Revisiting Supertagging and Parsing: How to Use Supertags in
Transition-Based Parsing

Wonchang Chung
Dept. of Computer Science
Columbia University
New York, NY, USA

wc2550@columbia.edu

Alexis Nasr
LIF
Université Aix Marseille
Marseille, France

Alexis.Nasr@lif.univ-mrs.fr

Abstract

We discuss the use of supertags derived
from a TAG in transition-based parsing.
We show some initial experimental results
which suggest that using a representation
of a supertag in terms of its structural and
linguistic dimensions outperforms the use
of atomic supertags.

1 Introduction

The notion of supertagging was introduced by
Bangalore and Joshi (1999). A supertag is the
name of an elementary tree assigned to a word
in a TAG derivation of the sentence. A supertag
therefore encodes not only the part of speech, but
also the syntactic properties of the word. They
proposed a two-step approach to parsing: a su-
pertagger determines the supertag for each word
in a sentence, and a deterministic and rule-based
“lightweight dependency analyzer” then derives
the structure from the supertags.

The MICA parser (Bangalore et al., 2009) uses
a supertagger and a subsequent chart parser which
takes the 10-best supertags for each word as in-
put. MICA uses a probabilistic context free gram-
mar which is lexicalized on the supertags, but
not on words. The MICA parser is fast, and
has good performance. Nasr and Rambow (2006)
showed that the MICA approach outperforms the
lightweight dependency analyzer of Bangalore
and Joshi (1999). To our knowledge, MICA is the
only TAG parser trained on the Penn Treebank that
uses supertagging; it is freely available.!

The MICA parser has several drawbacks: while
it is fast, the time complexity is O(n?). Further-

'urlhttp://mica.lif univ-mrs.fr

Owen Rambow
CCLS
Columbia University
New York, NY, USA

rambow@ccls.columbia.edu

Siddhesh Suhas Mhatre
Dept. of Computer Science
Columbia University
New York, NY, USA

sm4083@columbia.edu

Srinivas Bangalore
Interactions, Inc.
New Providence, NJ, USA

sbangalore@interactions.com

more, the system is complex as the chart parser it-
self is compiled using the SYNTAX system (Boul-
lier and Deschamp, 1988), making further devel-
opment difficult. Finally, it is unclear how to
include recent advances in lexical representation
(word embeddings) and machine learning (deep
learning).

This paper presents a new parser based on TAG,
which uses supertagging and a distinct parsing
step. Unlike MICA, the parsing is based on
the transition-based parser of Nivre et al. (2004).
While there has been some work using supertags
with transition-based parsing (Ouchi et al., 2014),
this is the only work (to our knowledge) which
specifically refers to TAG grammar.

Bangalore et al. (2009) train a version of MALT
with gold and predicted supertags. MALT can ex-
ploit the gold supertags, but not the predicted su-
pertags (they do not improve over not using them).
The problem with using supertags in transition-
based parsing is that exploiting n-best supertag in-
put is difficult, and given the large number of su-
pertags, supertagging is hard and the 1-best su-
pertag is not good enough to allow for a good parse
to be constructed. In this paper, we present ini-
tial investigations to address this problem. We de-
compose the supertag into linguistic dimensions,
which provides for a generalization of the notion
of supertag.

2 Corpus and Grammar

We use the grammar and the corpus extracted by
Chen (2001). This grammar was engineered in
such a way that the derivation trees are meaningful
deep-syntactic representations. This grammar was
also used in the MICA parser (Bangalore et al.,
2009). It has 4725 elementary trees extracted from

Proceedings of the 12th International Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+12), pages 85-92,
Diisseldorf, Germany, June 29 - July 1, 2016.

85

the training set of the WSJ portion of the Penn
Treebank (Sections 01-22). Every sentence in the
corpus is given a derivation. Sentences in the de-
velopment set (Section 00) and the test set (Sec-
tion 23) may contain elementary trees that have
not been seen in the training corpus.

