
Proceedings of the SIGDIAL 2016 Conference, pages 11–21,
Los Angeles, USA, 13-15 September 2016. c©2016 Association for Computational Linguistics

Task Lineages: Dialog State Tracking for Flexible Interaction

Sungjin Lee and Amanda Stent
Yahoo Research

229 West 43rd Street, New York, NY 10036, USA
{junion, stent}@yahoo-inc.com

Abstract

We consider the gap between user demands
for seamless handling of complex interac-
tions, and recent advances in dialog state
tracking technologies. We propose a new
statistical approach, Task Lineage-based
Dialog State Tracking (TL-DST), aimed
at seamlessly orchestrating multiple tasks
with complex goals across multiple do-
mains in continuous interaction. TL-DST
consists of three components: (1) task
frame parsing, (2) context fetching and (3)
task state update (for which TL-DST takes
advantage of previous work in dialog state
tracking). There is at present very little
publicly available multi-task, complex goal
dialog data; however, as a proof of concept,
we applied TL-DST to the Dialog State
Tracking Challenge (DSTC) 2 data, result-
ing in state-of-the-art performance. TL-
DST also outperforms the DSTC baseline
tracker on a set of pseudo-real datasets in-
volving multiple tasks with complex goals
which were synthesized using DSTC3 data.

1 Introduction

The conversational agent era has arrived: every
major mobile operating system now comes with a
conversational agent, and with the announcements
over the past year of messaging-based conversa-
tional agent platforms from Microsoft, Google,
Facebook and Kik (among others), technology now
supports the rapid development and interconnec-
tion of all kinds of dialog bots. Despite this
progress, most conversational agents can only han-
dle a single task with a simple user goal at any par-
ticular moment. There are three significant hurdles
to efficient, natural task-oriented interaction with
these agents. First, they lack the ability to share
slot values across tasks. Due to the independent
execution of domain-specific task scripts, informa-
tion sharing across tasks is minimally supported –
the user typically has to provide common slot val-
ues separately for each task. Second, these agents

lack the ability to express complex constraints
on user goals – the user can rarely communi-
cate in a single utterance goals related to multiple
tasks, and can typically not provide multiple pref-
erential constraints such as a boolean expression
over slot values (Crook and Lemon, 2010). Third,
current conversational agents lack the ability to in-
terleave discussion of multiple related tasks.
For instance, an agent can help a user find a restau-
rant, and then a hotel, but the user can’t interleave
these tasks to manage shared constraints.

The dialog state tracker (DST) is the most cru-
cial component for addressing these hurdles. A
DST constructs a succinct representation of the
current conversation state, based on the previ-
ous interaction history, so that the conversational
agent may choose the best next action. Re-
cently, researchers have developed numerous DST
approaches ranging from handcrafted rule-based
methods to data-driven models. In particular, the
series of Dialog State Tracking Challenges (DSTC)
has served as a common testbed, allowing for a cy-
cle of rigorous comparative analysis and rapid ad-
vancement (Williams et al., 2016). A consistent
finding across the DSTC series is that the best
performing systems are statistical DSTs based on
discriminative models. The main focus of recent
advances, however, has been largely confined to
developing more robust approaches to other con-
versational agent technologies, such as automated
speech recognition (ASR) and spoken language un-
derstanding (SLU), in a session-based dialog pro-
cessing a single task with a relatively simple goal.
Session-based, single task, simple goal dialog is eas-
ier for dialog system engineers and consistent with
25 years of commercial dialog system development,
but does not match users’ real-world task needs
as communicated with human conversational as-
sistants or recognized in the dialog literature (e.g.
(Grosz and Sidner, 1988; Lochbaum, 1998)), and
is inconsistent with the mobile-centric, always-on,
conversational assistant commercial vision that has
emerged over the past few years.

This gap between how humans most effectively
converse about complex tasks and what conversa-

11



tional agent technology (including DST) permits
clearly shows the direction for future research –
statistical DST approaches that can seamlessly or-
chestrate multiple tasks with complex goals across
multiple domains in continuous interaction. In this
paper, we describe a new approach, Task Lineage-
based Dialog State Tracking (TL-DST), centered
around the concept of a task lineage, to lay a
framework for incremental developments toward
this vision. TL-DST consists of three components:
(1) task frame parsing, (2) context fetching and (3)
task state update (for which TL-DST takes advan-
tage of previous work in dialog state tracking). As
a proof of concept, we conducted a set of experi-
ments using the DSTC2 and DSTC3 data. First,
we applied TL-DST to the DSTC2 data which has
a great deal of user goal changes, and obtained
state-of-the-art performance. Second, in order to
test TL-DST on more challenging data, we applied
TL-DST to a set of pseudo-real datasets involving
multiple interleaved tasks and complex constraints
on user goals. To generate the datasets, we fed
the DSTC3 data, which includes three different
types of tasks in addition to goal changes, to sim-
ulation techniques which have been often adopted
for the development and evaluation of dialog sys-
tems (Schatzmann et al., 2006; Pietquin and Du-
toit, 2006; Lee and Eskenazi, 2012). The results
of these experiments show that TL-DST can suc-
cessfully handle complex multi-task interactions,
largely outperforming the DSTC baseline tracker.

The rest of this paper is organized as follows.
In Section 2 we describe TL-DST. In Section 3 we
discuss our experiments. In Section 4 we present
a brief summary of related work. We finish with
conclusions and future work in Section 5.

2 Task Lineage-based Dialog State
Tracking

We start by defining some essential concepts. Fol-
lowing the convention of the DSTC, we represent
each utterance produced by the user or agent as
a set of dialog act items (DAIs) of the form
dialog-act-type(slot = value). A DAI is produced
by a SLU; TL-DST may receive input from multi-
ple (domain-specific or general-purpose) SLUs.

