LABDA at the 2016 BioASQ challenge task 4a: Semantic Indexing by
using ElasticSearch

Isabel Segura-Bedmar, Adrian Carruana, Paloma Martinez
Computer Science Department, University Carlos III of Madrid
Avd. Universidad, 30, Leganés, 28911, Madrid, Spain

isegura, acarruan,pmf@inf.uc3m.es

Abstract

This paper describes the participation of
LABDA team in the 2016 BioASQ Task
4a on large-scale online biomedical se-
mantic indexing. Our approach is based
on the use of the open source search en-
gine ElasticSearch. Experimental results
show that our approach achieves high re-
call while keeping processing time low.
Although more work needs to be done to
improve our results, we can conclude that
ElasticSearch is a competitive and scalable
system for indexing biomedical literature.

1 Introduction

Biomedical Natural Language Processing
(BioNLP) has made great advances in the last
decade thanks to different community-wide chal-
lenge evaluations, such as BioCreative (Krallinger
et al., 2015), BioNLP shared tasks (Kim et al.,
2011; Nédellec et al., 2013), i2b2 (Stubbs et
al., 2015) DDIExtraction (Segura-Bedmar et al.,
2011; Segura Bedmar et al., 2013), etc. While
most of them have pursued the further develop-
ment of research on informations extraction tasks,
the BioASQ Challenge' focuses on biomedical
semantic indexing and question answering fields.

Biomedical Semantic Indexing is to identify the
MeSH categories that best describe a PubMed
article and is a crucial task to facilitate liter-
ature search. This process is manually per-
formed by human experts, thus becoming a costly,
time-consuming and laborious task (Huang et al.,
2011). Therefore there is an urgent need to explore
automatic methods to support this task.

As in previous editions (Tsatsaronis et al., 2015;
Balikas et al., 2015), BioASQ 2016 consists of two

'http://www.bioasq.org/
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different tasks: large-scale online biomedical se-
mantic indexing (Task 4a) and question answering
(Task 4b). This paper describes our participation
in Task 4a. The goal of the task is to automatically
predict the most relevant MeSH labels for a given
document. One of the major challenges of the task
is to manage scalability due to the great amount
of documents that have to be indexed. More than
750,000 articles were added in 2014 with a load of
2000-4000 documents per day.> Search systems
such as ElasticSearch, an open source search en-
gine, could be adequate frameworks to cope with
this information overload problem.

To the best of our knowledge, this is the first
work that addresses semantic indexing by using
ElasticSearch. Due to the horizontal scalability
provided by ElasticSearch, it is possible to index
large collections of documents, as is the case of
the Medline/PubMed database with more than 22
million citations to date. Our approach is to index
the training set provided by the BioASQ organiz-
ers with ElasticSearch. Then, each document in
the test set is translated into a query, that is fired
against the index built from the training set, return-
ing the most relevant documents and their MeSH
categories. Finally, each MeSH category is ranked
using a scoring system based on the frequency of
the category and the similarity of relevant docu-
ments, which contain the category, with the test
document to classify. Up to date at which we write
this paper, no official definitive results have been
published for any of our submissions yet. To eval-
uate our approach, we generated our own develop-
ment set from a random sample of 1099 training
documents. To avoid any potential bias, these doc-
uments were removed from the training set. Tested
on this development set, our approach achieves a
recall of 80.6%, precision of 45.4% and an F1 of

*https://www.nlm.nih.gov/pubs/factsheets/medline.html
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56.3%. In comparison to the Medical Text Indexer
(MTTI) (Mork et al., 2013), which is considered the
baseline system of the task, our system does not
only provide an improvement of more than 1% in
F1, but also has a much better time response (15
seconds per document) than the MTI system (30-
45 seconds per document).?

The rest of the paper is organized as follows:
related work is presented in Section 2. Sec-
tion 3 presents a description of our method and the
datasets used in this study. Then, we report and
discuss some preliminary results of our approach
in section 4. Finally, section 5 presents conclusion
and future work.

2 Related Work

Semantic indexing of MEDLINE articles is a man-
ual laborious task which could be helped by infor-
mation technology. The objective is to tag an ar-
ticle with a set of MeSH categories, hence it is a
multilabel classification problem.

