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Abstract

In this paper we present the methods
and approaches employed in terms of our
participation in the 2016 version of the
BioASQ challenge. For the semantic in-
dexing task, we extended our successful
ensemble approach of last year with addi-
tional models. The official results obtained
so-far demonstrate a continuing consis-
tent advantage of our approaches against
the National Library of Medicine (NLM)
baselines. For the question answering
task, we extended our approach on fac-
toid questions, while we also developed
approaches for the document, concept and
snippet retrieval sub-tasks.

1 Introduction

The BioASQ project (Balikas et al., 2014) aims
to provide a challenge framework for researchers
dealing with classification (semantic indexing)
and natural language processing (question answer-
ing) tasks in the field of bio-medicine. The chal-
lenge, similar to the previous three years, is di-
vided into two tasks: automated semantic indexing
(4A) and question answering (4B).

In Task 4A participants are given a set of new,
unannotated articles and are required to automat-
ically predict the relevant MeSH terms for each
one of them in a given time. For each article only
the abstract along with some meta-information is
provided (journal, year and title). This task is par-
ticularly difficult, as the MeSH taxonomy is com-
prised of a large number of labels (∼ 27000), with
the label set following a distribution similar to
power-law. Furthermore the terms are subject to
a significant concept drift along time.

Task 4B is divided into 2 phases, called A and
B. In phase A participants are given a set of ques-

tions and must return the 10 most relevant doc-
uments, snippets, concepts (from designated on-
tologies) and RDF triples. In phase B participants
are given the gold standard documents and snip-
pets and must provide exact and ideal answers.

This paper discusses the approaches we devel-
oped for this year’s BioASQ challenge. In par-
ticular, Section 2 discusses our semantic indexing
algorithms, Section 3 our document retrieval sys-
tem, Section 4 our concept retrieval method, Sec-
tion 5 our snippet retrieval approach and Section 6
discusses our question answering approach. Final
considerations and conclusions are drawn in Sec-
tion 7.

2 Task 4A: Semantic Indexing

In this section we present the methods that we used
for the semantic indexing task. We first provide
the pre-processing pipeline and subsequently the
methods employed.

2.1 Pre-processing

In this year’s participation, we used the 1,050,000
most recent documents from the BioASQ 2016
corpus using as a training set the first 1 million
articles and the last 50 thousand as a validation
set. The motivation behind using the latest arti-
cles of the corpus, stems from the hypothesis that
more recent chronologically articles will tend to
follow more similar labels distributions to new ar-
ticles that have to be predicted, compared to older
ones. Pre-processing of the articles was carried out
similar to previous years; the abstract and the title
were concatenated, uni-grams and bi-grams were
used as features, removing stop-words and fea-
tures with less than five occurrences in the corpus.
We used the tf-idf representation for the features.
Also, zoning of the features belonging to the title
and those equal to a MeSH label was performed
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by increasing the tf-idf value of features that be-
longed to the title by log2 and those being equal
to a label by log1.25. The above features were
used in order to train several multi-label learning
models, described in the following section.

2.2 Methods
Our participation to this year’s contest included
several multi-label classifiers (MLC) that were
combined in various ensembles. As in the previ-
ous year, we used the Meta-Labeler (Tang et al.,
2009), a set of Binary Relevance (BR) models with
Linear SVMs (both tuned and with default pa-
rameters) and a Labeled LDA variant, Prior LDA
(Rubin et al., 2012). For the tuned SVM mod-
els, we used different values for the C parameter
and handled class imbalance by penalizing more
heavily false negative errors than false positive
ones by adjusting properly the weight parameter
(Lewis et al., 2004). This year, we additionally
employed Fast XML (Prabhu and Varma, 2014)
and HOMER-BR (Tsoumakas et al., 2008).

All the above models were combined in an en-
semble, using the MULE framework (Papaniko-
laou et al., 2014). MULE is a statistical signif-
icance multi-label ensemble that performs classi-
fier selection. The key idea is to combine a set
of multi-label classifiers aiming to optimize a se-
lected measure (for the purpose of this challenge,
we are mainly interested in the micro-F measure)
and validate this combination through a statistical
significance test; McNemar’s test. This way, each
label of the multi-label problem is predicted with
a specific component model, the one that (a) con-
tributes to the greatest improvement to the evalu-
ation metric of interest and (b) is validated from
the statistical test to indeed produce the aforemen-
tioned improvement. If (b) does not hold, in other
words if the component model’s improvement is
not statistically significant, we predict that label
with the globally optimal model.

2.3 Results
Since at the moment of writing this paper there
are not sufficient official results yet(only the a
small part of documents of the first batch are an-
notated), in Table 1 we present the performance of
the multi-label classifiers used in our ensembles,
in terms of the Micro-F and Macro-F measures,
for the training set (one million documents) and
the validation set (fifty thousand documents) used
throughout the challenge.