Task Schema A task schema is a manually iden-
tified set of slots for which values must or may be
specified in order to complete the task. For exam-
ple, the task schema for a restaurant booking task
will contain the required slots date/time, location,
and restaurant ID, with optional slots cuisine-type,
ratings, cost-rating, etc. A task schema governs
the configuration of related structures such as task
frame and task state.

Task Frame A task frame is a set of DAIs with
associated confidence scores and time/sequence

information. An augmented DAI has the form
(confidence score, DAIstart timeend time ). Usually task
frames come in a collection, called a task frame
parse, as a result of task frame parsing when
there are multiple tasks involved in the user in-
put (see Section 2.1). The following collection of
task frames shows an example task frame parse for
the user input “Connection to Manhattan and find
me a Thai restaurant, not Italian”:


[

Task Transit
DAIs (0.8, inform(dest=MH)0.10.7)

]
 Task Restaurant

DAIs (0.7, inform(food=thai)0.91.2)
(0.6, deny(food=italian)1.41.7)




Task State A task state includes essential pieces
of information to represent the current state of a
task under discussion, e.g., the task name, a set
of belief estimates for user provided preferential
constraints, DB query results, timestamps and a
turn index. The following state shows an example
restaurant finding task state corresponding to the
user input “Thai restaurant, not Italian”:

Task Restaurant
Constraints (0.7, food = thai)

(0.6, food 6= italian)
DB [“Thai To Go”, “Pa de Thai”]
Timestamps 01/01/2016 : 12-00-00
. . . . . .


A task state is analogous to a dialog state in typical
dialog systems. However, unlike in conventional
dialog state tracking, we don’t assume a unique
value for each slot. Instead, we adopt binary dis-
tributions for each constraint. This allows us to
circumvent the exponential complexity in the num-
ber of values which otherwise would be caused by
taking a power set of slot values to handle complex
constraints (Crook and Lemon, 2010).
Task Lineage A task lineage is a chronologically
ordered list of task states, representing the agent’s
hypotheses about what tasks were involved at each
time point in a conversation. A task lineage can
be consulted to provide crucial pieces of informa-
tion for conversation structure. For instance, the
most recent task frames in a lineage can indicate
the current focus of conversation. In addition,
when the user switches back to a previous task,
the agent can trace back the lineage in reverse or-
der to take recency into account. However, con-
versational agents often cannot determine exactly
what the user’s task is. For example, there may be
ASR or SLU errors, or genuine ambiguities (“want
Thai” - food=Thai and a restaurant finding task
or dest=Thai and an air travel task?). Thus we
maintain a N -best list of possible task lineages.
Figure 1 illustrates how task lineages are extended
for new user inputs.

12



Figure 1: An example illustrating how task lin-
eages are extended as new user inputs come in;
this conversation involves multiple tasks (at turn
0) and task ambiguity (at turn 1).

Overall TL-DST Procedure Algorithm 1 de-
scribes how the overall TL-DST procedure works.
At turn t, given ũ, a set of DAI sets from one or
more SLUs, we perform task frame parsing (see
Section 2.1) to generate H, a K-best list of task
frame parses with associated belief scores, sk 1.
Then, in order to generate a set of new task states,
T , we consider all possible combinations of the task
lineages, ln0:t−1, in the current N -best list of task
lineages, L0:t−1, and the parses, Ak, in the K-best
list of task frame parses, H. In a task frame parse,
there may be multiple task frames, hence the ith
frame in the kth parse is denoted by fk,i. The main
operation in new task state generation is task state
update (see Section 2.3) which forms a new task
state, τn,k,i, per task frame, fk,i, by applying be-
lief update to the task frame, relevant information
in the lineage ln0:t−1 and the agent’s output mt.
Task state update is very similar to what is done
in typical dialog state tracking except that we need
to additionally identify relevant information in the
task lineage since a task lineage could be a mix of
different tasks. This is the role of context fetch-
ing (see Section 2.2). Given a task frame fk,i, a
task lineage ln0:t−1 and the agent’s output mt, the
context fetcher returns a set of relevant informa-
tion pieces, cn,k,i ∈ C. Finally we construct a new
set of task lineages, L0:t, by extending each cur-
rent task lineage ln0:t−1 with the newly formed task
states, ∀i, τn,k,i. The belief estimate of a new task
lineage is set to the product of that of the source
task lineage, snl , and that of the task frame parse,
skh. Since the extension process grows the number
of task lineages by a factor of K, we perform prun-
ing and belief normalization at the end. Based on a
N -best list of task lineages, we can then compute
useful quantities for the agent’s action selection,
such as marginal task beliefs (by adding the be-

1M sets the maximum number of samples to draw
in the stochastic inference in Section 2.1.

Algorithm 1: Overall TL-DST Procedure
Input: N > 0, K > 0, M > 0, δ >= 0
. Let L0:t = [(l10:t, s

1), . . . , (lN0:t, s
N )] be a N -best

list of task lineages with scores at turn t
. See task frame parsing in Section 2.1
. See context fetch in Section 2.2
. See task state update in Section 2.3
L0:0 ← ∅;
t← 1;
while True do

mt ← agent output();
ũt ← user input();
H ← task frame parsing(ũt, K, M);

C ← {cn,k,i :=
context fetch(ln0:t−1, f

k,i,mt, δ) |
ln0:t−1 ∈ L0:t−1,Ak ∈ H, fk,i ∈ Ak};

T ← {τn,k,i :=
task state update(cn,k,i, fk,i,mt) |
cn,k,i ∈ C,Ak ∈ H, fk,i ∈ Ak};

L̂0:t ← [(ln0:t−1 :: τn,k,i, snl × skh) |
(ln0:t−1, s

n
l ) ∈ L0:t−1, τ

n,k,i ∈ T ,
skh ∈ H];

L0:t ← prune(L̂0:t, N);
t← t+ 1;

end

liefs of each task across the lineages) or marginal
constraint beliefs (by weighted averaging of the be-
liefs of each constraint across task states with the
task lineage beliefs carrying the weights).

