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Abstract

In this paper, we investigate whether a
neural network model can learn the mean-
ing of natural language quantifiers (no,
some and all) from their use in visual con-
texts. We show that memory networks per-
form well in this task, and that explicit
counting is not necessary to the system’s
performance, supporting psycholinguistic
evidence on the acquisition of quantifiers.

1 Introduction

Multimodal representations of meaning have re-
cently gained a lot of attention in the computa-
tional semantics literature. It has been shown, in
particular, that the meaning of content words can
be modelled in a cognitively — and even neurosci-
entifically — plausible way by learning represen-
tations from both the linguistic and visual con-
texts in which a lexical item has been observed
(Anderson et al., 2013; Lazaridou et al., 2015).
Such work has been crucial to advance the devel-
opment of both a) a computational theory of mean-
ing rooted in situated language use, as pursued by
the field of Distributional Semantics (Clark, 2012;
Erk, 2012) and b) vision-based applications such
as image caption generation and visual question
answering (Antol et al., 2015), going towards gen-
uine image understanding.

Both distributional semantics and visual appli-
cations, however, struggle with providing plausi-
ble representations for function words. This has
theoretical and practical consequences. On the
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theoretical side, it simply reduces the explanatory
power of the model, in particular with respect to
accounting for the compositionality of language.
On the practical side, current vision systems are
forced to rely on background language models in-
stead of truly interpreting the words of a query
or caption in the given visual context. As a con-
sequence, if e.g. the sentence [ see some cats is
more frequent than [ see no cat, language model-
based applications will tend to generate the first
even when the second would be more appropriate.

In this paper, we start remedying this situa-
tion by investigating one important class of func-
tion words: natural language quantifiers (e.g. no,
some, all). Quantifiers are an emerging field of
research in distributional semantics (Grefenstette,
2013; Herbelot and Vecchi, 2015) and, so far,
haven’t been studied in relation with visual data
and grounding. We make a first step in this di-
rection by asking whether the meaning of quan-
tifier words can be learnt by observing their use
in the presence of visual information. We ob-
serve that in grounded contexts, children learn to
make quantification estimates before being able
to count (Feigenson et al., 2004; Mazzocco et
al., 2011), using their Approximate Number Sense
(ANS). We ask whether Neural Networks (NNs)
can model this ability, and we evaluate several
neural network models, with and without numer-
ical processing ability, on the task of matching a
non-cardinal to a referent in a grounded situation.

NNs have been shown to perform well in tasks
related to quantification, from counting to simulat-
ing the ANS. Segui et al. (2015), for instance, ex-
plore the task of counting occurrences of an object
in an image using convolutional NNs, and demon-
strate that object identification can be learnt as a
surrogate of counting. Stoianov and Zorzi (2012)
show that the ANS emerges as a statistical prop-
erty of images in deep networks that learn a hi-
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erarchical generative model of visual input. To
our knowledge, however, there hasn’t been any at-
tempt so far to model the use of non-cardinals (no,
some, all) in a visual quantification task.

Our paper builds on previous work by proposing
a NN model of quantifier terms which can be re-
lated to the acquisition of the ANS, with two main
contributions: First, we propose a novel experi-
mental setup in which, given a set of objects with
different properties (e.g., circles of different col-
ors), the model learns to apply the correct quanti-
fier to the situation (e.g. no, some, all circles are
red). Second, we show that, as observed in chil-
dren, our best model does not need to be able to
count in order to quantify.'

2 Visual Quantification Dataset

Linguistic quantifiers and their logical properties
have been a major object of study in the field of
formal semantics since its inception (Montague,
1974). 1t is posited that, in an example such as
some circles are green, the quantifier (some) ex-
presses a relation between a domain restrictor (cir-
cles) and the quantifier’s scope (are green). In this
paper, we fix the domain and focus on the scope:
We ask whether, given an image with objects from
a single domain (circles), a model can learn to
globally quantify the objects with a certain prop-
erty, deciding whether all, some, or no circles have
that property. Here, we use color as an example
property to quantify over.

Images. In order to focus on the quantification
task, barring out any effect from data preprocess-
ing, we create an artificial dataset with clear visual
properties (see below). Our dataset consists of im-
ages with 1 to 16 circles of 15 different colors, and
we generate all possible combinations of different
numbers of circles (from 1 to 16) with all possible
combinations of colors. Figure 1 presents one of
the images in the dataset.