We automatically analyzed the elementary trees
that make up the extracted TAG, assigning each
tree a vector of 20 dimensions. These dimensions
fall into three categories:

e Dimensions that describe the phrase structure
of the elementary tree. We concentrate on as-
pects that we think will be important for pars-
ing.

o Interpretations of the tree. These are lin-
guistic dimensions which abstract from the
phrase structure of the tree.

e Linguistic transformations on the tree. These
are syntactic variations that the tree encodes,
such as wh-movement.

This approach of breaking down a supertag into
components is inspired by the hypertags of Kinyon
(2000). Our set of dimensions is shown in Fig-
ure 1.

3 Supertagging

The supertagger architecture is very simple:
supertags are predicted independently of each
other. The prediction is performed using an on-
line passive-agressive algorithm (Crammer et al.,
2006). We used the implementation of the Python
Scikit-Learn library.?

The classifier uses a total of 26 features: the
word to be supertagged, its part-of-speech tag as
well as the 6 preceding and following words and
part-of-speech tags. To vectorize the feature data,
the one-hot encoding method was used.

Training was performed on the training set of
the WSJ portion of the Penn Treebank (950,028
tokens) and the evaluation on the development set
(40,461 tokens). In order to reduce the amount of
memory used for training, the sparse matrix con-
structor was used. The peak amount of memory
used for training task was less than S0GB, and the
processing time was less than 1 hour in wall-clock
time on our machines.

Mttp://scikit-learn.org/stable/

modules/generated/sklearn.linear_model.
PassiveAggressiveClassifier.html

86

88

871

86 |-

851

84

Classification Accuracy [%]

831

82

400000 600000 800000 1000000

Training Data [# words]

0 200000 1200000

Figure 2: Learning curve of the supertagger

The supertagger accuracy is 87.88% on the de-
velopment set, a bit lower than the results obtained
on this data by Bangalore et al. (2005), which was
88.53%. The learning curve is shown in Figure 2.

4 Parsing

4.1 Background

The parser used in this study, named SUTRA (for
Supertag- and Transition-based Parser), is a stan-
dard transition based parser (Nivre et al., 2004).
Giving a thorough descriptions of transition based
parsers is not the aim of this paper; we will just
briefly describe below the basic ideas behind tran-
sition based parsing to allow the reader to follow
the rest of the paper.

Transition-based parsers are based on two fun-
damental objects: configurations and transitions

A configuration (s, b, D) describes the state of
the parsing process at a given time. b is a buffer
that contains the words of the sentence to parse
not yet processed. The leftmost word of the buffer
is noted by. by can be taken from the buffer and
pushed on the stack s. D is a set containing de-
pendencies that have been built to this point by the
parser. The parser tries to build a dependency be-
tween the word that is on the top of the stack (sg)
and the next word in the buffer (bg). Two types
of attachements are considered, left attachements
that have as a governor word by and as a dependent
so and right attachements that have sg as governor
and bg as dependent. The initial configuration of
the parser is (], [wy . .. wy], 0): the stack is empty,
the buffer contains all the words of the sentence
to parse and the dependency set is empty. A fi-

Dimension | Description
Dimensions describing the phrase structure of the elementary tree
root The label of the root node of the tree
Ifront A list of substitution nodes to the left of the lexical anchor; each node is listed with its
category, its node type (substitution or co-head), and its deep-syntactic argument label
rfront Same as Ifront, but for the substitution nodes to the right of the lexical anchor
adjnodes | A list of nodes at which adjunction can occur
substnodes | A list of all substitution nodes of the tree
coanc Does this tree have a co-anchor?
modif For modifier auxiliary trees, the cateory of its root node (and thus of its foot node)
dir The direction in which a modifier auxiliary tree adjoins
Dimensions interpreting the elementary tree
predaux | Is the tree a predicative auxiliary tree (i.e., a tree used for matrix clauses)?
pred Is this tree a nominal, adjectival, or prepositional tree which projects a predicative structure,
i.e., takes a subject (even if not realized)?
appo Is this tree an apposition?
comp Does this tree have a complementizer (which is a co-head in this grammar), and if yes, on
what side of the anchor?
dsubcat | Deep subcategorization frame for the anchor, listed in order of argument number (i.e., not
necessarily surface order), with substitution node category and strongly governed category,
if any
ssubcat Surface subcategorization frame for the anchor, listed in order of argument number (i.e., not
necessarily surface order), with substitution node category and strongly governed category,
if any
particle Does this tree contain a particle (POS tag RP)?
Dimensions describing linguistic transformations on the elementary tree
voice Voice for verbal trees
wh Is there a wh-moved dependent?
rel Is the tree a relative clause?
esubj Is the subject of the tree empty?
datshift | For ditransitive trees, did dative shift happen?