There are a few noteworthy aspects of our TL-
DST approach that depart from conventional dia-
log state tracking approaches. Unlike most meth-
ods where the DST keeps on overriding the content
of the dialog state (hence losing past states) TL-
DST adopts a dynamically growing structure, pro-
viding a richer view to later processing. This is par-
ticularly important for continuous interaction in-
volving multiple tasks. Interestingly, this is a cru-
cial reason behind advances in deep neural network
models using the attention mechanism (Bahdanau
et al., 2014). Also unlike some approaches that
use stack-like data structures for focus manage-
ment (Larsson and Traum, 2000; Ramachandran
and Ratnaparkhi, 2015) where the tracker pops out
the tasks above the focused task, losing valuable in-
formation such as temporal ordering and partially
filled constraints, TL-DST preserves all of the past
task states by viewing the focus change as a side
effect of generating a new updated task state each
time. This allows for flexible task switching among
a set of partially fulfilled tasks.

2.1 Task Frame Parsing

In this section we formalize task frame parsing as a
structure prediction problem. We use a probabilis-
tic framework that employs a beam search tech-
nique using Monte Carlo Markov Chain (MCMC)
with simulated annealing (SA) and permits a clean

13



integration of hard constraints to generate legiti-
mate parses with probabilistic reasoning.

Let d ∈ D be a domain and ũd denote the SLU
results from a parser for domain d for observation
o, which is a set of confidence score and time infor-
mation annotated DAIs ũidd , id ∈ Id = {1 . . . Nd}.
Let F = {f id,tdd |d ∈ D, id ∈ Id, td ∈ Td} be a col-
lection of the sets of all possible task frames for
each ũd, where Td is a set of task schemas defined
in domain d. We add a special frame finactive to F
to which some DAIs may be assigned in order to
generate legitimate task frame parses when those
DAIs are created by either SLU errors or irrele-
vant pieces of information (e.g. greetings), or they
have conflicting interpretations from different do-
mains. Now we define a task frame parse Aũ to
be a functional assignment of every ũ ∈ ũ =

⋃
d ũd

to F observing the following constraints: 1) one of
any two DAIs overlapped in time must be assigned
to the inactive frame; 2) ũidd cannot be assigned
to any of task frame parses arising from another
DAI ũi

′
d

d′ (i.e. f i
′
d,td
d′ , ∀td) if the start time of ũi

′
d

d′ is
later than that of ũidd (this constraint is necessary
to get rid of spurious assignment ambiguities due
to symmetry).

At a particular turn, given ũ, the aim of task
frame parsing is to return a K-best list of assign-
ments Akũ, k ∈ {1, . . . ,K} according to the follow-
ing conditional log-linear model:

pθ(Aũ|ũ) =
expθTg(Aũ, ũ)∑
A′

ũ
expθTg(A′ũ, ũ)

(1)

where θ are the model weights, and g is a vector-
valued feature function. The exact computation of
Eq. 1 can become very costly for a complicated
user input due to the normalization term. To
avoid the exponential time complexity, we adopt a
beam search technique (presented below) to yield
a K-best list of parses which are used to approxi-
mate the sum in the normalization term. Figure 2
presents an example of how the variables in the
model are related for different parses.
Parsing Independent assignment of DAIs to task
frames may result in parses that violate the rules
above. To generate a K-best list of legitimate
parses, we adopt a beam search technique using
MCMC inference with SA as listed in Algorithm 2.
After starting with a heuristically initialized parse,
the algorithm draws a sample by randomly moving
a single DAI from one task frame to another so as
not to produce an illegal parse, until the maximum
number of samples M has been reached.

Model Training Having training data consisting
of SLU results-parse pairs (ũ(i), A(i)

ũ ), we maximize
the log-likelihood of the correct parse. Formally,

Figure 2: An example illustrating task frame pars-
ing. Here we assume that there are two related do-
mains, Local and AirTravel, pertinent to the user
input “want to go to Thai or Korean”. Time infor-
mation is annotated as word positions in the input.

Algorithm 2: MCMC-SA Beam Parsing
Input: K > 0, M > 0, ũ, pθ from Eq. 1

Result: H = [(Â1
ũ, s

1), . . . , (ÂKũ , sK)], a K-best
list of assignments with scores

Aũ ← initialize(ũ), s← pθ(Aũ|ũ);
insert and sort(H, Aũ, s);
c ← 0, acc rate ← 1;
while c < M do

Âũ, ŝ← random choice(H);

Aũ ← sample(Âũ), s← pθ(Aũ|ũ);
if s > ŝ or random(0,1) < acc rate then

insert and sort(H, Aũ, s);
end

c ←c +1, acc rate ← acc rate − 1
M

;
end
return H

our training objective is:

O(θ) =
∑
i

log pθ(A(i)
ũ |ũ(i)) (2)

We optimize the objective by initializing θ to 0
and applying AdaGrad (Duchi et al., 2011) with
the following per-feature stochastic gradient:

∂O(θ,A(i)
ũ , ũ(i),H(i))
∂θj

=

gj(A(i)
ũ , ũ(i))pθ(A(i)

ũ |ũ(i))

−
∑

Âk
ũ
∈H(i):Âk

ũ
6=A(i)

ũ

gj(Âkũ, ũ(i))pθ(Âkũ|ũ(i))

In our experiments we use the features in Table 1,
which are all sparse binary features except those
marked by †.