The main challenge of this shared task is to
work with MeSH, a big hierarchy that includes a
controlled vocabulary composed of 15 root con-
cepts, such as organisms and diseases, with more
than 25,000 categories. Most of works restrict the
scope of MeSH hierarchy using only a particular
branch in the MeSH tree (for instance Heart Dis-
eases) (Ruiz and Srinivasan, 2002), or a subset of
tags, generally those appearing in the training col-
lection (Yepes et al., 2015).

Current state-of-the art includes approaches
whose general architecture comprises two differ-
entiated phases: a first phase that obtains an initial
set of MeSH categories that could represent the
document to classify and a second phase that re-
rank these categories to select the top K that bet-
ter fit the input document. In both phases differ-
ent document features can be used; the most fre-
quent feature model is the so called bag-of-words
(where words could follow a ngram model or be
a word, phrase, concept, etc. storing a value that
represents its presence frequency in the document
or any other model such as TF*IDF).

Doing a review of BioASQ previous edi-
tions (Partalas et al., 2013; Balikas et al., 2014;
Balikas et al., 2015; Tsatsaronis et al., 2015), the
main characteristics of participants systems are:
approaches that use flat methods which consider
each MeSH category independently of the others

3https://www.nlm.nih.gov/mesh/MeSHonDemand.html
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or hierarchical methods that take into account the
MeSH tree structure; the machine learning tech-
niques used to select the initial set of MeSH labels
(SVM, logistic regression, K nearest neighbor,
etc.); the word model (unigram, bigram, trigram);
if Natural Language Processing (NLP) tools are
included to preprocess documents (POS taggers,
chunkers, syntactic parser); if domain specific re-
sources are used (for instance, UMLS ontology or
WordNet lexical database); if the system is built
over a search-based platform (such as Lucene); if
curator annotation guidelines are considered and
the processing and storage requirements both in
the definition of models to multilabel training and
classification process.

In 2013 edition, the best systems (depending
on the batch) were the Medical Text Indexer
(MTI) (Mork et al., 2013) with a micro F mea-
sure of 0.5481 and the system AUTH (Tsoumakas
et al., 2013) with a micro F measure of 0.578.
The MTI system, which is considered the base-
line system of the task, is based on a combina-
tion of Metamap indexing and Pubmed related ci-
tations to recognize MeSH concepts that then are
clustered and ranked. AUTH system preprocessed
the articles using the Stanford parser and bigram
frequencies were extracted. The meta-labeler tool
(Tang et al., 2009), which is based on SVM binary
classifiers trained for each label present in a subset
of training collection, was used to rank the labels
and a regression model is used to predict the K top
labels.

In 2014 edition, several systems outperformed
the MTI baseline system (micro F measure of
0.547), the system of NCBI (Mao et al., 2014),
with a micro F measure of 0.605 and the Antino-
myra system (Liu et al., 2014), with a micro F
measure of 0.619. The NCBI system selected the
relevant MeSH labels for a given article from its
k-nearest neighbor documents. This set was also
extended with the MeSH labels proposed by the
MTI system. Then, a learning-to-rank algorithm
was used to sort the MeSH labels based on the
learned associations between the article text and
each MeSH label. This system also used SVM
binary classifiers (trained for each MeSH label in
the training data) to predict the MeSH labels in
the test data. The Antinomyra system followed
a similar approach but instead of using SVM
classifiers it used a logistic regression method.



The winner in BioASQ 2015 (Liu et al., 2015)
used a learning to rank approach that returns an
ordered list of MeSH categories for each instance
using a combination of binary classifiers, similar
articles to the article to annotate, pattern matching
between MeSH categories and title of the article as
well as the prediction of the MTI baseline system.
This system achieved a micro F measure of 0.615.

Concerning the annotation guidelines followed
by curators, some works such as (Mork et al.,
2013) make use of MEDLINE annotation guide-
lines to postprocess the ranking of MeSH cate-
gories. The overview of BioASQ 2013 systems
(Tsatsaronis et al., 2015) suggests that it is dif-
ficult to know the utility of the is-a relations in
the MeSH hierarchy due to human curators do not
seem to follow the annotation guidelines concern-
ing the use of most specialized tag.