Figure 1: Description of tree dimensions

nal configuration is a configuration for which the
buffer is empty.

A transition operates on a configuration c¢; to
produce a configuration c;y1. In our implemen-
tation, three types of transitions are defined:

Left Arc builds a dependency (b, [, sp) (a transi-
tion that has by as a governor, sg as a depen-
dent and [as a label). This transition adds the
new dependency to D and pops the stack.

Right Arc builds a dependency (sq,[,bp). This
transition adds the new dependency to D and
replaces by with sg.

Shift does not create a new dependency, it just re-
move by from the buffer and pushes it on the
stack.

87

The parser is a greedy deterministic parser.
Given a configuration, it predicts the most likely
transition to make. A new configuration is pro-
duced and the process iterates until a final config-
uration is reached. The dependency structure pro-
duced is the set D.

The heart of the parser is the classifier that pre-
dicts which transition to make given a configura-
tion. The number of possible configurations being
very large, we decompose a configuration into a
feature vector. During training, the classifier asso-
ciates a score to each feature. At decoding time,
the classifier adds the scores of the features cor-
responding to the current configuration in order
to select the most likely transition. The classi-
fier used in this work is a simple averaged percep-

tron (Freund and Schapire, 1999).

The feature templates used by the classifier are
of three sorts:

Word features describe different aspects of the
words that are present either on the stack of the
parser or in the buffer. They are of the form
(s|b) (0]111213) (f]1]c|plm) where:

e s | b indicates whether the word described is
in the stack or the buffer

e 0|1]2]3 indicates the position of the word
in the stack or the buffer (s0 is the top stack
word and b0 is the first word in the buffer).

e f|1|c|p|mindicates whether we are refer-
ring to the form of the word (£), its lemma
(1), its coarse part of speech (c), its part of
speech (p) or its morphological features (m).

Distance features indicate the distance in the
string between two words. They are of the form
d_X_Y where X and Y correspond to words either
on the stack or in the buffer. The only feature of
this category that is used is d_s0_bO.

Structural features describe some aspects of
the dependency structure built so far by the parser.
They are of three sorts:

e 1 X which indicate the syntactic function
(role label) of the leftmost dependent (if any)
of word X. Two features of this category are
defined: r_sOr and r bOr.

e r_X which indicate the syntactic function
(role label) of the rightmost dependent (if
any) of word X. Two features of this category
are defined: 1_sOr and 1 _bOr.

e n_X which indicate the number of dependents
of word X. Two features of this category are
defined: n_s0 and n_b0.

Configuration features describe some aspects
of the current configuration of the parser. They are
of four sorts:

e sh indicates the height of the stack

e bh indicates the number of elements in the
buffer

e dh indicates the number of dependencies
built so far

88

e tn with n=1, 2, 3, 4, indicates the n'" pre-
ceding transition that led to the current con-
figuration

Each feature template can be used indepen-
dently or in combination with others, in which
case a weight is computed for a combination of
their values.

4.2 Parser 1: Baseline Parser without
Supertags

We start by describing our baseline parser, which
is SUTRA without any supertag features at all.

Table 4 shows the set of feature templates
(called a feature model) used for our baseline
parser. (All of the tables related to the machine
learning features are at the end of the paper.) Fea-
ture templates 1 to 18 are simple feature templates,
those ranging from 19 to 29 are combination of
two simple feature templates.