14



• The number of task frames in the parse
• The number of task frames in the parse conjoined with the agent’s DA type
• The number of DAIs in the inactive task frame
• The pair of the total number of DAIs and the number of DAIs in the inactive task frame
• All possible pairs of delexicalized agent DAIs and delexicalized user DAIs in the inactive task frame
• All possible pairs of delexicalized user DAIs for each task frame
• The average confidence score of all DAIs assigned to active task frames†
• The average number of DAIs per active task frame†
• The conjunction of the number of DAIs assigned to active task frames and the number of active task frames
• The fraction of the number of gaps to the number of DAIs assigned to active task frames (a gap happens
when two DAIs in the same task frame instance have an intermediate DAI in a different task frame instance)
• The entropy of DAI distribution across active task frames †
• The number of active task frames with only one DAI
• An indicator testing if the parse is the same as a heuristically initialized parse
• The degree of deviation of the parse from a heuristically initialized parse in terms of the number of gaps †

Table 1: Features used in model for task frame parsing

2.2 Context Fetching

There are a variety of phenomena in conversation
in which context-dependent analysis plays a cru-
cial role, such as ellipsis resolution, reference res-
olution, cross-task information sharing and task
resumption. In order to successfully handle such
phenomena, TL-DST must fetch relevant pieces of
information from the conversation history. In this
section, we mainly focus on modeling the context
fetching process for belief update, ellipsis resolu-
tion and task resumption, but a similar technique
can be used for handling other phenomena. We
first formally define the context fetching model and
then introduce a set of feature functions that allow
the model to capture general patterns of different
context-dependent phenomena.

Context Sets At turn t, given a task lineage l0:t−1

and context window δ, the context fetcher con-
structs three context sets:

• B(l0:t−1): A set of δ-latest belief estimates for each
constraint that appears in lt. The δ-latest belief
estimate means the latest belief estimate before
t− δ.

• U(l0:t−1): A set of all previous SLU results within
δ, {ũt−δ, . . . , ũt−1}.

• M(l0:t−1): A set of all previous agent DAIs within
δ, {mt−δ, . . . ,mt−1}.

By varying δ, the context fetcher controls the ratio
of summarized estimates to raw observations it will
use to generate new estimates for the current turn.

Context Fetching Conditioned on the task lin-
eage l0:t−1 and the new pieces of information at the
current turn such as the task frame f and the agent
output mt, the context fetcher determines which
elements from the context sets will be used. We
cast the decision problem as a set of binary classi-
fications for each element using logistic regression.
For the sake of simplicity, in this work, we focus
on the case where δ is 0 which in effect makes the
context fetcher use only the latest belief estimates

for each constraint, B(l0:t−1):

pψ(R(bτ,c) | l0:t−1, f,mt) =
1

1 + exp−ψTh(bτ,c, l0:t−1, f,mt)

where bτ,c ∈ B(l0:t−1) denotes the belief estimate
for constraint c at turn τ , R is a binary indicator
of fetching decision, ψ are the model weights, and
h is a vector-valued feature function.

Model Training As before, we optimize the log-
likelihood of the training data using AdaGrad. To
construct training data, we construct an oracle
task lineage based on dialog state labels, SLU la-
bels and SLU results, which allows us to build cor-
responding context sets and label each element in
them by checking if the element appears in the or-
acle task state. In our experiments we use the fea-
tures listed in Table 2, which are all sparse binary
features except those marked by †.
2.3 Task State Update

In this section, we describe the last component of
TL-DST, task state update. A nice property of
TL-DST is its ability to exploit alternative meth-
ods for dialog state tracking. For instance, by
setting a large value to δ for the context fetcher,
one can adopt various discriminative models that
take advantage of expressive feature functions ex-
tracted from a collection of raw observations (Lee,
2013; Henderson et al., 2014c; Williams, 2014). On
the other hand, with δ being 0, one can employ a
method from a library of generative models which
only requires to know the immediately prior belief
estimates (Wang and Lemon, 2013; Zilka et al.,
2013). Unlike in previous work, instead of predict-
ing a unique goal value for a slot, we perform belief
tracking for each individual slot-value constraint
to allow complex goals. For the experiments pre-
sented here, we chose to use the rule-based algo-
rithm from Zilka et al. (2013) for constraint-level
belief tracking. The use of a rule-based algorithm

15



• A continuation bias feature. This feature indicates if constraint c is present in any of the task states at
the previous turn. This feature allows to model the general tendency to continue.
• Adjacency pair features. These features indicate if c comes from the previous turn when the second half
of an adjacency pair (e.g. request/inform and confirm/affirm) is present at the current turn.
• Deletion features based on explicit cues. For example, the user informs alternative constraints after the
agent’s unfulfilment notice (e.g. canthelp in the DSTC) or the user chooses an alternative to c at the agent’s
selection prompt.
• Deletion features based on implicit cues. For instance, the user informs alternative constraints for a slot
which is unlikely to admit multiple constraints or after the agent’s explicit or implicit confirmation request.
For these features we use the confidence score of the user’s DAI. †
• Task switching features based on agent-initiative cues. Upon the completion of a task, the agent is likely
to resume a previous task, thus the context fetcher needs to retrieve the state of the resumed task. Since
our experiments are corpus-based, there is no direct internal signal from the agent action selection module,
so these features indirectly capture the agent’s initiative on task switching based on which task the agent’s
action is related to, and indicate if c is present in the agent’s action or belongs to the agent’s addressed task.
• Task switching features based on user-initiative cues. These features test if c is present in the user’s input
or belongs to the user’s addressed task.

