additional discriminative power for different tasks
that take common shared representation as input.
We use this model as the baseline joint model.

The models in Figure 4(b) to 4(d) extend the
basic joint model by introducing conditional de-
pendencies on intent class outputs. Note that the
same type of extensions can be made on slot la-
bels as well. For brevity and space concern, these
designs are not added in the figure, but we report
their performance in the experiment section.

The model in Figure 4(b) extends the basic joint
model by conditioning the prediction of next word
w1 on the current step intent class c;. The intent
class serves as context to the language model task.
We refer to this design as model with local intent
context.

The model in Figure 4(c) extends the basic joint
model by feeding the intent class back to the RNN
state. The history and variations of the predicted
intent class from each previous step are monitored
by the mode with such class output connections to
RNN state. The intent, slot label, and next word
predictions in the following step are all dependent
on this history of intents. We refer to this design
as model with recurrent intent context.

The model in Figure 4(d) combines the two
types of connections shown in Figure 4(b) and
4(c). At step t, in addition to the recurrent intent
context (c<y), the prediction of word w1 is also
conditioned on the local intent context from cur-
rent step intent class c;. We refer to this design as
model with local and recurrent intent context.

4 Experiments

4.1 Data

We used the Airline Travel Information Systems
(ATIS) dataset (Hemphill et al., 1990) in our ex-
periment. The ATIS dataset contains audio record-
ings of people making flight reservations, and it is
widely used in spoken language understanding re-
search. We followed the same ATIS corpus! setup
used in (Mesnil et al., 2015; Xu and Sarikaya,
2013; Tur et al., 2010). The training set contains
4978 utterances from ATIS-2 and ATIS-3 corpora,
and test set contains 893 utterances from ATIS-3
NOV93 and DEC94 datasets. We evaluated the
system performance on slot filling (127 distinct
slot labels) using F1 score, and the performance on

'We thank Gokhan Tur and Puyang Xu for sharing the
ATIS dataset.
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intent detection (18 different intents) using classi-
fication error rate.

In order to show the robustness of the proposed
joint SLU-LM model, we also performed experi-
ments using automatic speech recognition (ASR)
outputs. We managed to retrieve 518 (out of
the 893 test utterances) utterance audio files from
ATIS-3 NOV93 and DEC94 data sets, and use
them as the test set in the ASR settings. To provide
a more challenging and realistic evaluation, we
used the simulated noisy utterances that were gen-
erated by artificially mixing clean speech data with
noisy backgrounds following the simulation meth-
ods described in the third CHiME Speech Sepa-
ration and Recognition Challenge (Barker et al.,
2015). The average signal-to-noise ratio for the
simulated noisy utterances is 9.8dB.

4.2 Training Procedure

We used LSTM cell as the basic RNN unit, follow-
ing the LSTM design in (Zaremba et al., 2014).
The default forget gate bias was set to 1. We
used single layer uni-directional LSTM in the pro-
posed joint online SLU-LM model. Deeper mod-
els by stacking the LSTM layers are to be explored
in future work. Word embeddings of size 300
were randomly initialized and fine-tuned during
model training. We conducted mini-batch train-
ing (with batch size 16) using Adam optimization
method following the suggested parameter setup
in (Kingma and Ba, 2014). Maximum norm for
gradient clipping was set to 5. During model train-
ing, we applied dropout (dropout rate 0.5) to the
non-recurrent connections (Zaremba et al., 2014)
of RNN and the hidden layers of MLPs, and ap-
plied L2 regularization (A = 10~%) on the param-
eters of MLPs.

For the evaluation in ASR settings, we
used the acoustic model trained on LibriSpeech
dataset (Panayotov et al., 2015), and the language
model trained on ATIS training corpus. A 2-gram
language model was used during decoding. Dif-
ferent N-best rescoring methods were explored by
using a 5-gram language model, the independent
training RNN language model, and the joint train-
ing RNN language model. The ASR outputs were
then sent to the joint SLU-LM model for intent de-
tection and slot filling.



Model Intent Error F1 Score LM PPL

1  RecNN (Guo et al., 2014) 4.60 93.22 -

2 RecNN+Viterbi (Guo et al., 2014) 4.60 93.96 -

3 Independent training RNN intent model 2.13 - -

4 Independent training RNN slot filling model - 94.91 -

5 Independent training RNN language model - - 11.55

6 Basic joint training model 2.02 94.15 11.33

7 Joint model with local intent context 1.90 94.22 11.27

8 Joint model with recurrent intent context 1.90 94.16 10.21

9 Joint model with local & recurrent intent context 1.79 94.18 10.22
10 Joint model with local slot label context 1.79 94.14 11.14
11  Joint model with recurrent slot label context 1.79 94.64 11.19
12 Joint model with local & recurrent slot label context 1.68 94.52 11.17
13 Joint model with local intent + slot label context 1.90 94.13 11.22
14 Joint model with recurrent intent + slot label context 1.57 94.47 10.19
15 Joint model with local & recurrent intent + slot label context 1.68 94.45 10.28

Table 1: ATIS Test set results on intent detection error, slot filling F1 score, and language modeling
perplexity. Related joint models: RecNN: Joint intent detection and slot filling model using recursive
neural network (Guo et al., 2014). RecNN+Viterbi: Joint intent detection and slot filling model using
recursive neural network with Viterbi sequence optimization for slot filling (Guo et al., 2014).