The performance of the baseline parser is shown
in Table 1 in the first row, with separate results for
labeled attachment score (LAS) and unlabeled at-
tachment score (UAS). Since we are not using su-
pertags in this experiment, the results are the same
for gold and predicted supertags.

For the sake of comparison, we also give results
for a MALT parser trained on our corpus (2nd line
in Table 1; the results are taken from (Bangalore et
al., 2009)). Our baseline results are directly com-
parable to those for MALT without supertags, as
both are transition-based parsers which do not use
supertags. We see that our results are a little worse,
which we attribute to differences in the machine
learning, and differences in the feature set used.
However, for the sake of the experiments in this
paper, we take our results as meaning that we have
replicated the previous results.

4.3 Parser 2: Using Supertags

We now use supertags. In the first experiment,
we simply add the supertags as labels in our
parser by means of the following word feature
templates: (s|b) (0]1]2]3) (s), where the
first two components of the templates (s |b) and
(01112]3) keep the same meaning as before
and s refers to the supertag of the word. The fea-
ture model of Parser 2 adds to the feature model of
the baseline Parser the feature templates shown in
Table 5. These templates correspond to templates
of the baseline parser in which part of speech tags
are remplaced by supertag tags.

Gold Stags Predicted Stags
Parser UAS | LAS | Stagacc. | UAS | LAS
Baseline Words, POS tags — — — 87.65 | 85.23
MALT Words, POS tags — — — 88.9 | 86.9
P2 Words, POS tags, stags 97.02 | 96.00 | 87.88 | 89.83 | 87.75
MALT-Stag | Words, POS tags, stags 97.20 | 96.90 | 88.52 88.50 | 86.80
MICA Stags only 97.60 | 97.30 | 88.52 | 87.60 | 85.80
P3 Words, POS tags, stags, stag dimensions ‘ 97.46 ‘ 96.51 \ 87.88 \ 89.96 \ 87.86 ‘

Table 1: Results for different configurations.

The results of P2 are displayed in Table 1 in row
3. As one can see, when feeding the parser with
gold supertags, the results accuracy of the parser
jumps to 96.97 UAS and 95.99 LAS. Supertags
carry much more syntactic information than just
POS tags that the parser can make use of in order
to predict the syntactic structure of the sentence.
When supertags are predicted with the supertag-
ger of section 3, the accuracy dips to 89.86 UAS
and 87.75 LAS, respectively. This represents an
absolute increase of 2.24 points of UAS and 2.52
points of LAS with respect to the baseline parser.
We also compare P2 to MALT using supertags,
shown in row 4. We see that our parser outper-
forms MALT with stags by a small margin when
using predicted supertags (but not gold supertags).
Part of the difference in the predicted supertags is
due to the use of gold POS tags in our experiments,
so we conclude that we are again replicating the
previous result.

We also provide the results for MICA (row 5).
We see that for gold supertags, MICA provides
the best overall results, but not for predicted su-
pertags. This is because MICA in fact only uses
supertags.

4.4 Parser 3: Using Dimensions of Supertags

We now perform experiments to see whether the
individual dimensions of the supertags can help
in parsing. The motivation is that if a supertag
is incorrectly predicted, some of the dimensions
may still be correct (for example, the predicted su-
pertag has a transitive verb instead of an intran-
sitive verb, but the subject is empty in both su-
pertags).

In order to be able to exploit the su-

pertag dimensions in the parser, we add
the following word feature templates:
(slb) (0111213) (AIB|...|T|U) where,

as before, the first two components of the tem-

&9

plates (s|b) and (0]1]213) keep the same
signification and the letters A to U refer to one
dimension of the vector representation of su-
pertags. The correspondence is given in Table 3.
The feature model of parser 3 is the union of the
feature model of P2 and the features of Table 6.