Out of the scope of BioASQ forum, the ap-
proach described in (Rak et al., 2007), was based
on association rule mining from the OHSUMED
corpus (Hersh et al., 1994), which contains ap-
proximately 340.000 articles from 1987 to 1991
(the rules are a kind of information retrieval tech-
niques where a set of words determine the class of
the document). A more recent work (Yepes et al.,
2015) analyzed different representations of arti-
cles based on lexical, syntactic and semantic infor-
mation. This system was tested over a collection
of 143,853 citations and 63 selected MeSH cate-
gories (those with at least 1,500 citations indexed).
Application of NLP features do not exhibit good
performance although combination of all features
performs better than individual sets. Participants
in BioASQ such as (Ribadas et al., 2014) achieved
poor results when NLP techniques are included.

3 Method

The goal of the task is to automatically predict the
most relevant MeSH categories for each article in
a test set. The predictions should be compared
to MeSH categories proposed by human curators.
This section describes the method and data used in
this study.

3.1 Data

The training data for the BioASQ task 4.a consist
of PubMed articles that were manually annotated
with MeSH terms by human curators. In addi-
tion to the new 2016 training dataset, the train-
ing datasets of the previous BioASQ challenges
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are available too. The main difference between
those datasets is the version of the MeSH vocab-
ulary that was used to annotate their articles. It
should be noted that each year a new release of
MeSH including updates of its structure (for ex-
ample, 310 new MeSH Headings were added to
MeSH in 2015) is published. Typically, articles
are not re-indexed with the new MeSH terms.

The teams are permitted to use any resource to
train their systems, however we only use the 2016
training dataset because the evaluation will be per-
formed using the MeSH version 2016. There are
two versions of the training data: (1) Training
v.2016a with more than 12 million of documents,
and (2) Training v.2016b with almost 5 million
of documents from the pool of journals that the
BioASQ organizers use to select the articles for
the test data. This dataset was built using only
journals with small average annotation periods. In
both datasets, the average number of MeSH terms
assigned to an article is 12-13.

In order for the teams to evaluate their systems,
a new test set is available every Monday. Then,
the teams can upload their results before the next
24 hours after the release. A total 15 test sets have
been published, which are grouped in three differ-
ent periods (batches). It should be noted that the
articles used in the test datasets have not been an-
notated yet by human experts, and therefore, it is
not possible to provide an immediate evaluation
of the participant systems. This is an important
inconvenience since there is no fast way to assess
if a given technique or resource helps to improve
the results. It should be very helpful having a
development dataset. We built our own develop-
ment dataset from a random sample of 1099 docu-
ments taken from the small training dataset (Train-
ing v.2016a). Thus, our development dataset only
collects articles from the same set of journals used
to build the test datasets of the task. As mentioned
above, these articles were removed from our train-
ing set in order to avoid any potential bias.

3.2 ElasticSearch

Our approach relies on the assumption that similar
documents should be classified by similar MeSH
labels. While previous work has exploited a kNN
approach in order to propose the MeSH labels of
the relevant documents for a given query (test doc-
ument), we propose to calculate document similar-
ity by using ElasticSearch, an open source search



engine. ElasticSearch provides horizontal scala-
bility, that is, it is able to index large collections
of documents. The main advantage of Elastic-
Search is its capacity to create distributed systems
by specifying only the configuration of the hierar-
chy of nodes. Then, ElasticSearch is self-managed
to maintain better fault tolerance and load distribu-
tion. The core of ElasticSearch is Lucene,* a free,
open-source and de-facto standard retrieval soft-
ware library. Lucene is based on the well-known
and commonly used vector space model for infor-
mation retrieval. The efficiency of Lucene is due
to it searches on index instead of searching the text
directly.

Another important advantage of ElasticSearch
is that it does not require very high computing
power and a high storage capacity to index large
collections. In this study, ElasticSearch (ver-
sion 2.2) was installed on a server Ubuntu Server
14.0f4 with 24GB of RAM and 500GB of disk
space. We create an index (that is like a database
in a relational database) built from the training
dataset. By default, each index in Elasticsearch is
configured with five shards, lucene instances. One
of the most important advantages of ElasticSearch
is that the shards can be distributed amongst all
nodes in the cluster, and can be moved from one
node to another in the case of node failure. Each
shard has a backup copy.