4.3 Results and Discussions

4.3.1 Results with True Text Input

Table 1 summarizes the experiment results of the
joint SLU-LM model and its variations using ATIS
text corpus as input. Row 3 to row 5 are the inde-
pendent training model results on intent detection,
slot filling, and language modeling. Row 6 gives
the results of the basic joint SLU-LM model (Fig-
ure 4(a)). The basic joint model uses a shared rep-
resentation for all the three tasks. It gives slightly
better performance on intent detection and next
word prediction, with some degradation on slot
filling F1 score. If the RNN output h; is con-
nected to each task output directly via linear pro-
jection without using MLP, performance drops for
intent classification and slot filling. Thus, we be-
lieve the extra discriminative power introduced by
the additional model parameters and non-linearity
from MLP is useful for the joint model. Row 7
to row 9 of Table 1 illustrate the performance of
the joint models with local, recurrent, and local
plus recurrent intent context, which correspond to
model structures described in Figure 4(b) to 4(d).
It is evident that the recurrent intent context helps
the next word prediction, reducing the language
model perplexity by 9.4% from 11.27 to 10.21.
The contribution of local intent context to next
word prediction is limited. We believe the advan-
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tageous performance of using recurrent context is
a result of modeling predicted intent history and
intent variations along with the growing word se-
quence. For intent classification and slot filling,
performance of these models with intent context
is similar to that of the basic joint model.

Row 10 to row 12 of Table 1 illustrate the per-
formance of the joint model with local, recurrent,
and local plus recurrent slot label context. Com-
paring to the basic joint model, the introduced slot
label context (both local and recurrent) leads to
a better language modeling performance, but the
contribution is not as significant as that from the
recurrent intent context. Moreover, the slot la-
bel context reduces the intent classification error
from 2.02 to 1.68, a 16.8% relative error reduc-
tion. From the slot filling F1 scores in row 10 and
row 11, it is clear that modeling the slot label de-
pendencies by connecting slot label output to the
recurrent state is very useful.

Row 13 to row 15 of Table 1 give the perfor-
mance of the joint model with both intent and slot
label context. Row 15 refers to the model de-
scribed in Figure 3. As can be seen from the re-
sults, the joint model that utilizes two types of
recurrent context maintains the benefits of both,
namely, the benefit of applying recurrent intent
context to language modeling, and the benefit of



ASR Model (with LibriSpeech AM) WER Intent Error F1 Score
2-gram LM decoding 14.51 4.63 84.46
2-gram LM decoding + 5-gram LM rescoring 13.66 5.02 85.08
2-gram LM decoding + Independent training RNN LM rescoring  12.95 4.63 85.43
2-gram LM decoding + Joint training RNN LM rescoring 12.59 4.44 86.87

Table 2: ATIS test set results on ASR word error rate, intent detection error, and slot filling F1 score with

noisy speech input.

applying recurrent slot label context to slot filling.
Another observation is that once recurrent context
is applied, the benefit of adding local context for
next word prediction is limited. It might hint that
the most useful information for the next word pre-
diction can be well captured in the RNN state, and
thus adding explicit dependencies on local intent
class and slot label is not very helpful.
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Figure 6: LM perplexity of the joint SLU-LM
models with different schedules in adjusting the
intent contribution to the context vector.

During the joint model training and inference,
we used a schedule to adjust the intent contribu-
tion to the context vector by linearly scaling the in-
tent vector with the growing input word sequence
after step k. We found this technique to be criti-
cal in achieving advantageous language modeling
performance. Figure 6 shows test set perplexities
along the training epochs for models using differ-
ent k values, comparing to the model with uniform
(n = 1) intent contribution. With uniform intent
contribution across time, the context vector does
not bring benefit to the next word prediction, and
the language modeling perplexity is similar to that
of the basic joint model. By applying the adjusted
intent scale (k = 2), the perplexity drops from
11.26 (with uniform intent contribution) to 10.29,
an 8.6% relative reduction.
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4.3.2 Results in ASR Settings

To further evaluate the robustness of the proposed
joint SLU-LM model, we experimented with noisy
speech input and performed SLU on the rescored
ASR outputs. Model performance is evaluated in
terms of ASR word error rate (WER), intent clas-
sification error, and slot filling F1 score. As shown
in Table 2, the model with joint training RNN LM
rescoring outperforms the models using 5-gram
LM rescoring and independent training RNN LM
rescoring on all the three evaluation metrics. Us-
ing the rescored ASR outputs (12.59% WER) as
input to the joint training SLU model, the intent
classification error increased by 2.87%, and slot
filling F1 score dropped by 7.77% comparing to
the setup using true text input. The performance
degradation is expected as we used a more chal-
lenging and realistic setup with noisy speech in-
put. These results in Table 2 show that our joint
training model outperforms the independent train-
ing model consistently on ASR and SLU tasks.

5 Conclusion

In this paper, we propose a conditional RNN
model that can be used to jointly perform on-
line spoken language understanding and language
modeling. We show that by continuously mod-
eling intent variation and slot label dependencies
along with the arrival of new words, the joint train-
ing model achieves advantageous performance in
intent detection and language modeling with slight
degradation on slot filling comparing to the in-
dependent training models. On the ATIS bench-
marking data set, our joint model produces 11.8%
relative reduction on LM perplexity, and 22.3%
relative reduction on intent detection error when
using true text as input. The joint model also
shows consistent performance gain over the in-
dependent training models in the more challeng-
ing and realistic setup using noisy speech input.
Code to reproduce our experiments is available at:
http://speech.sv.cmu.edu/software.html
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