We observe that we cannot use all dimensions of
the linguistic vector representation of the supertag,
because the combinations would result in a com-
binatorial explosion in the number of features for
machine learning. In order to gain a better under-
standing of which dimensions of the decomposed
supertags are useful for parsing, we performed ab-
lation studies, first on the dimensions, and then on
the machine learning features. We discuss them in
turn.

In the first study we removed each dimension
of the supertag (eg. dsubcat, ssubcat, ...) in turn
and computed the parsing accuracy. For this abla-
tion study, we use a feature model that comprises
simple features derived from supertags and non-
supertags. Specifically, this model comprises the
following features: features 1 through 18 from Ta-
ble 4, plus sOx, slx, bOx, and blx, where x is a
variable denoting the dimensions (represented as
in Table 3). We use this model because it is a sim-
ple model. The results are shown for gold and pre-
dicted stags in Table 2.

For the gold experiments (first two columns),
we see that mainly the dimensions that describe
the phrase structure are useful for parsing: all of
these dimensions except for coanc help, and all
the most useful dimensions are of this type. This
is because in a TAG grammar, the phrase struc-
ture encodes exactly how trees can combine in the
parse, so that this is the information needed for a
correct parse. In addition, we have several of the
dimensions relating to transformations that help a
bit. When we look at the predicted supertags, we

see that seven of the eleven dimensions that are
useful for the gold condition are still useful, most
of them structural. However, we also expect to
see a shift, as some dimensions are harder to pre-
dict with sufficient accuracy. In particular, we see
that rfront no longer helps. We hypothesize that
this is because there is a large number of possible
values for this dimension (more than for Ifront, be-
cause of the syntax of English), and that an error
immediately reduces the usefulness of this dimen-
sion. Perhaps as a result, the dsubcat dimension
is useful in the predicted condition. The dsubcat
dimension abstracts over actual phrase structure,
and therefore has a smaller set of possible values,
while still providing some of the same information
that the dsubcat dimension provides (what depen-
dents this head expects).

Now we turn to the second ablation study, in
which we concentrate on specific features rather
than dimensions. To pick out those individual fea-
tures (eg. sOA, s1B, ...) in the feature model
of the remaining supertag dimensions (eg. dsub-
cat, ssubcat, ...) that cause a decrease in perfor-
mance, we performed another level of feature ab-
lation. We use the same feature model we used in
the first ablation study. For each supertag dimen-
sion that remained after the first ablation study,
we removed each corresponding machine learning
feature one by one in and computed the parsing
accuracy. For example, if we consider supertag di-
mension dsubcat (represented as A), then we per-
formed experiments where we removed the feature
SOA in the feature model, followed by s1A and so
on, every time observing the effects on the pars-
ing accuracy. This was done for every remaining
supertag dimension. Again, at the end of this set
of experiments we eliminated those features from
our feature model that cause a decrease in parsing
performance when included. Because of the large
number of results, we do not present them in de-
tail.

Till now we had considered only the supertag
dimensions in our model independently. Our last
set of experiments comprises combining some of
these features from the feature model. Here, we
used our intuition to propose certain combina-
tions. One set of features we combined were the
ones corresponding to the dimensions ’Ifront’ and
'rfront’. These correspond to ordered list of fron-
tier nodes to the left and right of the main lexi-
cal anchor respectively. We merge both Ifront or

90

rfront with the root of the elements on top of the
stack and buffer. These features were then com-
bined with the ’dir’ dimension which gave encour-
aging results. We tried 8 different combinations in
this manner and got the best results for the follow-
ing feature model which is shown in Table 6. This
set of features also includes those features that cor-
respond to non-supertag features that gave us the
best performance.

The results of P3 are displayed in the last line of
Table 1. As one can see the decomposed represen-
tation of the supertag has a beneficial impact for
both the gold and predicted supertag conditions.
The error reduction for gold supertags (UAS) is
15%; for predicted, the error reduction is much
smaller (1%). We think this smaller error reduc-
tion may be due to the fact that in our feature en-
gineering, which was guided by our intuition, we
did not take into account the accuracy of different
dimensions, assuming implicitly the case in which
the dimensions are correctly predicted. Our new
results are better than the best published parsing
results so far on this corpus, as far as we know.