Table 1: Performance of the multi-label classifiers
used throughout the BioASQ challenge semantic
indexing task 4a, in terms of Micro-F and Macro-
F. Training set size was 1,000,000 documents and
test set size 50,000 respectively.

MLC Micro-F Macro-F
Meta-Labeler 0.61936 0.57477
Vanilla SVMs 0.58422 0.50080
Tuned SVMs 0.61365 0.54444
Labeled LDA 0.47399 0.39084

Fast XML 0.38053 0.28899
HOMER-BR (k=3) 0.59698 0.54972

3 Task 4B Phase A: Documents

Here we describe our document retrieval system.
The system was written in Java. A variety of li-
braries have been used. The StAX Parser1 for the
input of XML files, the Stanford Parser2 for natu-
ral language parsing and the GSON library3 for
output of JSON files. We build our system on
open source Indri search engine from the Lemur
Project4.

3.1 Pre-processing of citations
We processed the full database of MEDLINE
and extracted the citations that contained Ti-
tle, Abstract and MeSH annotations. There are
14,938,869 documents.

3.2 Search Engine
We used Indri as our search engine. We normal-
ized the text of all the processed citations and we
inserted them to our search engine. No stemming
or stop-words filtering has been done in order to
avoid any distortion of bio-medical and other im-
portant terminology.

3.3 Question Parsing and Query
Our system processes and analyzes the input ques-
tion before producing the final query. It removes
any unwanted punctuation, it analyzes the ques-
tion with the Stanford Parser and produces a bag of
words. Finally, we form our query by combining
the bag of words with the query language grammar
of Indri.

1https://docs.oracle.com/javase/
tutorial/jaxp/stax/api.html

2http://nlp.stanford.edu/software/
lex-parser.shtml

3https://github.com/google/gson
4http://www.lemurproject.org/
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3.4 Testing

We tested our system by using both the ques-
tions and the gold standard articles of the previous
BioASQ challenges and the current challenge. We
experimented with Indri’s great variety of search
terms and tried retrieving top-10, top-20 and top-
50 documents. The table below provides the re-
sults of our experiments retrieving top-10 docu-
ments.

Table 2: Test results retrieving top-10 documents
Task # questions Precision MAP

1b, 2b, 3b 940 0.279 0.141
4b TestSet 1 100 0.156 0.233
4b TestSet 2 100 0.230 0.198
4b TestSet 3 100 0.195 0.250
4b TestSet 4 100 0.235 0.321
4b TestSet 5 97 0.105 0.158

4 Task 4B Phase A: Concepts

We are working at the phase A task of returning
a list of at most 10 relevant concepts from the
designated terminologies and ontologies. The list
is ordered by decreasing confidence. In our ap-
proach, we use MetaMap5 and LingPipe6 to de-
tect the biomedical concepts and local ontology
files (Disease ontology, Gene ontology, Jochem,
Uniprot and MeSH) to retrieve the appropriate in-
formation. More particularly, we use RDF4J7, a
powerful Java framework for processing and han-
dling RDF data of Disease ontology, Gene ontol-
ogy, Jochem, and MeSH. This includes creating,
parsing, storing, inferencing and querying over
such data. Additionally, we use RDF4J’s Lucene
Sail that enables us to add full text search of RDF
literals to find fast subject resources. As far as
the Uniprot data are concerned which are not in
obo format, we exploit them in XML format (not
plain text that is recommended by the contest). Of
course, Lucene indexing is necessary again. We
present our methodology step by step:

1. The first step of our methodology is to re-
move stopwords from the given question. We
use 2 stopwords lists: a basic list with 634
words and the Pubmed stopword list8. Then,
we detect keywords using MetaMap and

5https://metamap.nlm.nih.gov/
6http://alias-i.com/lingpipe/
7http://rdf4j.org/
8http://www.ncbi.nlm.nih.gov/books/

NBK3827/table/pubmedhelp.T.stopwords/

LingPipe. We give a boosting score to those
concepts that come from MetaMap/LingPipe
and a smaller score in any other word that ap-
pears in the question and MetaMap/LingPipe
does not recognize it as biomedical concept.

2. Then, we expand the list with the candidate
concepts exploiting the MeSH ontology (up
to 15 candidate concepts, totally, enriching
the list with ExactSynonyms). We retain two
lists with candidate concepts: a list with all
possible biomedical concepts for search in
Disease ontology, Gene ontology, Jochem,
and MeSH and a list that contains only pro-
teins or genes for search in Uniprot XML
data.