Table 2: Features used in model for context fetching

allows us to focus our analysis only on the new
aspects of TL-DST.

We present the formal description of the dialog
state tracking algorithm. Let Σ+

t,c (Σ−t,c) denote
the sum of all the confidence scores associated with
inform or affirm (deny or negate) for constraint c
at turn t. Then the belief estimate of constraint c
at turn t, bt,c, is defined as follows:

• For informing or affirming,

bt,c = bτ,c(1− Σ+
t,c) + Σ+

t,c

• For denying or negating,

bt,c = bτ,c(1− Σ−t,c)

where bτ,c is the latest available belief estimate for
constraint c fetched from a task state at turn τ .

3 Experiments

In order to validate TL-DST, we conducted a set
of corpus-based experiments using the DSTC2 and
DSTC3 data. The use of DSTC data makes it
possible to compare TL-DST with numerous pre-
viously developed methods. We first applied TL-
DST on the DSTC2 data. DSTC2 was designed
to broaden the scope of dialog state tracking to in-
clude user goal changes. TL-DST should be able
to process user goal changes without any special
handling – it should fetch unchanged goals from
the previous task state and incorporate new goals
from the user’s input to construct a new task state.

However, due to the lack of multi-task conversa-
tions in the DSTC2 data, we could not evaluate the
performance of task frame parsing. There are also
many other aspects of our proposed approach that
are hard to investigate without appropriate dialog
data. We address this problem by applying sim-
ulation techniques to the DSTC3 data. Although
there are no DSTC3 dialogs handling multiple task

instances in a single conversation, the DSTC3 ex-
tended the DSTC2 to include multiple task types,
i.e, restaurant, pub and coffee shop finding tasks.
This property of the DSTC3 data allows us to gen-
erate a set of pseudo-real dialogs involving multi-
ple tasks with complex goals in longer interactions.
The generated corpus helped us evaluate additional
aspects of TL-DST.

3.1 DSTC2

In the DSTC2, the user is asked to find a restau-
rant that satisfies a number of constraints such as
food type or area. The data was collected from
Amazon Mechanical Turkers using dialog systems
developed at Cambridge University. The corpus
contains 1612 training dialogs, 506 development di-
alogs and 1117 test dialogs.

Per DSTC2, the dialog state includes three el-
ements – the user’s goal (slot values the user has
supplied), requested slots (those the user has asked
for) and search method. In this work, we focus on
tracking the user’s goal. Since TL-DST estimates
belief for each constraint rather than assigning a
distribution over all of the values per slot, we ag-
gregated the constraint-level beliefs for each slot
and took the value with the largest belief. We
trained the context fetcher on the training data
and saved models whenever the performance on
the development data was improved. We set the
learning rate to 0.1 and used L2 regularization with
regularization term 10−4, though the system’s per-
formance was largely insensitive to these settings.

Table 3 shows the performance of TL-DST on
the test data in accuracy and L2 along with that
of other top performing systems in the literature2.
The result clearly demonstrates the effectiveness
of TL-DST, showing higher accuracy and lower L2
than other state-of-the-art systems. This result is

2In order to make evaluation results comparable,
we considered only those systems that used only the
provided SLU output, not also ASR information.

16



particularly interesting in that all of the other sys-
tems achieved their best performance through a
system combination of various non-linear models
such as neural nets, decision trees, or statistical
models combined with rules, whereas our system
used a lightweight linear model. With the struc-
ture among the components of the TL-DST ap-
proach, it suffices to use a single linear model to
handle sophisticated phenomena such as user goal
changes. TL-DST achieved this result without any
preprocessing steps such as SLU result correction
or the use of lexical features to compensate for rel-
atively poor SLU performance (Kadlec et al., 2014;
Zhu et al., 2014). Lastly, we used a generative rule-
based model for task state update which is known
to be suboptimal for the DSTC2 task. Though it is
not the focus of this paper, we expect that one can
employ a discriminative model to get further im-
provements. In particular, there is plenty of room
to improve the L2 metric through machine-learned
discriminative models.

Entry Acc. L2
1-best baseline 0.619 0.738
Sun et al. (2014) 0.735 0.433
Williams (2014) 0.739 0.721
Henderson et al. (2014c) 0.742 0.387
Vodolan et al. (2015)† 0.745 0.433
TL-DST† 0.747 0.451

Table 3: DSTC2 joint goal tracking results. The
post DSTC2 systems are marked by †.

3.2 Complex Interactions

In order to evaluate TL-DST on more challeng-
ing data, we generated a set of pseudo-real di-
alogs from the DSTC3 data that contain multi-
ple tasks with complex user goals (Schatzmann et
al., 2006; Pietquin and Dutoit, 2006). First, we
constructed a repository of user goals (basically, a
dictionary mapping mined goals from DSTC3 to
their associated turns in the source dialog logs and
labels). Then, we simulated dialogs with complex
user goals by merging additional goals and the as-
sociated turns to a backbone dialog which was ran-
domly drawn from the original DSTC3 dialogs. We
randomly sampled additional goals from the goal
repository according to a set of per-slot binary dis-
tributions, P addslot . For negative constraint genera-
tion, we flipped the polarity of an additional goal
according to another set of per-slot binary distri-
butions, Pnegslot , and correspondingly altered the di-
alog act type of the relevant DAIs, e.g, inform to
deny. We iterated the goal addition process up to
a configured number of iterations, N iter, to cover
cases where more than two constraints exist for a
slot. The merge process employs a set of heuristic
rules so as to preserve natural discourse segments

(e.g., a subdialog for confirming a value) in the
backbone dialog. One can simulate dialogs with
different complexities by varying the binary distri-
butions and the number of iterations. After this
step, the value for each slot is no longer a single
value but a set of constraints.