Image representation. In order to avoid ef-
fects from visual pre-processing, the dataset is
presented to the quantification network with (au-
tomatically produced) gold standard information
about image segmentation and object identifica-
tion. That is, the network knows where objects
are, and what they are (circles of different, eas-
ily identifiable colors). Concretely, we represent
each picture as a set of up to 16 circles (e.g. Fig-

'Our code and data are available at ht tps: //github.
com/sorodoc/quantifiers_torch.
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Figure 1: One of the images in our visual quan-
tification dataset. Letters indicate color: R(ed),
G(reen), B(lue).

ure 1) placed in 16 fixed image cells. Further-
more, we associate each of the circle-color combi-
nation with real-valued vectors of dimensionality
20 that are normalized to unit norm. All circles are
identical in shape and size, so the differences ob-
servable in the vector representations can be taken
to express the color property of the objects. We
ensure that the dataset does not include ‘confus-
able’ objects by further constraining the vectors to
have low pairwise similarity.”> On the other hand,
to prevent overfitting, we add a small amount of
noise to all vectors, generated for each dimension
from a Gaussian distribution with mean 0 and vari-
ance 1/5 of the original variance of that dimension.
Intuitively, the Gaussian noise simulates natural
variations in a given property, e.g., two tennis balls
being of slightly different shades of yellow. This
is applied to both training and test data. Finally,
our images may contain empty cells, viz. parts of
the image with no object in it (e.g., in Figure 1
there are 5 empty cells.) These are similarly rep-
resented by a vector, randomly generated so that it
be orthogonal to all the other object vectors.
Queries Each image in the dataset is associated
with a query, i.e., the property we want to quan-
tify over, and the task of the model is to associate
the correct quantifier with the query for the image.
For instance, the query associated to the image in
Figure 1 is green and the correct quantifier is some.
Some encodes “at least one but not all circles have
color X”, all encodes “all circles have color X”
and no “no circle has color X”. Our dataset con-
tains 5K <image, query, quantifier> datapoints
split equally amongst the three quantifiers,®> which
will be used to evaluate our models.

“We fix this parameter to values not exceeding a cosine
similarity of 0.7

*Note that, although the all quantifier generates fewer im-
ages than no and some, it is possible to create balanced data
by producing noisy variations of a same image.



3 Models

Our aim is to understand whether NNs can learn
to quantify objects of a certain property in a given
image. Our main hypothesis in this paper is that
for acquiring such ability the model does not need
to rely on exact number information but it can do
so by computing the gist of the queried property
in the image, thus simulating the human ANS. We
build three models to test this hypothesis.
Quantification Memory Network (qMN): This
is the model we propose in this paper; it is de-
signed to show that knowing how to count is not
a necessary condition to be able to learn to quan-
tify. It is an adaptation of the memory network
of Sukhbaatar et al. (2015) for visual quantifica-
tion. As shown in Figure 2, the model consists of
a memory with 16 slots, one for each image cell.
It computes the dot product between each mem-
ory slot and the vector query, obtaining 16 scores,
which are then fed into a softmax classifier to de-
rive a valid probability distribution. These normal-
ized scores are used to derive the “gist” of the im-
age (a 20-D vector), by computing a weighted sum
over cell vectors in the memory slots, where the
weights are taken from the probability distribution
that is output by the softmax classifier. Finally, a
non-linear transformation with a ReLU activation
is applied over the concatenation of the “gist” and
query vectors. The vector dimensionality is re-
duced to 3 by linear transformation and a softmax
classifier is applied on top of that, deriving a prob-
ability distribution over the three quantifiers. The
“gist” vector is an aggregate of the memory, and
information about individual objects is lost, such
that the model is not able to count. However, the
similarity between the “gist” and the query reflects
the ratio (rather than the exact number) of objects
of that color in the image. To make this explicit,
in the case of ‘all’ , the gist and query vectors will
be almost identical, in the case of ‘no’ there will
hardly be any trace of the query in the gist, mak-
ing them different, and in the case of ‘some’ query
and gist will be somewhat similar.

Counting model: We note that a simple rule-
based model comparing the cardinalities of the
restrictor and scope in the query would achieve
100% accuracy. But we want to check to what
extent a NN model based on softmax and non-
linear transformation, similar to gMN, can learn to
quantify when provided with exact number infor-
mation about the objects and their colors. Indeed,
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despite the obvious logical interpretation of quan-
tifiers as ratios between two magnitudes, it is un-
clear whether this logical operation is easily learn-
able in a visual connectionist model. In this setup,
we build for each image a 16-D feature vector, one
dimension for each of the 15 colors plus one for
the empty cell. To each dimension we assign a
value encoding the frequency of the color in the
image scaled by the similarity of that color to the
query (recall that, because of the added Gaussian
noise, a given yellow circle may not be identical
to the query yellow). This way, the quantity of
objects of a given color is encoded in the dimen-
sions of the vector as if the model was counting.
The query is represented by a one-hot 16-D vector,
encoding the color the model is asked to quantify
over. The feature and query vectors are concate-
nated. As in the gqMN model, we then apply a lin-
ear transformation followed by a ReLU activation
and a softmax classifier.
Recurrent Neural Network (RNN): As an alter-
native model with a visual memory, we also im-
plement an RNN that uses the hidden state to en-
code information about the image’s gist. At each
timestep, the RNN receives as input first the query
vector followed by each of the 16 objects vectors.
At the last timestep, the hidden layer is fed to a
linear transformation, reducing its size to 3, on top
of which a softmax classifier is applied to obtain
a probability distribution over the quantifiers. As
opposed to the gMN, the RNN does not explic-
itly model the similarity between the query and the
color of the objects in the image.