As it has already been mentioned before, our
approach is to index the training dataset and rep-
resent each test document as a query. In particular,
we define two different types of index, one using
the large training dataset (Training v.2016a) and
the second one using the small training set (Train-
ing v.2016b), that only contains articles from the
journals used for testing. Both collections are in-
dexed using bag-of-word model. To translate the
test documents to the queries, each document is
also represented as bag of words. Then, each
query is fired against the index, returning the most
relevant documents (relevance scoring is calcu-
lated using TF/IDF). Figure 1 shows the basic ar-
chitecture of our system.

Finally, the MeSH categories from the relevant
documents are collected. The simplest approach
would be to return the whole set of MeSH labels
for all retrieved documents. However, we define
a metric to rank each MeSH category for a given
test document based on the total number of occur-

*https://lucene.apache.org/core/
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rences of the label in the whole index as well as the
similarity of the relevant document containing this
category with the test document (query). Our scor-
ing system is based on the hypothesis that similar
documents should have similar MeSH categories,
and that the most used MeSH categories should
achieve higher scores. The following formula de-
scribes this metric:

score(l,q) = (tf(l) — R) Z score(d, q)

d:led

)

where ¢ f (1) refers to the total number of occur-
rences of the label in the whole index, and R is
a discrete parameter that indicates the minimum
number (minus one) of times a label has to appear
in the relevant documents in order to be considered
as a candidate label for the test document. R takes
only three values: 0, 1 and 2. Finally, score(d, q)
represents the scoring of a document d, contain-
ing the MeSH label /, for a given query ¢ (a test
document).

While some documents present a large number
of MeSH labels, others only contain a small set.
In order to reduce this variability, the scoring for a
label is normalized using the following equation:

score(d, q)

score(l, q)n = (tf(1)—R) Z

d:led

@

MaZq1cascore(a, q)

Finally, we choose those MeSH categories with
a score higher than a threshold (which was set em-
pirically upon our development dataset). It should
be noted that if the threshold is set to O then the
whole set of MeSH categories for all retrieved
documents is returned.



4 Experimental results

Task 4.a began on 8th of February, 2016, how-
ever we enrolled almost two months later. Our first
submission was on the fourth week of the second
batch (March 14-April 11). Unfortunately, there
is no results for our systems at the time of writing
this paper and we cannot offer any official defini-
tive results. For this reason, we show the results of
our settings on own development dataset.

The performance of the participating systems is
evaluated using standard IR measures (e.g., pre-
cision, recall, accuracy), as well as hierarchical
variants of them, such as Lowest Common Ances-
tor F-measure (LCA-F). The HEMKit tool® (Kos-
mopoulos et al., 2015) was used to evaluate our
different settings on our development set.

We experimented with different settings such as
the index used to retrieve the documents, the num-
ber of relevant documents (10, 20, 30 and 40), the
option of including MeSH labels without repeti-
tions, and the threshold to select the MeSH labels.
We also provided baseline results based on the use
of the MTI system (Mork et al., 2013). Table 1
shows the results. Our best result among all ap-
proaches is highlighted in bold. The different set-
tings are described bellow:

e MTT: our baseline system using MTI.

e Elastic-2016V-X-R-T: V refers to the index
used: a for the index built from the large
training dataset (Training v.2016a) or b for
index built from the small training dataset
(Training v.2016b). X refers to the number
of relevant documents retrieved by Elastic-
Search. R is a discrete parameter that indi-
cates the minimum number (minus one) of
times a label has to appear in the relevant doc-
uments in order to be considered as a candi-
date label for the test document. R takes only
three values: 0, 1 and 2. T refers to the mini-
mum threshold in equation 2 for selecting the
MeSH labels.

We experimented with different settings such
as the index type, the number of relevant docu-
ments or the threshold used to select the MeSH
categories. Results for some of these settings
are shown in Table 1 (we do not show all re-
sults for lack of space). Experiments showed that
the increase in the number of relevant documents

>http://nlp.cs.aueb.gr/software
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achieved to improve precision and recall values.
Finally, the number of documents was set to 30
because this value achieved the best results while
keeping the processing time low (less than 15 sec-
onds per document).