Finally, to construct a multi-task dialog, we ran-
domly drew a backbone dialog from the corpus and
decided whether to sample an additional dialog ac-
cording to a binary distribution, P task. Then we
merged the first turns of each selected dialog to en-
sure the existence of multiple tasks in a single turn.
We arranged the remainder of the selected dialogs
in order, so as to simulate task resumption. After
this process, the label of a dialog state consists of
a list of task state labels. An example pseudo-real
dialog might contain: A user searches for an Italian
or French restaurant in the north area. (S)he also
looks for a coffee shop to go to after lunch that is
in a cheap price range and provides internet (See
Appendix A for example dialogs).

When two turns from different dialogs have to
be merged during the dialog synthesis process, we
produce a list of new SLU hypotheses by taking the
Cartesian product of the two source SLU hypothe-
ses - confidence scores are also multiplied together.
For time information annotation, we use the po-
sition of the DAI in the SLU hypothesis instead
of the real start and end times detected by the
ASR component since the DSTC3 data does not
have time information. Due to space limitations,
we present evaluation results only for the follow-
ing dialog corpora generated with three different
representative settings:

1. No complex user goals and no multiple tasks:
P addfood = 0.0, P addarea = 0.0, P addpricerange =
0.0, Pnegfood = 0.0, Pnegarea = 0.0, Pnegpricerange =
0.0, N iter = 0, P task = 0.0

2. Complex user goals and no multiple tasks:
P addfood = 0.5, P addarea = 0.2, P addpricerange =
0.2, Pnegfood = 0.2, Pnegarea = 0.2, Pnegpricerange =
0.2, N iter = 2, P task = 0.0

3. Complex user goals and multiple tasks:
P addfood = 0.5, P addarea = 0.2, P addpricerange =
0.2, Pnegfood = 0.2, Pnegarea = 0.2, Pnegpricerange =
0.2, N iter = 2, P task = 1.0

Corpora 2 and 3 were divided into 1, 000 training
dialogs, 500 development dialogs and 1, 000 test di-
alogs. For corpus 1, since we do not generate any
new dialogs, we just partitioned the 2, 264 DSTC3
dialogs into 846 training dialogs, 418 development
dialogs and 1, 000 test dialogs. We trained the task
frame parser and the context fetcher and saved
models whenever the performance on the develop-
ment data was improved. We set the learning rate

17



Parameters System Avg. Acc. Joint Acc. L2

No complex user goals and no multiple tasks baseline 0.837 0.575 0.864
TL-DST 0.850 0.594 0.737

Complex user goals and no multiple tasks baseline 0.720 0.315 1.324
TL-DST 0.819 0.455 0.972

Complex user goals and multiple tasks

baseline 0.411 0.029 1.893
TL-DST 0.784 0.338 1.208

TL-DST-OP 0.833 0.466 0.984
TL-DST-O 0.928 0.607 0.752

Table 4: Evaluation on complex dialogs with simulated data. The exact parameter settings for each
simulation condition can be found in the text.

to 0.1 and used L2 regularization with regulariza-
tion term 10−4.

Table 4 shows how performance varies on dif-
ferent simulation settings. As expected, the per-
formance of the baseline tracker, which is the
DSTC3’s default tracker, drops sharply as the di-
alogs get more complicated. On the contrary,
the performance of TL-DST decreases more gently.
Note that joint goal prediction gets exponentially
harder as multiple tasks are involved, since we can
get each task wrong if we have any of one task’s
constraints in another’s state. Thus this gentle per-
formance reduction is in fact a significant win.

As noted before, there is an upper bound to
achievable performance due to the limitation of
the provided SLU results. Thus we also present
the performance of the system with different ora-
cles: 1) TL-DST-OP uses oracle task frame parses;
2) TL-DST-O additionally uses an oracle context
fetcher. The comparative results suggest that there
is much room for improvement in both the task
frame parser and the context fetcher. Given the
good performance on Avg. Accuracy, despite im-
perfect joint prediction, a TL-DST based agent
should be able to successfully complete the con-
versation with extra exchanges. This also matches
our empirical analysis of the tracker’s output; the
tracker missed only a couple of constraints in its
incorrect joint prediction.

4 Related Work

TL-DST aims to extend conventional approaches
for dialog state tracking. A variety of approaches
have been proposed, for instance, generative mod-
els (Thomson et al., 2010; Wang and Lemon, 2013;
Zilka et al., 2013; Sun et al., 2014; Kadlec et
al., 2014) and discriminative models (Lee and Es-
kenazi, 2013; Henderson et al., 2014c; Williams,
2014). The series of DSTCs have played a cru-
cial role in supplying essential resources to the
research community such as labeled dialog cor-
pora, baseline systems and a common evaluation
framework (Williams et al., 2013; Henderson et al.,
2014a; Henderson et al., 2014b). For more infor-
mation about this line of research, we refer to the

recent survey by Williams et al. (2016).
The closest work to our task frame parsing is

frame semantic parsing task in NLP (Das, 2014).
Differences include that the input here is a collec-
tion of potentially conflicting semantic hypotheses
from different domain-specific SLUs. Also we are
more interested in obtaining a N -best list of parses
with well calibrated confidence scores than in get-
ting only a top hypothesis.