5 Conclusion

We have presented work in progress, that shows
that supertagging can be useful for transition-
based parsing. Our initial experiments suggest that
considering the dimensions of the supertag can
help further.

A major problem is devising machine learning
features for the parser from the dimensions, given
the very large number of possibilities due to the
combinatorics of the combined features. In future
work, we plan to use deep learning to obviate the
need for feature engineering. This will also en-
tail using word embeddings, which we will also
use for supertagging. We will look to the rich lit-
erature on supertagging and parsing in CCG for
guidance. In addition, we will also start using pre-
dicted POS tags in our experiments.

References

Srinivas Bangalore and Aravind Joshi. 1999. Su-
pertagging: An approach to almost parsing. Com-
putational Linguistics, 25(2):237-266.

Srinivas Bangalore, Patrick Haffner, and Ga€l Emami.
2005. Factoring global inference by enriching lo-
cal representations. Technical report, AT&T Labs —
Reserach.

Gold Predicted
Dim. LAS | UAS | LAS | UAS
predaux +.07 | +.05 | +.04 0
rel +.07 | +.06 | -.06 -.05
particle +.05 | +.05 0 -.05
coanc +.04 | +.02 0 -.07
ssubcat +.04 | +.03 0 -.01
wh +.02 | +.02 | +.05 | +.02
comp +01 | +.01 | -01 | -.05
dsubcat +.01 | +.02 | -.07 -.09
pred 0 0 +.06 | +.03
none 94.87 | 95.83 | 83.15 | 85.43
datshift -01 -01 | +07 | +.03
voice -.02 -.02 -.03 -07
esubj -.03 -.02 -.03 -.06
appo -.04 -04 | +02 0
substnodes | -.04 -.02 0 -.01
adjnodes -.04 -.04 -17 -19
modif -.07 -10 -.09 -11
Ifront -07 -.06 -.05 -.07
rfront -.16 -15 | +.02 | -.02
root -32 -32 -.09 -12
dir -90 -.88 -40 -43

Table 2: Ablation study for supertag linguistic fea-
tures, with gold standard supertags and predicted
supertags. Each row lists one feature which was
removed in turn. The resulting difference in per-
formance is shown (labeled and unlabeled depen-
dency accuracy without punctuation), first for gold
supertags, then for predicted supertags. If a re-
sult gets worse upon removal of a feature (nega-
tive value), then that dimension is important. We
show the retained dimensions by boldfacing their
resulting change in accuracy.

Srinivas Bangalore, Pierre Boullier, Alexis Nasr, Owen
Rambow, and Benoit Sagot. 2009. MICA: A prob-
abilistic dependency parser based on tree insertion
grammars. In NAACL HLT 2009 (Short Papers).

Pierre
1988.
d’utilisation et de mise en ceuvre sous UNI
http://syntax.gforge.inria.fr/syntax3.8-manual.pdf.

Boullier and Philippe Deschamp.

Le systtme SYNTAX™ — manuel
x™,

John Chen. 2001. Towards Efficient Statistical Parsing
Using Lexicalized Grammatical Information. Ph.D.
thesis, University of Delaware.

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai
Shalev-Shwartz, and Yoram Singer. 2006. On-
line Passive-Aggressive Algorithms. Journal of Ma-
chine Learning Research, 7:551-585.

91

Yoav Freund and Robert E Schapire. 1999. Large
margin classification using the perceptron algorithm.
Machine learning, 37(3):277-296.

Alexandra Kinyon. 2000. Hypertags. In Proceedings
of the 18th International Conference on Computa-
tional Linguistics (COLING 2000).