3. We search for each candidate term separately
combining search in RDF4J’s Lucene Sail
index for fast detection of relevant terms
and search in RDF4J RDF Repositories via
SPARQL queries to filter the results which
are returned as relevant terms by RDF4J’s
Lucene Sail index. More specifically, for
the 4 ontologies we examine if the candi-
date term appears in properties: label, Ex-
actSynonym, RelSynonym, Synonym, Nar-
rowSynonym, BroadSynonym in order to add
to Lucene score an additional boosting score
and return the corresponding URI. If the can-
didate term does not appear in the above
properties, then we just keep the Lucene
score. Additionally, we exploit the properties
(Positively/Negatively) Regulates in order to
return the corresponding URI, too. Similarly,
we conduct search in Uniprot data but instead
of SPARQL queries, we use XPath, focusing
in the following XML elements: fullName,
shortName, alternativeName and innName.

4. Finally, we take the top 10 concepts with the
biggest scores.

Here, we present experimental results on 2 dif-
ferent sets of questions (the sets belong to the
training set of BioASQ contest).

Table 3: Results of our approach
# questions Precision Recall F1 MAP

238 0.167 0.511 0.223 0.120
286 0.209 0.513 0.267 0.167
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5 Task 4B Phase A: Snippets

In order to extract relevant snippets to a query, we
exploit our knowledge given by the ontologies we
referred to in Section 4 (Disease ontology, Gene
ontology, Jochem, Uniprot and MeSH). Briefly:

1. Detect keywords using MetaMap and Ling-
Pipe

2. Search for synonyms for each keyword in
order to make query expansion. Consider
we have K keywords and for each one we
find a few synonyms, e.g. for i-th keyword,
i = 1, ...,K, we detect N synonyms. Each
synonym is denoted by synjkeyi

, that is the j-
th synonym (synj), j = 1, ..., N of i-th key-
word (keyi).
Format of query after the expansion step:
Suppose K=2, key1 has N synonyms and
key2 has M synonyms, so the query is go-
ing to be the following:
((key1 OR syn1key1

OR syn2key1
OR . . . OR

synN key1
)

AND
(key2 OR syn1key2

OR syn2key2
OR . . . OR

synM key2
))

The total number of the candidate concepts
(i.e. keywords with their corresponding syn-
onyms) should contain up to 15 concepts.

3. Retrieve top 100 relevant documents (use of
Lucene index). More particularly, we are in-
terested in their title, abstract and pmid.

4. Split titles/abstracts returned in step 3 into
sentences.

5. Calculate sematic similarity between each
one of the sentences and the (expanded)
query using the semantic similarity measure
described in (Han et al., 2013). (At this point,
we experiment using clustering algorithms in
order to select the sentences that are located
in the same cluster with the query, regarding
them as the most relevant snippets.)

6. Return the top 10 sentences that are more
similar to our query according to the similar-
ity measure.

6 Task 4B, Phase B: Exact Answers

We developed a system that extracts answers from
factoid questions under a scoring mechanism. In

our approach, we applied numerous measurements
that rank the candidate answers based on their re-
lations with the questions. Some of them were ap-
plied in our previous system, but we realized that
were not enough to estimate the correct answer.
Thus, we extended the previous scoring mecha-
nism in order to include the measures describing
below.

• distance: The words, being near to the LAT
of the question into the snippets, it is more
possible to be a candidate answer.

• wordnet synonyms: We strongly believe that
words with many synonyms in wordnet are
more likely to be used in common language
rather than in biomedicine. Thus, they take a
punishment according to the number of syn-
onyms that they have.

Furthermore, in the previous work, the system se-
lected some of the words of an article as candidate
answers. It selected the words that were produced
by MetaMap parsing. Although, the results of the
previous system were promising in the BioASQ
training set, in the BioASQ challenge were quite
low. The system’s failure was caused by the lack
of candidate answers. That’s why we decided to
expand the set of candidate answers considering
all words including in the related snippets of a
question.

Finally, the specificity measure in our previ-
ous work changed because of the execution time.
We had implemented that measure to count the
number of instances of a candidate answer in all
PubMed documents. Thus, we decided to seek the
documents including the candidate answers with
a document retrieval system. For each retriev-
ing document, the candidate answer take a pun-
ishment.

Table 4: Results of factoid system
LACC SACC MRR
0.54 0.237 0.305

7 Conclusions

In this paper we presented the participation of our
team in the BioASQ challenge 2016. Building on
the successful approaches in the past three chal-
lenges, we further extended our line of work to
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improve the performance of our systems. Addi-
tionally, our methodology for relevant concepts re-
trieval gives quite good results based on our eval-
uation in a variety of bio-medical questions that
are provided by BioASQ’s training set. Moreover,
the semantic information from ontologies could be
exploited for other tasks.
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