Recently there has been growing interest in
multidomain and multitask dialog (Crook et al.,
2016; Sun et al., 2016; Ramachandran and Ratna-
parkhi, 2015; Gašic et al., 2015; Wang et al., 2014;
Hakkani-Tür et al., 2012; Nakano et al., 2011).
To our knowledge, however, there is no previous
work that provides a holistic statistical approach
for complex dialog state tracking that can cover
the wide range of problems discussed in this pa-
per.

5 Conclusions

In this paper, we have proposed the TL-DST ap-
proach toward the goal of seamlessly orchestrating
multiple tasks with complex goals across multiple
domains in continuous interaction. The proposed
method’s state-of-the-art performance on common
benchmark datasets and purposefully simulated
dialog corpora demonstrates the potential capac-
ity of TL-DST. In the future, we want to apply
TL-DST to conversational agent platforms for fur-
ther evaluation with real world multi-domain di-
alog. There are many opportunities for technical
improvements, including: 1) scheduled sampling
for context fetcher training to avoid the mismatch
between oracles and runtime conditions (Bengio
et al., 2015); 2) using discriminative (sequential)
models instead of generative rule-based models for
task state update; and 3) learning with weak su-
pervision from real time interactions. Future re-
search can include the extension of TL-DST for
other conversational phenomena such as reference
resolution. It would also be interesting to study the
potential impact on other dialog system compo-
nents of providing more comprehensive state rep-
resentations to SLU and action selection.

18



References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2014. Neural machine translation by
jointly learning to align and translate. arXiv
preprint arXiv:1409.0473.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and
Noam Shazeer. 2015. Scheduled sampling for
sequence prediction with recurrent neural net-
works. In Advances in Neural Information Pro-
cessing Systems, pages 1171–1179.

Paul Crook and Oliver Lemon. 2010. Representing
uncertainty about complex user goals in statis-
tical dialogue systems. In Proceedings of SIG-
DIAL.

Paul Crook, Alex Marin, Vipul Agarwal, Khush-
boo Aggarwal, Tasos Anastasakos, Ravi Bikkula,
Daniel Boies, Asli Celikyilmaz, Senthilku-
mar Chandramohan, Zhaleh Feizollahi, Roman
Holenstein, Minwoo Jeong, Omar Khan, Young-
Bum Kim, Elizabeth Krawczyk, Xiaohu Liu,
Danko Panic, Vasiliy Radostev, Nikhil Ramesh,
Jean-Phillipe Robichaud, Alexandre Rochette,
Logan Stromberg, and Ruhi Sarikaya. 2016.
Task completion platform: A self-serve multi-
domain goal oriented dialogue platform. In Pro-
ceedings of NAACL.

Dipanjan Das. 2014. Statistical models for frame-
semantic parsing. In Proceedings of the ACL.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learn-
ing and stochastic optimization. The Journal of
Machine Learning Research, 12:2121–2159.

M Gašic, N Mrkšic, P-H Su, D Vandyke, T-H Wen,
and S Young. 2015. Policy committee for adap-
tation in multi-domain spoken dialogue systems.
In Proceedings of ASRU.

Barbara J Grosz and Candace L Sidner. 1988.
Plans for discourse. Technical report, DTIC
Document.

Dilek Z Hakkani-Tür, Gökhan Tür, Larry P Heck,
Ashley Fidler, and Asli Celikyilmaz. 2012. A
discriminative classification-based approach to
information state updates for a multi-domain di-
alog system. In Proceedings of INTERSPEECH.

Matthew Henderson, Blaise Thomson, and Jason
Williams. 2014a. The second dialog state track-
ing challenge. In Proceedings of SIGDIAL.

Matthew Henderson, Blaise Thomson, and Ja-
son D Williams. 2014b. The third dialog state
tracking challenge. In Proceedings of SLT.

Matthew Henderson, Blaise Thomson, and Steve
Young. 2014c. Word-based dialog state tracking
with recurrent neural networks. In Proceedings
of SIGDIAL.

Rudolf Kadlec, Miroslav Vodolan, Jindrich Li-
bovicky, Jan Macek, and Jan Kleindienst. 2014.
Knowledge-based dialog state tracking. In Pro-
ceedings of SLT.

Staffan Larsson and David R Traum. 2000. Infor-
mation state and dialogue management in the
TRINDI dialogue move engine toolkit. Natural
Language Engineering, 6(3&4):323–340.

Sungjin Lee and Maxine Eskenazi. 2012. An un-
supervised approach to user simulation: toward
self-improving dialog systems. In Proceedings of
SIGDIAL.

Sungjin Lee and Maxine Eskenazi. 2013. Recipe
for building robust spoken dialog state trackers:
Dialog state tracking challenge system descrip-
tion. In Proceedings of SIGDIAL.

Sungjin Lee. 2013. Structured discriminative
model for dialog state tracking. In Proceedings
of SIGDIAL.

Karen E Lochbaum. 1998. A collaborative plan-
ning model of intentional structure. Computa-
tional Linguistics, 24(4):525–572.

Mikio Nakano, Shun Sato, Kazunori Komatani,
Kyoko Matsuyama, Kotaro Funakoshi, and Hi-
roshi Okuno. 2011. A two-stage domain selec-
tion framework for extensible multi-domain spo-
ken dialogue systems. In Proceedings of SIG-
DIAL.

Olivier Pietquin and Thierry Dutoit. 2006. A
probabilistic framework for dialog simulation
and optimal strategy learning. Audio, Speech,
and Language Processing, IEEE Transactions
on, 14(2):589–599.

Deepak Ramachandran and Adwait Ratnaparkhi.
2015. Belief tracking with stacked relational
trees. In Proceedings of SIGDIAL.