All models are trained with cross-entropy to
predict the correct quantifier.

4 Experimental setup

We randomly divide the 5K data points into train-
ing, validation and test set (70%, 10% and 20%).
We test the models in 3 experimental setups. The
first setup, familiar, is the simplest, and tests
whether models are able to quantify previously ob-
served (“familiar”) colors and quantities. In the
unseen quantities setup, we create training and
test sets so that there is no overlap with respect to
the number of objects in the image: 4, 9 or 13 ob-
jects are used at test time and all other quantities at
training/validation time (i.e., 1-3, 5-8, 10-12, 14-
16). Finally, in the unseen colors setup, we make
sure training and test sets differ with respect to ob-
jects’ color: The models are trained/validated on



Vector associated with the query: For the query |

‘green ? ', it will be the standard vector of 'green’ ’

Matrix with
geometrical

Cell 1 : 'empty’ vector

figures, used as
Cell 2 : ‘green’ vector

Cell 3 : ‘green’ vector

Cell 4 : 'empty' vector
Cell 5 : 'empty' vector
Cell 6 : 'empty' vector

Cell 16 : 'green’ vector

Probability
dlstngfutlon «—Softmax classifier—Non linear trdnsformation—i
quantifiers

Probability
Dot distribution
product
results
between >~

memory .GMN w/o softmax

and query \ N

Soft-max classifier

Weighted average of

~,] the memory using the
softmax result :Gist

gMN w/o softmax/gist

Concatenation of the
query vector and the
gist vector

-

Figure 2: Quantification Memory Network model

Al
Some
No

Models familiar unseen unseen

quantities | colors
RNN 65.7 62.0 49.7
Counting 86.5 78.4 32.8
gqMN 88.8 97.0 54.9
-softmax 85.9 66.6 54.4
-softmax/gist 514 51.8 44 .4

Table 1: Model accuracies (in %).

10 colors and tested on 5 additional, unseen colors.
We expect that the use of the gist in our model,
which implements global quantification over ob-
jects of a certain property, will allow it to general-
ize well when tested against unseen quantities.

5 Results

As shown in Table 1, having exact number infor-
mation is not necessary for learning to quantify:
The gMN model, which does not explicitly count,
is more accurate than the Count ing model in all
test conditions. Even though both models outper-
form the RNN model when tested on unseen num-
ber of objects, only the gMN model truly general-
izes the learnt quantification operation. The per-
formance of all models drops when tested on un-
seen colors, though gMN still performs best and the
decrease in performance in Counting is much
worse than in the gMN model (-53.7 vs. -34). Lines
“-softmax” and “-softmax/gist” in Table 1 show
that both the softmax and the “gist” are crucial el-
ements of the model; removing them causes sig-
nificant performance drops in all test conditions.
By looking at the confusion matrices for the
gMN model we observe that there is generally
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more confusion between no and some than in pairs
involving all; the gist for some is an average of
potentially several different colors, and thus less
straightforwardly interpretable. In the ‘familiar’
test, most of the errors come from situations in
which the model confused “some” with “no” and
the image contains just 1 or at most 2 occurrences
of the queried color. Hence, the increase in per-
formance from the familiar to the unseen quantity
test (+8.2) is due to the absence of very small car-
dinalities in the image (the lowest is 4 items.) As
for all, in both the ‘familiar’ and the ‘unseen quan-
tities’ conditions it’s nearly always classified cor-
rectly. This is to be expected because in this case,
the “gist” computation produces a vector which
should be cleanly equivalent to the query (minus
the effect of noise). When moving to unseen prop-
erties performance decreases, indicating that the
network might have overfitted to the particular col-
ors in the training set. Although we’ll need to
address this behaviour in further work, we don’t
consider it a weakness of a quantification model
per se: the problem to be solved is one of ob-
ject/property recognition and not of quantification.

6 Conclusion

We have shown that a memory network can learn
to quantify objects of a certain property, given
some visually grounded training data involving
small sets. Given that the number of memory
cells is parametric, the model should in principle
be able to scale to much larger number of cells.
Our future work will focus on modelling the entire
quantifier meaning, varying not only the quantifier
scope but also its restriction.
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