Alexis Nasr and Owen Rambow. 2006. Parsing
with lexicalized probabilistic recursive transition
networks. In Finite-State Methods and Natural Lan-
guage Processing, Springer Verlag Lecture Notes in
Commputer Science.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2004.
Memory-based dependency parsing. In HLT-
NAACL 2004 Workshop: Eighth Conference
on Computational Natural Language Learning
(CoNLL-2004), pages 49-56, Boston, Mas-
sachusetts, USA.

Hiroki Ouchi, Kevin Duh, and Yuji Matsumoto. 2014.
Improving dependency parsers with supertags. In
Proceedings of the 14th Conference of the European
Chapter of the Association for Computational Lin-
guistics, volume 2: Short Papers, pages 154—158,
Gothenburg, Sweden, April. Association for Com-
putational Linguistics.

45 | s0s

46 | sls
A | dsubcat | B | ssubcat C | voice ig E 22
D | comp E | datshift F | root 29 | bas
G | Ifront H | rfront 50 | b3s
: 51 | b0s bOf
J adjn.odes K | substnodes || L | rel . = T 505 1 L0%
M | particle N | coanc O | modif 53 | bls Db2s
P | dir Q | pred R | esubj 54 | s0s DbOs
55 | sls Dbls
S | wh T | appo U | predaux 6 T s0s Dboo 50T

57 | sO0s b0s bls
Table 3: List of supertag dimensions used, with 58 | s0s DbOs d.-s0.b0

short name used in the tables of machine learning 23 282 ibstr }J;E)sSOr

features 61 | sOs sls b0s

62 | b0s Dbls b2s

63 | bls Db2s b3s

64 | bls blf b2s b3s

65 | bls Dblf b2s b2f Db3s

Table 5: Parser 2 feature model (in addition to the
features shown in Table 4).

1 sOc 15 | 1 b0r
2 | sOf 16 | rbOr
3 | sOp 17 | n_sO
g Zéi ig 2§? boc 38 | sOA || 47 | bOF || 57 | s0J || 66 | s1P
6 | bOf 20 | s0f 50% 39 | blA || 48 | b1F || 58 | b0J || 67 | bOP
7 | bop 21 | s0p H0p 40 | sOB || 49 | b0G || 59 | sOK || 68 | b1lP
anE e e A e e
s s s s
ﬁ) Ei; gi ﬁgg ?ijl[43 | bOC || 52 | bOH || 62 | bOM || 71 | bOR
11 | b2p 75 | slc blc 44 | b0OD 53 | b1lH 63 | s00 72 | b0s
12 | b3 2% | s1 bl 45 | s1E || 55 | bOI || 64 | b1lO || 73 | sOU
p IS p
13 | 1_.sOr 7 | bilc boc 46 | s1F || 56 | b1I || 65 | sOP
14 | r_sOr 28 | blp b2p 72 | sOH DbOF
29 [s0c boc b0f 73 | sOF b0G
30 [sOc sOf bOc 74 | b0OH bIF
31 | sOp bOp bOf 75 | bOF DblG
32 | sOp DboOp blp 76 | sOH s1F
33 [sOp 1.s0r r_sOr 71 | sOF s1G
34 | sOp sOf b0p 78 | sOH DbOF sOP
35 [s0c bOc d.s0b0 79 | sOF _b0G bOP
36 | sOp bOp d.s0Db0 80 | bOH DblF bOP
37 | slp sOp bOp 81 | bOF blG DblP
38 | bOp blp b2p 82 | sOH slF sOP
39 | blc b2c b3c 83 | sOF sl1G DblP
40 | blp b2p b3p 84 | s1H sOF DbOG
41 blc blf b2c b3c 85 sOH bOF blF
42 | blp Dbilf b2p b3p 86 | sOH bOF d_s0DbO0
43 | blc blf b2c b2f Db3c 87 | sOF Db0G d_s0.b0
44 | blp Dblf b2p b2f b3p 88 | sOH bOF sOP d_s0._b0
89 | sOF Db0G bOP d_s0_b0

Table 4: Baseline feature model Table 6: Parser 3 feature model (in addition to the

features shown in Table 4 and Table 5).

92