Jost Schatzmann, Karl Weilhammer, Matt Stut-
tle, and Steve Young. 2006. A survey of statisti-
cal user simulation techniques for reinforcement-
learning of dialogue management strategies. The
Knowledge Engineering Review, 21(02):97–126.

Kai Sun, Lu Chen, Su Zhu, and Kai Yu. 2014. A
generalized rule based tracker for dialogue state
tracking. In Proceedings of SLT.

Ming Sun, Yun-Nung Chen, and Alexander Rud-
nicky. 2016. An intelligent assistant for high-
level task understanding. In Proceedings of IUI.

Blaise Thomson, F Jurč́ıćek, M Gašić, Simon
Keizer, François Mairesse, Kai Yu, and Steve
Young. 2010. Parameter learning for pomdp
spoken dialogue models. In Proceedings of SLT.

Miroslav Vodolán, Rudolf Kadlec, and Jan Klein-
dienst. 2015. Hybrid dialog state tracker. arXiv
preprint arXiv:1510.03710.

19



Zhuoran Wang and Oliver Lemon. 2013. A simple
and generic belief tracking mechanism for the
dialog state tracking challenge: On the believ-
ability of observed information. In Proceedings
of SIGDIAL.

Zhuoran Wang, Hongliang Chen, Guanchun Wang,
Hao Tian, Hua Wu, and Haifeng Wang. 2014.
Policy learning for domain selection in an exten-
sible multi-domain spoken dialogue system. In
Proceedings of EMNLP.

Jason Williams, Antoine Raux, Deepak Ra-
machandran, and Alan Black. 2013. The dia-
log state tracking challenge. In Proceedings of
SIGDIAL.

Jason Williams, Antoine Raux, and Matthew Hen-
derson. 2016. The dialog state tracking chal-
lenge series: A review. Dialogue & Discourse,
7(3):4–33.

Jason D Williams. 2014. Web-style ranking and
SLU combination for dialog state tracking. In
Proceedings of SIGDIAL.

Su Zhu, Lu Chen, Kai Sun, Da Zheng, and Kai Yu.
2014. Semantic parser enhancement for dialogue
domain extension with little data. In Proceed-
ings of SLT.

Lukas Zilka, David Marek, Matej Korvas, and Filip
Jurcicek. 2013. Comparison of bayesian discrim-
inative and generative models for dialogue state
tracking. In Proceedings of SIGDIAL.

A Example Simulated Dialogs

The following dialogs show the surface form of
simulated complex interactions. The dialog state
tracker uses the corresponding SLU results and di-
alog state annotations to the parts in the labeled
DSTC3 logs of which the dialog is composed.

A.1 Dialog 1

System: Thank you for calling the Cambridge In-
formation system. Your call will be recorded for
research purposes. You may ask for information
about a place to eat, such as a restaurant, a pub,
or a cafe. How may I help you?
User: Yes. I’m looking for a seafood or north eu-
ropean restaurant. And I’m looking for a moder-
ately priced coffee shop or in expensive price range.
System: Are you looking for somewhere near a
particular venue? For example, Cambridge Con-
temporary Art, Holy Trinity Church, or Trinity
College.
User: In the expensive price range.
System: Loch Fyne, which serves seafood, is an
outstanding restaurant. It’s in the expensive price
range.
User: What’s the address?

System: Loch Fyne is located on 37 Trumpington
Street. The price for main courses ranges from 9
pounds to 20 pounds.
User: Ah what’s the phone number?
System: The phone number of Loch Fyne is
01223902103.
User: And what’s the price range?
System: Loch Fyne is in the expensive price
range. The price for main courses ranges from 9
pounds to 20 pounds.
User: Ok thanks.
System: For a coffee shop, what kind of price
range are you looking for? For example, free, or
moderate.
User: Expensive price range.
System: Are you looking for somewhere near a
particular venue? For example, Cambridge Con-
temporary Art, Great Saint Mary’s Church, or Pri-
mavera.
User: No I’m not.
System: Cafe Eleven, which is in the moderate
price range, is an outstanding cafe.
User: Can I get the phone number and the post-
code?
System: The phone number of Cafe Eleven is
01223369157. It’s in the area with the postcode
CB1 1DG.
User: Thank you goodbye.

A.2 Dialog 2

System: Thank you for calling the Cambridge In-
formation system. Your call will be recorded for
research purposes. You may ask for information
about a place to eat, such as a restaurant, a pub,
or a cafe. How may I help you?
User: I’m looking for a cheap Chinese restaurant
or a Turkish restaurant. But I don’t want a French
restaurant. And it should be in the Riverside area.
And I would like a cafe.
System: What part of town do you have in mind?
For example, something in the Barnwell, Chester-
ton, or King’s Hedges area.
User: Chesterton.
System: There is no restaurant in the Chesterton
area in the cheap price range.
User: Cheap Chinese take away restaurant.
System: Would you like a Chesterton area, or you
don’t care?
User: I don’t care.
System: HK Fusion is an outstanding restaurant,
it serves chinese food and it’s in the cheap price
range.
User: Phone number?
System: The phone number of HK Fusion is
01223355909.
User: Address?
System: HK Fusion is on 21 Burleigh Street.
User: Thank you.

20



System: What type of food would you like? For
example, Chinese take away, American, or English.
User: Cafe.
System: What type of food would you like? For
example, Greek, Mediterranean, or Middleeastern.
User: I don’t care.
System: What kind of price range are you looking
for? For example, cheap, or moderate.
User: I don’t care.
System: The Cambridge Blue is a great cafe.
User: What is the address and phone number?
System: The Cambridge Blue is on 24 Regent
Street and its phone number is 01223369222.
User: Thank you goodbye.

21