The simplest approach by using ElasticSearch
(that is, returning the whole set of MeSH labels for
all retrieved documents) provides a very high re-
call (93%) but with a very low precision (15-16%).
We tried with different values for the threshold T
(minimum score to select the MeSH categories)
and decided that 1.5 was a good value balancing
precision with recall as higher values returned.

Regardless of the other parameters, the index
type, that is, the use of the large training dataset
versus the small training dataset, does not seem
to obtain a significant difference. The results ob-
tained with the small index are slightly better than
those obtained with the large index.

As could be expected, the fact of including the
MeSH categories with frequencies lower than 2
achieves better recall value, but has worse preci-
sion. On the contrary, if we require that the MeSH
category has to occur at least twice in the set of
the relevant documents in order to be selected, the
precision increases but the recall decreases.

When comparing the experimental results of the
current study with those from the MTI baseline,
we can observe that our approach outperforms this
baseline at recall, but with a significant decrease in
precision. Therefore, we need to further research
for techniques to improve precision. On the other
hand, it should be noted that our system based on
ElasticSearch gives a much better time response
than the MTI system.

Finally, we also combined the MTI baseline
with our approach based on ElasticSearch by out-
puting all MeSH labels proposed by MTI as well
as those proposed by ElasticSearch. In this case,
the best value for the threshold T was 3. This set-
ting provided the best results (see two last rows in
Table 1).

Table 2 shows our results on a very small sam-
ple (302 articles) from the test batch 3-week 5,
and thereby, no conclusion can be drawn yet. The
setting used for this submission was only based
on providing the labels from the top 30 articles
retrieved by ElasticSearch from the small index
(Training v.2016b). This set was also extended
with the MeSH labels proposed by MTI.



Systems F R P LCA-F LCA-R LCA-P
MTI 0.7065 0.6741 0.6881 0.4165 04217  0.454

Elastic-2016a-30-0-0 0.2734 0.9394 0.1647 0.2004 0.6792  0.1206
Elastic-2016b-30-0-0 0.2626 0.9364 0.1571 0.1933  0.6752 0.1156
Elastic-2016a-30-1-1.5 0.5150 0.8303 0.3926 0.3345 0.5589 0.2510
Elastic-2016b-30-1-1.5 0.5188 0.8474 0.3925 0.3377 0.5717 0.2519
Elastic-2016a-30-2-1.5 0.5592 0.7944 0.4537 0.3580 0.5282  0.2861
Elastic-2016b-30-2-1.5 0.5632 0.8066 0.4543 0.3625 0.5364 0.2889
MTI + Elastic-2016a-30-2-3 | 0.6266 0.8168 0.5330 0.4034  0.5420 0.3396
MTI + Elastic-2016b-30-2-3 | 0.6207 0.8039 0.5297 0.3982  0.5345  0.3357

Table 1: Experimental results on our development dataset.

Systems F | R LCA-F LCA-P LCA-R
MTI 0.6373 0.6650 0.6674 0.3949 0.4085 0.4168
MTI + Elastic-2016b-30-2-3 | 0.4408 0.3295 0.6910 0.3890 0.4774 0.7928

Table 2: Experimental results on the test batch 3, week 5 (Annotated articles:302/3130).

5 Conclusions

Several works have already applied a k-Nearest-
Neighbors (kNN) approach for semantic indexing
(Névéol et al., 2007; Mao et al., 2014; Dramé et
al., 2014). This approach relies on the assump-
tion that similar documents should be classified
by similar MeSH labels. We make the same as-
sumption, but our work is the first that explores the
document similarity using ElasticSerach instead
of kNN. Our approach achieves similar results to
those reported in previous editions of BioASQ,
while keeping the processing time much lower
than that reported by the MTI baseline (30-45 sec-
onds per document). Our approach yields high re-
call (80-84%), but with a low precision (45-53%).
Therefore, we plan to study alternatives that aim to
improve precision. As future steps, we also plan to
determine semantic similarity between documents
using word embeddings (Mikolov et al., 2013), in-
stead of the well-known and commonly used vec-
tor space model for information retrieval.
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